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Abstract: Predicting aircraft engine performance and sensor data is crucial for ensuring
safety and optimizing maintenance schedules, which in turn extends the life of aircraft
components. Effective prediction improves operational efficiency and is essential for
managing safety. This study focuses on estimating the Remaining Useful Life (RUL) of
aircraft engines based on the advanced machine learning models, which is critical for
scheduling maintenance proactively. Accurate predictions of RUL allow organizations
to plan maintenance based on the engine’s actual condition rather than fixed intervals,
helping to minimize unexpected downtimes and optimize resource use. Our approach
integrates advanced machine learning techniques, using autoencoders for feature
extraction combined with various predictive models, to enhance the accuracy of RUL
predictions. The experimental results demonstrated the effectiveness of the method. This
method leverages detailed patterns from sensor data to improve maintenance strategies
and increase aircraft reliability and availability. Implementing such predictive analytics
makes maintenance operations more efficient and cost-effective, significantly benefiting
fleet management and safety.
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1. Introduction

Aircraft sensor and engine performance prediction are critical fields in aviation, focused on
ensuring safety, optimizing maintenance schedules, and enhancing the longevity of aircraft
components. Predicting engine performance not only improves operational efficiency but also
plays a crucial role in safety management. One of the key aspects of performance prediction in this
area is estimating the Remaining Useful Life (RUL) of aircraft engines and other critical
components [1][2]. RUL refers to the estimated time or cycles an asset, such as an engine, can
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continue operating before it reaches a point of failure. Accurate RUL predictions help
organizations anticipate when maintenance is required, allowing for proactive planning that
minimizes unexpected downtimes, optimizes resource allocation, and extends the component’s
lifecycle.

In the context of aircraft engines, RUL prediction is especially significant. Engines are subject
to high operational stress, with extreme temperatures, pressures, and mechanical loads, making
timely maintenance essential. An accurate RUL prediction allows for maintenance to be scheduled
based on the actual health of the engine rather than just relying on fixed maintenance intervals.
This shift to condition-based maintenance can reduce costs and improve reliability, as maintenance
can be performed precisely when needed, rather than prematurely or too late. By understanding
and predicting the operational health and lifecycle of engines, organizations can manage their
resources more effectively, prioritize maintenance activities, and ultimately improve aircraft
availability and reliability.

Historically, aircraft performance and RUL predictions have relied on statistical models and
rule-based approaches [3][4]. These traditional methods use mathematical models based on
historical failure data and predefined thresholds to predict when an engine or component is likely
to fail. While effective to some extent, these methods have limitations. Rule-based models require
extensive knowledge of the specific asset’s operational characteristics, which can be labor-
intensive to acquire and may not always generalize well to different types or models of engines,
which are demonstrated in some works [5][6][7]. Moreover, statistical models typically assume
linear relationships between variables [8][9][10] , which can oversimplify the complex, nonlinear
interactions within an engine’s components and sensors. As a result, these models often fail to
capture the full range of factors influencing an engine’s performance and degradation, leading to
less accurate or generalized predictions. Another significant limitation is that traditional models
lack the ability to learn from new data dynamically. As an engine operates over time, its wear
patterns, environmental conditions, and operational stresses can change, requiring an adaptable
approach. With fixed-rule or linear models, these evolving conditions are difficult to account for,
leading to reduced accuracy over time. These limitations highlight the need for advanced,
adaptable, and data-driven approaches to better predict aircraft sensors and engine performance.

With advancements in artificial intelligence (Al) and machine learning (ML) in many fields
[11][12][13], new opportunities have emerged for more sophisticated and adaptable RUL
prediction models. Machine learning algorithms can learn complex, nonlinear relationships from
large datasets [14][15][16], making them particularly suitable for modeling the intricate
interactions within aircraft engines. The effectiveness of them has been demonstrated in many
engineering tasks. For instance, Xiong et al. tackled Android malware detection challenges by
applying machine learning (ML) and deep learning (DL) techniques with domain adaptation to
enhance model generalization [17]. Chen et al. proposed an optimization method for mobile robot
delivery systems using deep learning to address challenges in complex, dynamic environments
[18].

By processing large amounts of data from aircraft sensors, ML models can identify hidden
patterns and trends that may indicate an engine’s health and degradation patterns over time. This
has led to a growing interest in applying Al-driven models to RUL prediction, where predictive
models can be trained on historical sensor data and other operational metrics to make more accurate,
data-driven predictions.

Recent progress in deep learning and neural networks has further enhanced the ability to model
complex systems [19][20][21]. Autoencoders [22][23], a type of neural network architecture, have
proven effective in feature extraction and dimensionality reduction. Autoencoders are especially
useful for unsupervised learning, where they can learn compressed, high-level representations of
input data. By encoding complex sensor data into lower-dimensional representations, autoencoders
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can help capture the most relevant features that influence an engine’s performance and degradation.
However, despite the advancements, machine learning applications in aircraft engine RUL
prediction remain relatively limited. The unique challenges in this domain, including the need for
high interpretability, robustness against noise, and adaptability to different types of engines and
operational conditions, mean that ML models for this purpose are still an active area of research.
This paper aims to bridge this gap by developing a comprehensive framework for RUL prediction
using autoencoders and machine learning models, combining these methods to enhance predictive
accuracy and reliability.

In this paper, we propose a novel approach for RUL prediction that leverages the feature
extraction capabilities of an autoencoder and combines multiple machine learning models shown
in Figure 1 to achieve higher accuracy. The proposed methodology begins by using an
unsupervised autoencoder to generate high-level representations of sensor data. The encoder part
of the autoencoder compresses the original sensor data into a set of significant features, which are
essential for understanding the underlying health and performance of the engine. These extracted
features are then fed into multiple machine learning models, each trained to make RUL predictions
based on these high-level representations. To ensure robustness, the predictions from these
individual models are then combined. We use a linear regression model to integrate the outputs of
these models, assigning optimal weights to each model’s prediction based on its performance. This
fusion approach allows the final model to benefit from the strengths of each individual model,
leading to a more reliable RUL prediction. The final output is an RUL estimate that integrates
multiple perspectives on the sensor data, making the prediction both accurate and robust across
different operational conditions.



Sensor data of the MAE Loss

aircraft engine

Encoder Decoder
X[
X(2]
X[3] 5
Latent Variable
_ :_ __________ Predicted | :
Train | Decision RUL :
: Tree :
1 |
1 |
1 . |
1 Predicted Ib'
Train 1 RUL Conjbine 3
> > KNN N Final Prediction
i | Regression
1 |
1 |
1 |
| Predicted 1
Train! - Random RUL :
: Forest Model Fusion :

Figure 1. The workflow of the proposed unsupervised autoencoders combined with multi-model
machine learning fusion method.

2. Literature Review

2.1 RUL prediction based on machine learning

In the rapidly evolving field of aircraft engine prognostics, the prediction of RUL using machine
learning techniques has garnered significant attention due to its potential to enhance maintenance
strategies and improve reliability. A variety of approaches have been explored in recent literature,
highlighting the adoption of both traditional machine learning and advanced deep learning
techniques to tackle this complex problem due to their excellent performance in many tasks
[24][25][26][27].

One notable study employs the Long Short-Term Memory (LSTM) network to predict the
RUL of aircraft engines, emphasizing the importance of handling high-dimensional sensor data
effectively [28]. This method represents a significant shift towards integrating robust machine
learning models to better capture the nonlinear and complex degradation patterns often seen in
aircraft engine data. Li et al. proposed an ensemble learning-based approach for predicting the
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remaining useful life (RUL) of aircraft engines. This model combines various base learners (e.g.,
RF, CART, RNN, AR, ANFIS, RVM, EN) with optimized weights via PSO and SQP. Tested on
C-MAPSS data, the approach showed improved robustness and accuracy over traditional
prognostic methods [29]. Wang et al. introduced a method for predicting the remaining useful life
(RUL) of aircraft engines, combining random forest and Bayes-optimized MLP to handle
nonlinearity and high dimensionality in engine monitoring data. Key features were selected using
random forest, smoothed with SES to reduce noise, and then fed into an MLP model with optimized
parameters. Tested on the C-MAPSS dataset, this approach reduced RMSE by 6.1% on the FD001
test set, demonstrating enhanced RUL prediction accuracy [30].

3. Method

3.1 Dataset preparation

To effectively predict the Remaining Useful Life (RUL) of aircraft engines, we utilized a
comprehensive dataset that combines three separate files: PM_test.xlsx, PM_train.xlsx, and
PM_truth.xlsx. This merged dataset provides a rich array of information vital for training robust
predictive models. The concatenated dataset consists of multiple operational cycles from various
aircraft engines, with each cycle capturing sensor readings and operational settings. The dataset
includes the following specifics: 1) The dataset contains thousands of individual records spread
across numerous engines. Each record includes sensor measurements and operational settings,
culminating in a feature set of 24 dimensions. The distribution and box plots of some features are
provided in Figure 2 and Figure 3. 2) The features include operational settings (settingl, setting?2,
setting3) and sensor outputs (sl to s21). These sensors capture critical performance metrics and
environmental conditions affecting the engine's health and performance. 3) we assign the RUL as
the difference between the maximum cycle number for each engine (grouped by 'id") and the
current cycle number, thereby reflecting the remaining operational cycles before expected
maintenance or failure.

Before diving into predictive modeling, the dataset underwent several preprocessing steps: 1)
The dataset was cleaned to ensure the removal of any outliers or erroneous entries, and the sensor
data were checked for consistency and completeness. 2) Sensor data were scaled using min-max
scaling to normalize their range, ensuring that the model is not biased by the scale of different
sensors. 3) e allocated 70% of the data for training, 10% for validation and reserved 20% as a test
set to evaluate the model's performance.
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Figure 2. The distributions of some features in this dataset.
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Figure 3. Box plots of some features in the dataset.
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3.2 Autoencoder for learning high-level representations

An autoencoder is a type of artificial neural network used to learn efficient representations of data,
typically for the purpose of dimensionality reduction or feature learning. Unlike most traditional
neural networks that are trained to perform classification or regression tasks by predicting output
labels based on input features [31][32][33], autoencoders are designed to reconstruct their own
inputs. This means that both the inputs and outputs of an autoencoder are the same. The structure
of an autoencoder can be thought of as having two main parts: the encoder and the decoder. The
encoder compresses the input data into a smaller, encoded representation, which captures the most
significant features of the data. This encoded form is a lower-dimensional version of the input,
essentially distilling the information that is most important for reconstructing the input data back
from the encoded state. The decoder, on the other hand, takes this encoded representation and
attempts to recreate the original input as closely as possible. This process of reducing
dimensionality and then reconstructing the data teaches the autoencoder to identify key patterns
and correlations in the data.

Autoencoders are trained through a process that involves minimizing the difference between
the original input and the output produced by the decoder. This difference is often quantified using
a loss function, such as mean squared error, which guides the adjustment of the weights in the
network during training. By minimizing this reconstruction error, autoencoders learn to preserve
the most important aspects of the input data within the encoded representation. One of the key
advantages of autoencoders is their ability to handle unsupervised learning tasks, where no labeled
data is available. They can be particularly useful for anomaly detection, where they learn to
reconstruct typical data inputs very well but will struggle with inputs that are significantly different
from the norm. These differences in reconstruction can then be used to identify anomalous or
outlier data points.

In our study, we implemented an autoencoder architecture specifically designed to handle 24-
dimensional input data for learning the high-level representation, characteristic of the features
derived from aircraft sensor readings. The architecture consists of both an encoder and a decoder
section, structured to compress and subsequently reconstruct the input data effectively.

The encoder part of the autoencoder begins with an input layer that receives the 24-feature
data. This is followed by a series of dense layers designed to compress the data into a more compact
representation: The first dense layer contains 32 neurons and utilizes the ReLU activation function,
initiating the process of dimensionality reduction from the original high-dimensional input. The
second dense layer further compresses the data to a lower-dimensional space, consisting of 10
neurons, again using the ReLU activation function. This layer effectively captures the most critical
features of the data, creating a condensed representation that retains essential information while
reducing noise and redundancy.

The decoder section mirrors the encoder in reverse, aiming to reconstruct the original input
from the compressed encoded representation: The first layer in the decoder also contains 32
neurons with ReLU activation, beginning the process of expanding the compressed features back
towards the original input dimensions. Subsequently, a layer with 64 neurons uses ReLU activation
to further enhance the reconstructed data closer to its original form. The final layer of the
autoencoder is a dense layer with 24 neurons, employing a linear activation function. This layer
outputs the reconstructed data, aiming to match the original 24-dimensional input as closely as
possible.



3.3 Multi-model fusion strategy for RUL prediction based on learned high-level representations

3.3.1 Preliminaries of the decision tree

A decision tree is a straightforward yet powerful tool often used in data analysis for making
predictions and decisions [34][35]. Imagine it as a tree-like model in decision-making: it starts
with a single block, or "node," which branches off into possible outcomes based on different
conditions. At each node of the tree, a question is asked about the data that leads to further branches
and, ultimately, to the leaves of the tree, where decisions or predictions are made. The paths from
the root to the leaves represent decision rules. Typically, decision trees are used in scenarios where
data can be split along certain parameters, and patterns can be easily recognized and utilized to
predict outcomes. Moreover, decision trees are flexible and can be applied to both numerical and
categorical data. They are particularly popular because they require little data preparation, and
unlike many other statistical models, they are not influenced by outliers and can handle missing
values quite effectively. This makes them an essential tool in various fields where quick and
reliable decisions are crucial.

3.3.2 Preliminaries of the random forest

A random forest is an ensemble learning method that operates by constructing a multitude of
decision trees at training time and outputting the class that is the majority vote of the individual
trees for classification tasks, or the average prediction for regression tasks [36][37]. Essentially, it
builds upon the simplicity of decision trees by creating an entire forest of them, working
independently and taking the best outcomes from each to produce a more accurate and stable
prediction.

The method works by randomly selecting subsets of the training data, building a decision tree
for each subset, and averaging the results. This randomness helps to make the model more robust
than a single decision tree, reducing the risk of overfitting the training data. Random forests are
highly versatile and can be used for both classification and regression tasks, making them
applicable in various fields such as finance for credit scoring, medicine for disease prediction, and
e-commerce for recommendation systems. The strength of random forests lies in their ability to
handle large datasets with high dimensionality and provide assessments of the importance of
different features in making predictions.

3.3.3 Preliminaries of the KNN

K-Nearest Neighbors (KNN) is a simple, intuitive, and non-parametric method used for both
classification and regression tasks [38][39], but it's particularly popular in classification problems.
KNN works by finding the closest data points in the training dataset—known as the nearest
neighbors—to a new data point, then making predictions based on these neighbors. For
classification, the output is class membership: an object is classified by a majority vote of its
neighbors, with the object being assigned to the class most common among its k nearest neighbors
(k is a positive integer, typically small). KNN is a type of lazy learning, where the function is only
approximated locally, and all computation is deferred until function evaluation. It's highly effective
in scenarios where the decision boundary is very irregular. The algorithm is straightforward—
calculate the distance from the new point to all known points, identify the nearest k neighbors, and
then vote for the most popular output class or average the neighbors in regression problems. KNN
can perform well with a small number of input variables (low dimensionality), but struggles with
a large number of features (high dimensionality) due to the curse of dimensionality, which
complicates the distance calculation between examples.
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3.3.4 Multi-model fusion strategy

After extracting refined features through the autoencoder, these are fed into three distinct
predictive models: Decision Tree, KNN, and Random Forest. Each model independently assesses
the features to predict the RUL. This diversity in modeling techniques enhances the robustness of
our predictions, as each model brings a unique approach to handle different aspects of data variance
and complexity. To synthesize the insights gathered from each predictive model, we integrate their
outputs using a linear regression model. This step involves calculating optimal weights for each
predictive model’s RUL estimation, allowing us to combine them into a single, more accurate
prediction of the engine's RUL. This weighted fusion approach not only improves the accuracy but
also the reliability of our predictions, by effectively balancing the contributions of each model
based on their performance.

4. Results and Discussion

4.1 The performance of the autoencoder

The figures provided shown in Figure 4 and Figure 5 illustrate the training progression and the
reconstruction capability of an autoencoder applied to aircraft engine sensor data, as part of our
study to predict the RUL of these engines. Figure 4 shows the training and validation loss curves
across 30 epochs. Initially, there is a sharp decrease in loss, indicating rapid learning of the data’s
underlying patterns. As epochs progress, both training and validation losses stabilize and converge,
suggesting that the model is neither overfitting nor underfitting. The closeness of the training and
validation loss lines throughout the training process also indicates good generalization capability
of the model on unseen data.

Figure 5 illustrates comparisons between the original and reconstructed sensor data for
multiple samples. Each subplot represents a single engine's sensor readings, with the original data
plotted in purple and the reconstructed data in red. These plots demonstrate that the autoencoder
effectively captures the significant fluctuations and trends in the sensor data, which are crucial for
the following RUL prediction. Although there are minor discrepancies in peak values, the overall
alignment of the reconstructed data with the original data showcases the model's capability to
approximate complex sensor patterns.

Training and Validation Loss Curve
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Figure 4. The training curves of the autoencoder.
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Figure 5. Comparison of original and reconstructed sample data.

Figure 6 shows a visualization of the encoded (latent) layer of our autoencoder, reduced to two
dimensions using Principal Component Analysis (PCA). The left plot represents the latent
variables for the training dataset, while the right plot shows the latent space representation for the
testing dataset. By mapping the encoded layer to two principal components, we gain a clear view
of how the autoencoder captures the structure and distribution of the sensor data. Both the training
and testing sets display a similar pattern, indicating that the autoencoder is learning consistent,
meaningful representations of the data. This consistent clustering also suggests that the
autoencoder can generalize well, capturing key features that are not limited to the training data
alone.
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Figure 6. PCA visualization of the encoded layer in the training and testing datasets.

Table 1 illustrates the performance differences between traditional machine learning models
and those enhanced with features extracted via an autoencoder for predicting the RUL of aircraft
engines. Direct application of traditional models such as Decision Tree, Random Forest, and KNN
on the original dataset yielded varying levels of accuracy, with Random Forest outperforming
others by achieving a Mean Absolute Error (MAE) of 35.952 and an R? of 0.490, indicating

moderate predictive accuracy.

In contrast, integrating an autoencoder for feature extraction before applying the same machine
learning models showed distinct improvements in several cases. Notably, the Random Forest
model combined with autoencoder features reduced the MAE to 34.620 and increased the R? to
0.501, demonstrating enhanced predictive capability and better generalization. Similarly, the
Autoencoder + KNN model improved upon the standalone KNN, reducing the MAE and achieving

a higher R? of 0.371.

Table 1. The performance of different approaches in the testing dataset based on the original

model and autoencoder-based model.

Model Name MAE RMSE R?
Decision Tree 52.796 71.284 -0.086
Random Forest 35.952 48.826 0.490
KNN 40.946 54.855 0.356
Autoencoder + 49.476 68.849 -0.043
Decision Tree
Autoencoder + Random 34.620 46.769 0.501
Forest
Autoencoder + KNN 38.298 52.106 0.371
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4.2 The performance of model fusion-based approach

In the scatter plots shown in Figure 7, each model's predictions are plotted against the actual RUL
values. A closer alignment of points along the diagonal red dotted line indicates higher prediction
accuracy. The Model Fusion-based Approach, which combines the outputs of individual models
using linear regression to assign optimal weights, shows the tightest clustering around this line,
suggesting it is the most effective in accurately predicting RUL. This method effectively harnesses
the strengths of each underlying model, mitigating individual weaknesses and leading to a robust
prediction system.

The bar graphs shown in Figure 8 further quantify this observation, where the Autoencoder +
Model Fusion-based Approach not only exhibits lower MAE and RMSE but also achieves the
highest R? value among the tested methods. This reflects not just reduced prediction error but also
a greater explanatory power in terms of variance in the data, underscoring the efficacy of using a
fusion approach for complex predictive tasks like RUL estimation in aircraft engines. This
integrated approach, leveraging a weighted combination of models, clearly demonstrates its
superiority in deriving meaningful insights from the nuanced patterns encoded by the autoencoder.
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400

12

Actual Values



Performance Metrics of Different Models

20} 68.849 -
= RMSE
- R
60
52.106
49.476
50 46.769
43.221
a0t 38.298
§ 34.62
] ol 30.528
20
101
0.501 0.371 0.532
or -0.043
S
<& & s o
) Qo X \((\\
o & & ¥
& R & 8
‘x xQ:b OQF X
) > 2
L°b 6@} ® oob
N & &
Nd S o
8 & S
¥ & o

Models

Figure 8. The performance of different approaches in the testing dataset based on the
autoencoder-based models.

4.3 The feature importance of the model

Considering the best performance presented by Random Forest in Table 1, we further explored the
impact of different features on the results. The provided feature importance visualization shown in
Figure 9 graphically represents the significance of various features used in predicting the RUL of
aircraft engines, as derived from the sensor and setting data in the dataset. This bar chart ranks the
features in order of their importance, calculated based on a predictive model's criteria, which may
include metrics like information gain or coefficients in regression models.

In the chart, each feature from the aircraft's sensor data (labeled as s1 through s21) along with
engine settings (settingl, setting2, setting3) are displayed with corresponding importance scores.
Notably, sensor s14 stands out as having the highest importance, indicating that this particular
sensor's readings are most predictive of the engine's RUL. This could suggest that s14 is closely
related to critical mechanical functions or stress markers within the engine. Other sensors like s21,
s9, and s12 also show relatively high importance, further underscoring their roles in the health and
operational status of the engine. In contrast, the engine settings (setting1, setting2, setting3) appear
to have the least influence on the predictions, which might indicate that the operational parameters
set by these controls are less critical to the engine's immediate functional state compared to the
direct sensor readings.
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5. Discussion

Although the proposed method is effective, it faces certain limitations in its broader applicability.
Integrating multiple models—an autoencoder, various predictive models, and a linear regression
for final fusion—introduces complexity, making precise tuning and validation essential for optimal
performance. Any misalignment among these components could reduce overall prediction
accuracy, particularly in diverse operational settings. Additionally, relying on linear regression for
model fusion assumes a straightforward relationship between predicted and actual RUL, which
may not always align with the complex, nonlinear nature of engine degradation, leading to
potential inaccuracies under different conditions.

Moreover, the computational demands of training and maintaining such a sophisticated model
are substantial, which presents challenges for real-time application across various systems. Future
work could explore advanced domain adaptation strategies to enhance model flexibility due to
their excellent performance in various engineering tasks [40][41] , allowing it to adapt more
effectively to varied data distributions and evolving conditions. Balancing model complexity,
accuracy, and operational efficiency using some advanced methods such as distillation [42]remains
essential to ensuring the practical application of this approach.
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6. Conclusion

This paper presented a novel approach to predicting the RUL of aircraft engines using a
combination of autoencoders and machine learning models. The proposed methodology capitalizes
on the strength of autoencoders in extracting meaningful features from complex sensor data, which
are then used to train various predictive models. The integration of these models through a linear
regression fusion enhances the overall prediction accuracy, allowing for more reliable and precise
maintenance scheduling. The results demonstrated that this model fusion approach outperforms
traditional methods by effectively handling the non-linear and complex degradation patterns of
aircraft engines. However, despite its effectiveness, the approach has limitations such as the need
for extensive tuning and the high computational costs associated with training and maintaining the
model. Future work should focus on simplifying the model to reduce these demands without
compromising predictive accuracy. Additionally, further research into adaptive models that can
dynamically incorporate new data and adjust to changing conditions will be crucial for advancing
RUL prediction in aviation. The successful implementation of such predictive models has the
potential to significantly reduce maintenance costs and improve the reliability and safety of aircraft
operations.
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