Vol. 5 No. 1 (2025): Issue 5
Articles

Governing Food Nutrition Feature Analysis: A Gaussian Mixture Model-based Approach

Julien Lefevre
Research Institute for Sustainable Food Systems, Angers Institute of Agriculture, Angers, 49000, France
Camille Dubois
Nutritional Science and Health Research Center, Orleans University of Biological Studies, Orleans, 45000, France
Antoine Roche
Center for Advanced Nutritional Analysis, Reims Faculty of Applied Sciences, Reims, 51100, France

Published 2025-01-27

Keywords

  • Nutrition Analysis,
  • Public Health,
  • Statistical Methods,
  • Gaussian Mixture Models,
  • High-Dimensional Data

How to Cite

Lefevre, J., Dubois, C., Nilsson, E., & Roche, A. (2025). Governing Food Nutrition Feature Analysis: A Gaussian Mixture Model-based Approach. Optimizations in Applied Machine Learning, 5(1). https://doi.org/10.71070/oaml.v5i1.134

Abstract

Food nutrition is a critical aspect of public health, with increasing attention being paid to the analysis and monitoring of its governing features. However, existing research lacks advanced analytical techniques to effectively capture the complex dynamics of food nutrition. This paper reviews the current state of food nutrition analysis and identifies the challenges faced, including the limitations of traditional statistical methods in handling the high-dimensional nature of nutrition data. To address these issues, we propose a novel approach based on Gaussian Mixture Models, which offer a more flexible and accurate representation of the underlying structure of food nutrition features. Our innovative method provides a promising avenue for improving the understanding and management of food nutrition, ultimately contributing to the enhancement of public health strategies.

References

  1. W. Shao et al., "Rapid Non-Destructive Analysis of Food Nutrient Content Using Swin-Nutrition," Foods, vol. 11, 2022.
  2. N. Daud et al., "Obesity Predictor Identification: Comparison of Correlation Based Feature Selection Method and Wrapper Method on Nutrition Dataset," Journal of Advanced Research in Applied Sciences and Engineering Technology, 2024.
  3. M. Abid et al., "Enhancing Software Effort Estimation in Healthcare Informatics: A Comparative Analysis of Machine Learning Models with Correlation-Based Feature Selection," Sustainable Machine Intelligence Journal, 2025.
  4. H. Wang et al., "Nutritional composition analysis in food images: an innovative Swin Transformer approach," Frontiers in Nutrition, 2024.
  5. T. T. Nguyen et al., "Detection of Unknown DDoS Attacks with Deep Learning and Gaussian Mixture Model," in International Congress on Information and Communication Technology, 2021.
  6. Y. Zhang et al., "Gaussian Mixture Model Clustering with Incomplete Data," in ACM Trans. Multim. Comput. Commun. Appl., 2021.
  7. C. Rasmussen, "The Infinite Gaussian Mixture Model," in Neural Information Processing Systems, 1999.
  8. J. Cao et al., "Unsupervised Eye Blink Artifact Detection From EEG With Gaussian Mixture Model," in IEEE journal of biomedical and health informatics, 2021.
  9. G. Yan et al., "Unknown Intent Detection Using Gaussian Mixture Model with an Application to Zero-shot Intent Classification," in Annual Meeting of the Association for Computational Linguistics, 2020.
  10. P.-M. Lu and Z. Zhang, ‘The Model of Food Nutrition Feature Modeling and Personalized Diet Recommendation Based on the Integration of Neural Networks and K-Means Clustering’, Journal of Computational Biology and Medicine, vol. 5, no. 1, 2025, Accessed: Mar. 12, 2025.
  11. Q. Zhu, ‘Autonomous Cloud Resource Management through DBSCAN-based unsupervised learning’, Optimizations in Applied Machine Learning, vol. 5, no. 1, Art. no. 1, Jun. 2025, doi: 10.71070/oaml.v5i1.112.
  12. S. Dan and Q. Zhu, ‘Enhancement of data centric security through predictive ridge regression’, Optimizations in Applied Machine Learning, vol. 5, no. 1, Art. no. 1, May 2025, doi: 10.71070/oaml.v5i1.113.
  13. S. Dan and Q. Zhu, ‘Highly efficient cloud computing via Adaptive Hierarchical Federated Learning’, Optimizations in Applied Machine Learning, vol. 5, no. 1, Art. no. 1, Apr. 2025, doi: 10.71070/oaml.v5i1.114.
  14. Q. Zhu and S. Dan, ‘Data Security Identification Based on Full-Dimensional Dynamic Convolution and Multi-Modal CLIP’, Journal of Information, Technology and Policy, 2023.
  15. Q. Zhu, ‘An innovative approach for distributed cloud computing through dynamic Bayesian networks’, Journal of Computational Methods in Engineering Applications, 2024.
  16. Z. Luo, H. Yan, and X. Pan, ‘Optimizing Transformer Models for Resource-Constrained Environments: A Study on Model Compression Techniques’, Journal of Computational Methods in Engineering Applications, pp. 1–12, Nov. 2023, doi: 10.62836/jcmea.v3i1.030107.
  17. H. Yan and D. Shao, ‘Enhancing Transformer Training Efficiency with Dynamic Dropout’, Nov. 05, 2024, arXiv: arXiv:2411.03236. doi: 10.48550/arXiv.2411.03236.
  18. H. Yan, ‘Real-Time 3D Model Reconstruction through Energy-Efficient Edge Computing’, Optimizations in Applied Machine Learning, vol. 2, no. 1, 2022.
  19. Y. Shu, Z. Zhu, S. Kanchanakungwankul, and D. G. Truhlar, ‘Small Representative Databases for Testing and Validating Density Functionals and Other Electronic Structure Methods’, J. Phys. Chem. A, vol. 128, no. 31, pp. 6412–6422, Aug. 2024, doi: 10.1021/acs.jpca.4c03137.
  20. C. Kim, Z. Zhu, W. B. Barbazuk, R. L. Bacher, and C. D. Vulpe, ‘Time-course characterization of whole-transcriptome dynamics of HepG2/C3A spheroids and its toxicological implications’, Toxicology Letters, vol. 401, pp. 125–138, 2024.
  21. J. Shen et al., ‘Joint modeling of human cortical structure: Genetic correlation network and composite-trait genetic correlation’, NeuroImage, vol. 297, p. 120739, 2024.
  22. K. F. Faridi et al., ‘Factors associated with reporting left ventricular ejection fraction with 3D echocardiography in real‐world practice’, Echocardiography, vol. 41, no. 2, p. e15774, Feb. 2024, doi: 10.1111/echo.15774.
  23. Z. Zhu, ‘Tumor purity predicted by statistical methods’, in AIP Conference Proceedings, AIP Publishing, 2022.
  24. Z. Zhao, P. Ren, and Q. Yang, ‘Student self-management, academic achievement: Exploring the mediating role of self-efficacy and the moderating influence of gender insights from a survey conducted in 3 universities in America’, Apr. 17, 2024, arXiv: arXiv:2404.11029. doi: 10.48550/arXiv.2404.11029.
  25. Z. Zhao, P. Ren, and M. Tang, ‘Analyzing the Impact of Anti-Globalization on the Evolution of Higher Education Internationalization in China’, Journal of Linguistics and Education Research, vol. 5, no. 2, pp. 15–31, 2022.
  26. M. Tang, P. Ren, and Z. Zhao, ‘Bridging the gap: The role of educational technology in promoting educational equity’, The Educational Review, USA, vol. 8, no. 8, pp. 1077–1086, 2024.
  27. P. Ren, Z. Zhao, and Q. Yang, ‘Exploring the Path of Transformation and Development for Study Abroad Consultancy Firms in China’, Apr. 17, 2024, arXiv: arXiv:2404.11034. doi: 10.48550/arXiv.2404.11034.
  28. P. Ren and Z. Zhao, ‘Parental Recognition of Double Reduction Policy, Family Economic Status And Educational Anxiety: Exploring the Mediating Influence of Educational Technology Substitutive Resource’, Economics & Management Information, pp. 1–12, 2024.
  29. Z. Zhao, P. Ren, and M. Tang, ‘How Social Media as a Digital Marketing Strategy Influences Chinese Students’ Decision to Study Abroad in the United States: A Model Analysis Approach’, Journal of Linguistics and Education Research, vol. 6, no. 1, pp. 12–23, 2024.
  30. Z. Zhao and P. Ren, ‘Identifications of Active Explorers and Passive Learners Among Students: Gaussian Mixture Model-Based Approach’, Bulletin of Education and Psychology, vol. 5, no. 1, Art. no. 1, May 2025.
  31. Z. Zhao and P. Ren, ‘Prediction of Student Answer Accuracy based on Logistic Regression’, Bulletin of Education and Psychology, vol. 5, no. 1, Art. no. 1, Feb. 2025.
  32. Z. Zhao and P. Ren, ‘Prediction of Student Disciplinary Behavior through Efficient Ridge Regression’, Bulletin of Education and Psychology, vol. 5, no. 1, Art. no. 1, Mar. 2025.
  33. Z. Zhao and P. Ren, ‘Random Forest-Based Early Warning System for Student Dropout Using Behavioral Data’, Bulletin of Education and Psychology, vol. 5, no. 1, Art. no. 1, Apr. 2025.
  34. P. Ren and Z. Zhao, ‘Recognition and Detection of Student Emotional States through Bayesian Inference’, Bulletin of Education and Psychology, vol. 5, no. 1, Art. no. 1, May 2025.
  35. P. Ren and Z. Zhao, ‘Support Vector Regression-based Estimate of Student Absenteeism Rate’, Bulletin of Education and Psychology, vol. 5, no. 1, Art. no. 1, Jun. 2025.
  36. G. Zhang and T. Zhou, ‘Finite Element Model Calibration with Surrogate Model-Based Bayesian Updating: A Case Study of Motor FEM Model’, IAET, pp. 1–13, Sep. 2024, doi: 10.62836/iaet.v3i1.232.
  37. G. Zhang, W. Huang, and T. Zhou, ‘Performance Optimization Algorithm for Motor Design with Adaptive Weights Based on GNN Representation’, Electrical Science & Engineering, vol. 6, no. 1, Art. no. 1, Oct. 2024, doi: 10.30564/ese.v6i1.7532.
  38. T. Zhou, G. Zhang, and Y. Cai, ‘Unsupervised Autoencoders Combined with Multi-Model Machine Learning Fusion for Improving the Applicability of Aircraft Sensor and Engine Performance Prediction’, Optimizations in Applied Machine Learning, vol. 5, no. 1, Art. no. 1, Feb. 2025, doi: 10.71070/oaml.v5i1.83.
  39. Y. Tang and C. Li, ‘Exploring the Factors of Supply Chain Concentration in Chinese A-Share Listed Enterprises’, Journal of Computational Methods in Engineering Applications, pp. 1–17, 2023.
  40. C. Li and Y. Tang, ‘Emotional Value in Experiential Marketing: Driving Factors for Sales Growth–A Quantitative Study from the Eastern Coastal Region’, Economics & Management Information, pp. 1–13, 2024.
  41. C. Li and Y. Tang, ‘The Factors of Brand Reputation in Chinese Luxury Fashion Brands’, Journal of Integrated Social Sciences and Humanities, pp. 1–14, 2023.
  42. C. Y. Tang and C. Li, ‘Examining the Factors of Corporate Frauds in Chinese A-share Listed Enterprises’, OAJRC Social Science, vol. 4, no. 3, pp. 63–77, 2023.
  43. W. Huang, T. Zhou, J. Ma, and X. Chen, ‘An ensemble model based on fusion of multiple machine learning algorithms for remaining useful life prediction of lithium battery in electric vehicles’, Innovations in Applied Engineering and Technology, pp. 1–12, 2025.
  44. W. Huang and J. Ma, ‘Predictive Energy Management Strategy for Hybrid Electric Vehicles Based on Soft Actor-Critic’, Energy & System, vol. 5, no. 1, 2025.
  45. J. Ma, K. Xu, Y. Qiao, and Z. Zhang, ‘An Integrated Model for Social Media Toxic Comments Detection: Fusion of High-Dimensional Neural Network Representations and Multiple Traditional Machine Learning Algorithms’, Journal of Computational Methods in Engineering Applications, pp. 1–12, 2022.
  46. W. Huang, Y. Cai, and G. Zhang, ‘Battery Degradation Analysis through Sparse Ridge Regression’, Energy & System, vol. 4, no. 1, Art. no. 1, Dec. 2024, doi: 10.71070/es.v4i1.65.
  47. Z. Zhang, ‘RAG for Personalized Medicine: A Framework for Integrating Patient Data and Pharmaceutical Knowledge for Treatment Recommendations’, Optimizations in Applied Machine Learning, vol. 4, no. 1, 2024.
  48. Z. Zhang, K. Xu, Y. Qiao, and A. Wilson, ‘Sparse Attention Combined with RAG Technology for Financial Data Analysis’, Journal of Computer Science Research, vol. 7, no. 2, Art. no. 2, Mar. 2025, doi: 10.30564/jcsr.v7i2.8933.
  49. Y. Qiao, K. Xu, Z. Zhang, and A. Wilson, ‘TrAdaBoostR2-based Domain Adaptation for Generalizable Revenue Prediction in Online Advertising Across Various Data Distributions’, Advances in Computer and Communication, vol. 6, no. 2, 2025.
  50. K. Xu, Y. Gan, and A. Wilson, ‘Stacked Generalization for Robust Prediction of Trust and Private Equity on Financial Performances’, Innovations in Applied Engineering and Technology, pp. 1–12, 2024.
  51. A. Wilson and J. Ma, ‘MDD-based Domain Adaptation Algorithm for Improving the Applicability of the Artificial Neural Network in Vehicle Insurance Claim Fraud Detection’, Optimizations in Applied Machine Learning, vol. 5, no. 1, 2025.