Published 2025-01-13
Keywords
- Lithium Battery,
- Performance Prediction,
- Remaining Life Estimation,
- Ridge Regression,
- Machine Learning Techniques
How to Cite

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Abstract
In the context of lithium battery performance prediction, this paper addresses the critical need for accurately estimating the remaining life of the battery to optimize its utilization. Despite existing research efforts, challenges persist in achieving precise predictions due to factors like non-linear degradation mechanisms and limited data availability. To overcome these obstacles, our study proposes a novel Ridge Regression-based approach that integrates machine learning techniques with physics-based models. This innovative method not only improves prediction accuracy but also enhances model interpretability. By combining empirical data with theoretical insights, our research contributes to advancing the field of lithium battery prognostics.
References
- Y. Li and Z. Shi, "Remaining Life Prediction of Lithium Battery Based on Data Preprocessing CNN-GRU Model," in 2024 2nd International Conference on Signal Processing and Intelligent Computing (SPIC), 2024, pp. 612-615.
- J. Zhang et al., "Remaining Useful Life Prediction of Lithium-Ion Battery With Adaptive Noise Estimation and Capacity Regeneration Detection," in IEEE/ASME Transactions on Mechatronics, vol. 28, 2023, pp. 632-643.
- M. Reza et al., "Recent advancement of remaining useful life prediction of lithium-ion battery in electric vehicle applications: A review of modelling mechanisms, network configurations, factors, and outstanding issues," in Energy Reports, 2024.
- Z. Li et al., "Remaining useful life prediction of lithium battery based on ACNN-Mogrifier LSTM-MMD," in Measurement Science and Technology, vol. 35, 2023.
- X. Chen et al., "Transfer learning based remaining useful life prediction of lithium-ion battery considering capacity regeneration phenomenon," in Journal of Energy Storage, 2024.
- Y. Pan and J. Ji, "Remaining Useful Life Prediction of Lithium Battery Based on Charging IC Curve and Improved ELM," in 2024 4th International Conference on Energy Engineering and Power Systems (EEPS), 2024, pp. 871-875.
- J. Hu and L. Wu, "Early Uncertainty Quantification Prediction of Lithium-Ion Battery Remaining Useful Life With Transformer Ensemble Model," in IEEE Transactions on Transportation Electrification, vol. 10, 2024, pp. 8618-8629.
- Z. Zhen et al., "Remaining Useful Life Prediction of Lithium-Ion Battery Based on AUKF and CNN-BiLSTM," in 2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS), 2024, pp. 13-18.
- W. Ma et al., "Deep learning-based Remaining Useful Life Prediction of Lithium-ion Battery Considering Two-phase Aging Process," in Journal of the Electrochemical Society, 2024.
- N. He et al., "Remaining useful life prediction of lithium-ion battery based on fusion model considering capacity regeneration phenomenon," in Journal of Energy Storage, 2024.
- A. E. Hoerl and R. Kennard, "Ridge Regression: Biased Estimation for Nonorthogonal Problems," Technometrics, vol. 42, pp. 80-86, 2000.
- Y. Li, H. Zhang, and Q. Lin, "On the Saturation Effect of Kernel Ridge Regression," in International Conference on Learning Representations, 2024.
- Z. Xu et al., "Kernel Ridge Regression-Based Graph Dataset Distillation," in Knowledge Discovery and Data Mining, 2023.
- H. Zhang et al., "On the Optimality of Misspecified Kernel Ridge Regression," in International Conference on Machine Learning, 2023.
- T. Nguyen et al., "Dataset Meta-Learning from Kernel Ridge-Regression," in International Conference on Learning Representations, 2020.
- C. Cheng and A. Montanari, "Dimension free ridge regression," 2022.
- T. Carneiro et al., "Ridge regression ensemble of machine learning models applied to solar and wind forecasting in Brazil and Spain," Applied Energy, 2022.
- W. Wang and B.-Y. Jing, "Gaussian process regression: Optimality, robustness, and relationship with kernel ridge regression," Journal of machine learning research, vol. 23, pp. 193:1-193:67, 2022.
- W. Huang, T. Zhou, J. Ma, and X. Chen, ‘An ensemble model based on fusion of multiple machine learning algorithms for remaining useful life prediction of lithium battery in electric vehicles’, Innovations in Applied Engineering and Technology, pp. 1–12, 2025.
- Q. Zhu, ‘Autonomous Cloud Resource Management through DBSCAN-based unsupervised learning’, Optimizations in Applied Machine Learning, vol. 5, no. 1, Art. no. 1, Jun. 2025, doi: 10.71070/oaml.v5i1.112.
- S. Dan and Q. Zhu, ‘Enhancement of data centric security through predictive ridge regression’, Optimizations in Applied Machine Learning, vol. 5, no. 1, Art. no. 1, May 2025, doi: 10.71070/oaml.v5i1.113.
- S. Dan and Q. Zhu, ‘Highly efficient cloud computing via Adaptive Hierarchical Federated Learning’, Optimizations in Applied Machine Learning, vol. 5, no. 1, Art. no. 1, Apr. 2025, doi: 10.71070/oaml.v5i1.114.
- Q. Zhu and S. Dan, ‘Data Security Identification Based on Full-Dimensional Dynamic Convolution and Multi-Modal CLIP’, Journal of Information, Technology and Policy, 2023.
- Q. Zhu, ‘An innovative approach for distributed cloud computing through dynamic Bayesian networks’, Journal of Computational Methods in Engineering Applications, 2024.
- Z. Luo, H. Yan, and X. Pan, ‘Optimizing Transformer Models for Resource-Constrained Environments: A Study on Model Compression Techniques’, Journal of Computational Methods in Engineering Applications, pp. 1–12, Nov. 2023, doi: 10.62836/jcmea.v3i1.030107.
- H. Yan and D. Shao, ‘Enhancing Transformer Training Efficiency with Dynamic Dropout’, Nov. 05, 2024, arXiv: arXiv:2411.03236. doi: 10.48550/arXiv.2411.03236.
- H. Yan, ‘Real-Time 3D Model Reconstruction through Energy-Efficient Edge Computing’, Optimizations in Applied Machine Learning, vol. 2, no. 1, 2022.
- Y. Shu, Z. Zhu, S. Kanchanakungwankul, and D. G. Truhlar, ‘Small Representative Databases for Testing and Validating Density Functionals and Other Electronic Structure Methods’, J. Phys. Chem. A, vol. 128, no. 31, pp. 6412–6422, Aug. 2024, doi: 10.1021/acs.jpca.4c03137.
- C. Kim, Z. Zhu, W. B. Barbazuk, R. L. Bacher, and C. D. Vulpe, ‘Time-course characterization of whole-transcriptome dynamics of HepG2/C3A spheroids and its toxicological implications’, Toxicology Letters, vol. 401, pp. 125–138, 2024.
- J. Shen et al., ‘Joint modeling of human cortical structure: Genetic correlation network and composite-trait genetic correlation’, NeuroImage, vol. 297, p. 120739, 2024.
- K. F. Faridi et al., ‘Factors associated with reporting left ventricular ejection fraction with 3D echocardiography in real‐world practice’, Echocardiography, vol. 41, no. 2, p. e15774, Feb. 2024, doi: 10.1111/echo.15774.
- Z. Zhu, ‘Tumor purity predicted by statistical methods’, in AIP Conference Proceedings, AIP Publishing, 2022.
- Z. Zhao, P. Ren, and Q. Yang, ‘Student self-management, academic achievement: Exploring the mediating role of self-efficacy and the moderating influence of gender insights from a survey conducted in 3 universities in America’, Apr. 17, 2024, arXiv: arXiv:2404.11029. doi: 10.48550/arXiv.2404.11029.
- Z. Zhao, P. Ren, and M. Tang, ‘Analyzing the Impact of Anti-Globalization on the Evolution of Higher Education Internationalization in China’, Journal of Linguistics and Education Research, vol. 5, no. 2, pp. 15–31, 2022.
- M. Tang, P. Ren, and Z. Zhao, ‘Bridging the gap: The role of educational technology in promoting educational equity’, The Educational Review, USA, vol. 8, no. 8, pp. 1077–1086, 2024.
- P. Ren, Z. Zhao, and Q. Yang, ‘Exploring the Path of Transformation and Development for Study Abroad Consultancy Firms in China’, Apr. 17, 2024, arXiv: arXiv:2404.11034. doi: 10.48550/arXiv.2404.11034.
- P. Ren and Z. Zhao, ‘Parental Recognition of Double Reduction Policy, Family Economic Status And Educational Anxiety: Exploring the Mediating Influence of Educational Technology Substitutive Resource’, Economics & Management Information, pp. 1–12, 2024.
- Z. Zhao, P. Ren, and M. Tang, ‘How Social Media as a Digital Marketing Strategy Influences Chinese Students’ Decision to Study Abroad in the United States: A Model Analysis Approach’, Journal of Linguistics and Education Research, vol. 6, no. 1, pp. 12–23, 2024.
- Z. Zhao and P. Ren, ‘Identifications of Active Explorers and Passive Learners Among Students: Gaussian Mixture Model-Based Approach’, Bulletin of Education and Psychology, vol. 5, no. 1, Art. no. 1, May 2025.
- Z. Zhao and P. Ren, ‘Prediction of Student Answer Accuracy based on Logistic Regression’, Bulletin of Education and Psychology, vol. 5, no. 1, Art. no. 1, Feb. 2025.
- Z. Zhao and P. Ren, ‘Prediction of Student Disciplinary Behavior through Efficient Ridge Regression’, Bulletin of Education and Psychology, vol. 5, no. 1, Art. no. 1, Mar. 2025.
- Z. Zhao and P. Ren, ‘Random Forest-Based Early Warning System for Student Dropout Using Behavioral Data’, Bulletin of Education and Psychology, vol. 5, no. 1, Art. no. 1, Apr. 2025.
- P. Ren and Z. Zhao, ‘Recognition and Detection of Student Emotional States through Bayesian Inference’, Bulletin of Education and Psychology, vol. 5, no. 1, Art. no. 1, May 2025.
- P. Ren and Z. Zhao, ‘Support Vector Regression-based Estimate of Student Absenteeism Rate’, Bulletin of Education and Psychology, vol. 5, no. 1, Art. no. 1, Jun. 2025.
- G. Zhang and T. Zhou, ‘Finite Element Model Calibration with Surrogate Model-Based Bayesian Updating: A Case Study of Motor FEM Model’, IAET, pp. 1–13, Sep. 2024, doi: 10.62836/iaet.v3i1.232.
- G. Zhang, W. Huang, and T. Zhou, ‘Performance Optimization Algorithm for Motor Design with Adaptive Weights Based on GNN Representation’, Electrical Science & Engineering, vol. 6, no. 1, Art. no. 1, Oct. 2024, doi: 10.30564/ese.v6i1.7532.
- T. Zhou, G. Zhang, and Y. Cai, ‘Unsupervised Autoencoders Combined with Multi-Model Machine Learning Fusion for Improving the Applicability of Aircraft Sensor and Engine Performance Prediction’, Optimizations in Applied Machine Learning, vol. 5, no. 1, Art. no. 1, Feb. 2025, doi: 10.71070/oaml.v5i1.83.
- Y. Tang and C. Li, ‘Exploring the Factors of Supply Chain Concentration in Chinese A-Share Listed Enterprises’, Journal of Computational Methods in Engineering Applications, pp. 1–17, 2023.
- C. Li and Y. Tang, ‘Emotional Value in Experiential Marketing: Driving Factors for Sales Growth–A Quantitative Study from the Eastern Coastal Region’, Economics & Management Information, pp. 1–13, 2024.
- C. Li and Y. Tang, ‘The Factors of Brand Reputation in Chinese Luxury Fashion Brands’, Journal of Integrated Social Sciences and Humanities, pp. 1–14, 2023.
- C. Y. Tang and C. Li, ‘Examining the Factors of Corporate Frauds in Chinese A-share Listed Enterprises’, OAJRC Social Science, vol. 4, no. 3, pp. 63–77, 2023.
- W. Huang and J. Ma, ‘Predictive Energy Management Strategy for Hybrid Electric Vehicles Based on Soft Actor-Critic’, Energy & System, vol. 5, no. 1, 2025.
- J. Ma, K. Xu, Y. Qiao, and Z. Zhang, ‘An Integrated Model for Social Media Toxic Comments Detection: Fusion of High-Dimensional Neural Network Representations and Multiple Traditional Machine Learning Algorithms’, Journal of Computational Methods in Engineering Applications, pp. 1–12, 2022.
- W. Huang, Y. Cai, and G. Zhang, ‘Battery Degradation Analysis through Sparse Ridge Regression’, Energy & System, vol. 4, no. 1, Art. no. 1, Dec. 2024, doi: 10.71070/es.v4i1.65.
- Z. Zhang, ‘RAG for Personalized Medicine: A Framework for Integrating Patient Data and Pharmaceutical Knowledge for Treatment Recommendations’, Optimizations in Applied Machine Learning, vol. 4, no. 1, 2024.
- Z. Zhang, K. Xu, Y. Qiao, and A. Wilson, ‘Sparse Attention Combined with RAG Technology for Financial Data Analysis’, Journal of Computer Science Research, vol. 7, no. 2, Art. no. 2, Mar. 2025, doi: 10.30564/jcsr.v7i2.8933.
- P.-M. Lu and Z. Zhang, ‘The Model of Food Nutrition Feature Modeling and Personalized Diet Recommendation Based on the Integration of Neural Networks and K-Means Clustering’, Journal of Computational Biology and Medicine, vol. 5, no. 1, 2025.
- Y. Qiao, K. Xu, Z. Zhang, and A. Wilson, ‘TrAdaBoostR2-based Domain Adaptation for Generalizable Revenue Prediction in Online Advertising Across Various Data Distributions’, Advances in Computer and Communication, vol. 6, no. 2, 2025.
- K. Xu, Y. Gan, and A. Wilson, ‘Stacked Generalization for Robust Prediction of Trust and Private Equity on Financial Performances’, Innovations in Applied Engineering and Technology, pp. 1–12, 2024.
- A. Wilson and J. Ma, ‘MDD-based Domain Adaptation Algorithm for Improving the Applicability of the Artificial Neural Network in Vehicle Insurance Claim Fraud Detection’, Optimizations in Applied Machine Learning, vol. 5, no. 1, 2025.