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Abstract: With the rapid advancement of information technology, network security has
become an increasingly critical concern. In particular, data security intrusions pose
significant risks to the privacy of data and the security of both enterprise and personal
systems. Traditional intrusion detection systems often struggle with low detection
accuracy and high false alarm rates, especially in complex and dynamic network
environments with diverse attack techniques. To address these challenges, this paper
proposes a deep learning-based data security intrusion detection system that integrates
the Mamba model and the ECANet model, employing an end-to-end learning approach
for training and optimization. First, the Mamba model is utilized for initial data feature
extraction, offerln?\lefflment feature representation that lays a strong foundation for the
detection process. Next, the ECANet model is incorporated to optimize feature selection
using the attention mechanism, allowing the model to focus on the most critical features.
Finally, the entire system is trained and optimized through an end-to-end learning
approach, ensuring robust performance and reliability in real-world applications.

xperimental results demonstrate that the proposed intrusion detection system achieves
higher detection accuracy across various test datasets, with a 5% improvement over
traditional methods, offering a novel and effective solution for data security.

Keywords: Data Security; Anomaly Detection; Mamba Model; ECANet Model,
End-to-End Learning; Feature Extraction.

1. Introduction

In the realm of cybersecurity, intrusion detection systems (IDS) are crucial for protecting networks
from malicious attacks, enhancing overall system security, reducing the risk of data breaches, and
ensuring data integrity. With the continuous advancement of information technology and the
increasing complexity of network environments, the demand for automated and intelligent
cybersecurity protection systems has become more urgent. These systems not only help to reduce
the likelihood of potential threats but also demonstrate superior performance in enhancing network
defense capabilities and handling complex network environments.

Deep learning-based models, such as Convolutional Neural Networks (CNNs) (Kim et al.,
2020) and Long Short-Term Memory Networks (LSTMs) (Imrana et al., 2021), have achieved
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remarkable results in intrusion detection. CNNs utilize their weight-sharing characteristics to
efficiently extract important features from network data, thereby accelerating processing speed,
while LSTMs maintain long-term temporal relationships between data features. However, these
models still underperform when dealing with limited or highly imbalanced intrusion samples.
Additionally, these models typically rely on large amounts of labeled data to achieve high
performance, which is often challenging to obtain in real-world cybersecurity environments.

State Space Models (SSMs) (Toorani & Beheshti, 2008), known for their efficiency in
handling long sequence modeling, have recently been applied in the field of cybersecurity. For
instance, the Mamba model, by introducing a data-dependent selection mechanism (Waleffe et al.,
2024), significantly improves the model's efficiency and accuracy while maintaining linear
scalability in processing long sequences. In the field of computer vision, variants of the Mamba
model, such as VMamba (Shi et al., 2024), combine selective scanning mechanisms (S6) (Jia et
al., 2021) to handle non-causal two-dimensional image data, further enhancing the model's
processing capabilities. This innovative design not only improves detection accuracy but also
significantly reduces computational costs. Moreover, the application of the Mamba model in multi-
class unsupervised anomaly detection (MUAD) demonstrates its powerful modeling capability and
computational efficiency, providing new solutions for intrusion detection in complex network
environments. The unique aspect of the Jamba model lies in its integration of the Transformer (Han
etal., 2022) and Mamba architectures. Although the Transformer is popular in the field of language
modeling, its memory and computational requirements are high, and it is limited by the key-value
cache size when handling long contexts. Additionally, generating each token requires computing
the entire context, resulting in slow inference speed and low throughput. In contrast, traditional
Recurrent Neural Networks (RNNs) (Yin et al., 2017) can summarize arbitrarily long contexts in
a single hidden state without these limitations, but they are expensive to train and struggle to handle
long-distance relationships.

Despite the significant advancements of these models in many areas, some unresolved issues
persist in specific cybersecurity scenarios. To address these challenges, this paper proposes an end-
to-end data security intrusion detection system that combines the Mamba model with the ECANet
model, aiming to improve detection accuracy and efficiency. First, the Mamba model, through its
selective state space model (SSMs) approach, addresses the weaknesses of traditional discrete
modalities and designs hardware-friendly parallel algorithms, achieving efficient inference and
linear scalability, suitable for analyzing large and complex log data in intrusion detection systems.
Second, to further enhance the model's detection performance, this paper introduces the Efficient
Channel Attention (ECA) module. The ECA module effectively reduces model complexity while
improving the model's sensitivity and accuracy to abnormal behavior by avoiding dimensionality
reduction and adopting a local cross-channel interaction strategy. Finally, through an end-to-end
learning approach, this paper designs a complete intrusion detection framework that automatically
performs data preprocessing, feature extraction, anomaly detection, and classification tasks,
achieving efficient detection and classification of various types of attack behaviors.

The organization structure of this article is as follows: This section introduces the importance
of cybersecurity and intrusion detection systems (IDS), provides an overview of the limitations
and challenges of current intrusion detection methods, and presents the motivation and objectives
of this study. The second section reviews recent research in the field of intrusion detection,
covering both traditional methods and deep learning-based approaches, with a focus on the
application and advantages and disadvantages of various models in different scenarios. The third
section provides a detailed description of the proposed end-to-end data security intrusion detection
system based on deep learning, including the design and integration of the Mamba model and
ECANet model, as well as the application of end-to-end learning methods. The fourth section
describes the experimental setup and procedures, including the selection of datasets, configuration



of the experimental environment, and definition of evaluation metrics, and validates the
effectiveness and superiority of the proposed system through comparisons with existing methods.
The fifth section summarizes the main contributions and experimental findings of this paper,
discusses the limitations of the research, and outlines future research directions. The main
contributions of this paper are as follows:

1. The application of the Mamba model to the field of data security intrusion detection. This
model, through its Selective State Space Model (SSM) approach, effectively addresses the
weaknesses of traditional discrete modalities and designs hardware-friendly parallel algorithms,
achieving efficient inference and linear scalability, suitable for analyzing large and complex log
data in intrusion detection systems.

2. The introduction of the Efficient Channel Attention (ECA) module. By avoiding
dimensionality reduction and adopting a local cross-channel interaction strategy, this module
effectively reduces the complexity of the model while improving its sensitivity and accuracy in
detecting abnormal behavior. This combination enhances the model's robustness and precision in
handling diverse and complex attacks.

3. The design of a complete end-to-end intrusion detection framework capable of automatically
performing data preprocessing, feature extraction, anomaly detection, and classification tasks. The
end-to-end learning approach ensures that the optimization process of the entire system is global,
improving the overall performance and robustness of the system.

2. Related Work

In recent years, intrusion detection systems (IDS) in cybersecurity have played a crucial role in
addressing increasingly complex network threats. Traditional IDS methods are mainly divided into
two categories: signature-based intrusion detection systems (SIDS) and anomaly-based intrusion
detection systems (AIDS) (Khraisat et al., 2019). SIDS detect intrusions by matching the signatures
of known attacks, offering high detection accuracy and low false alarm rates, but are limited in
effectiveness against unknown attacks. AIDS, on the other hand, detect abnormal activities that
deviate from expected behavior by constructing models of normal behavior, effectively identifying
unknown attacks but potentially generating higher false alarm rates.

With the rapid development of machine learning and deep learning technologies, many
researchers have applied these technologies to intrusion detection systems to improve their
detection performance and ability to handle complex attacks. For example, Cavusoglu (C,
avus 0glu, 2019) proposed a new hybrid method that combines various machine learning
techniques to enhance the accuracy and efficiency of intrusion detection. However, this method
still faces challenges when dealing with large-scale high-dimensional data. Ferrag et al. (Aldhaheri
et al., 2023) reviewed various deep learning-based intrusion detection methods, finding that these
methods perform well in handling complex network traffic and evolving attack techniques, but are
highly dependent on training datasets and may face issues with frequent model updates in practical
applications. Longlong Li et al. (Li et al., 2024) proposed an end-to-end intrusion detection
framework based on contrastive learning, employing hierarchical convolutional neural networks
(CNNSs) and gated recurrent units (GRUSs) to automatically extract spatiotemporal features from
raw network traffic data. This method achieved a detection accuracy of 99.9% for known attacks
and a weighted recall rate of 95% for unknown attacks, demonstrating excellent detection
capabilities.

In addition to the aforementioned studies, Yang and Wang (Yang & Wang, 2019) improved
the application of convolutional neural networks (CNNs) for wireless network intrusion detection,
significantly enhancing detection accuracy and efficiency. Jiang et al. (Jiang et al., 2016) proposed
an energy-efficient multi-constrained routing algorithm in smart city applications, improving
network efficiency through load balancing. Although this method mainly targets routing
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optimization, its approach is insightful for resource management in intrusion detection systems.
Moreover, Dong and Wang (Dong & Wang, 2016) compared traditional methods and deep learning
methods in network intrusion detection, finding that deep learning methods perform better in
handling complex network traffic and unknown attacks. Sarvari et al. (Sarvari et al., 2020)
proposed an efficient anomaly intrusion detection method by combining feature selection and
evolutionary neural networks, significantly improving detection accuracy. Tian et al. (Tian et al.,
2020) proposed an industrial network intrusion detection algorithm based on a multi-feature data
clustering optimization model, demonstrating the potential of data fusion technology in enhancing
detection performance. However, these methods still face challenges such as high dependency on
datasets and frequent model updates, particularly in real-world applications where obtaining
representative high-quality datasets remains a significant challenge.

In the study of deep learning-based end-to-end data security intrusion detection systems, the
Mamba model, as a novel selective state space model (SSM), has shown significant advantages
and potential. Albert Gu and Tri Dao (Gu & Dao, 2023) first proposed the Mamba model to address
the computational efficiency issues of the Transformer architecture when processing long
sequences. The Mamba model sets the SSM parameters as functions of the input, allowing the
model to selectively propagate or forget information based on the current input, achieving linear
time complexity expansion while maintaining context-relevant reasoning capabilities. Based on
the Mamba architecture, researchers developed the Vision Mamba (Vim) (Xu et al., 2024) model
for efficient visual representation learning. The Vim model, through bidirectional state space
modeling and positional embedding techniques, performs excellently in image classification,
object detection, and semantic segmentation tasks, significantly improving computational and
memory efficiency. In the ImageNet classification task, the Vim model outperformed many
existing visual Transformer models and demonstrated outstanding efficiency in high-resolution
image processing. Additionally, Gu et al. (Gu & Dao, 2023) further extended the Mamba model
by introducing the Selective State Space model (S6), enhancing the selectivity of information
processing, resulting in superior performance in handling long-sequence data. This improvement
has made the Mamba model more stable and efficient in multimodal learning tasks. However, the
Mamba model still has some limitations. For example, the selective information processing
mechanism of the Mamba model in handling discrete modalities (such as language) may lead to
adaptability issues in specific application scenarios. Despite its hardware-friendly parallel
algorithms enhancing computational efficiency, further optimization may be needed to avoid
potential computational bottlenecks when processing extremely long sequence data.

Channel attention mechanisms have shown great potential in enhancing the performance of
deep convolutional neural networks (CNNs). However, most existing methods focus on
developing more complex attention modules to pursue better performance, inevitably increasing
model complexity. To address the trade-off between performance and complexity, Wang et al.
(Wang et al., 2020) proposed an Efficient Channel Attention (ECA) module. The ECA module
effectively reduces model complexity while significantly improving performance by avoiding
dimensionality reduction and adopting a local cross-channel interaction strategy. For instance,
experiments on ResNet-50 demonstrated that the ECA module could achieve over a 2% increase
in Top-1 accuracy with minimal additional parameters and computational load. Besides the work
of Wang et al., Huynh-The et al. (Huynh-The et al., 2022) proposed a high-performance
convolutional network (RF-UAVNET) based on the ECA attention mechanism for RF signal-
based UAV monitoring systems. Their method integrated the ECA module to improve accuracy
and efficiency in UAV detection and identification tasks. However, while their method performed
well in specific applications, further validation of the model's generalization ability in handling
other types of complex data is necessary. Huang et al. (Huang et al., 2021) explored the application
of the ECA attention mechanism in multi-channel 1D convolutional neural networks for UAV



detection and identification using RF signals. Their method highlighted the advantages of the ECA
module in processing time-series data by reducing redundant computations to enhance real-time
performance. However, the study also noted that the ECA module still faces challenges when
dealing with high-noise and complex background data. Additionally, Chen et al. (Chen et al., 2022)
proposed a deep learning method combining the ECA module for UAV detection and classification.
Their method leveraged the ECA attention mechanism to enhance feature extraction capability in
complex scenarios, effectively improving detection and classification accuracy. Nonetheless,
further optimization is needed to address computational efficiency and resource consumption when
handling larger datasets. ECA-Net, through its innovative design, strikes a balance between
complexity and performance, providing new insights for performance enhancement in deep
learning models.

3. Method

Figure 1 shows the overall algorithm architecture of the data security intrusion detection system
used in this paper. This model first performs a linear projection on the input data and transforms it
into both the frequency and time domains to capture multi-dimensional features. Subsequently, it
utilizes ECANet for feature extraction and further optimizes the extracted features through a
Selective State Space Model. The optimized features are then combined via linear projection and
processed through the subsequent Add & Norm and Feed-forward mechanisms to ensure stable
signal processing and feature extraction, ultimately outputting the detection results.
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Figure 1. Overall algorithm architecture.

3.1 Mamba Architecture

Mamba is a Selective Structured State Space Model (S4) designed to handle long-sequence data.
By introducing a selection mechanism, it overcomes the limitations of traditional State Space
Models (SSMs) in contextual reasoning capability. The Mamba model effectively extracts
complex data features, providing a solid foundation for subsequent deep learning processing. The
architecture diagram of Mamba is shown in Figure 2.
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Figure 2. Structure diagram of Mamba.

The core idea of SSM is to connect the input and output sequences through latent states. The
classic form of SSM is as follows:

h'(t) = Ah(t) + Bx(t) (1

y(t) = Ch(t) )

where A € RN*N B € RN*1 ¢ € R™*N are the model parameters. When processing discrete input
sequences, SSM discretizes these parameters using the zero-order hold (ZOH) method. The
discretized parameters are expressed as:

A=exp(AA) (3)

B = (AA) (exp(AA) - 1)- AB 4)

Then, the discretized SSM is represented as:
h = Ah_, + Bx,, 5)

=Ch, (6)



The recursive computation process of SSM can also be expressed as a convolution operation:

K =(CB,CAB,...,CA"'B), (7)

y=Xx*K, 8)

where L is the length of the input sequence and K € Rl is the SSM convolution kernel. The key
improvement of the Mamba model lies in its selection mechanism, which achieves context-related
interaction by making the parameters of the SSM dependent on the input sequence. Specifically,
the parameters B, C, A of the selective SSM are expressed as functions of the input sequence X:

B,C, A = Linear(x), )

3.2 ECANet Architecture

In this study, we adopt ECANet (Efficient Channel Attention Network) as one of the base models
to enhance the feature selection capability of the data security intrusion detection system. ECANet,
by introducing an efficient channel attention mechanism, improves model performance while
reducing computational complexity. The channel attention mechanism aims to weight the channels
of the input feature map, enabling the network to focus more on important features. The
architecture diagram of ECANet is shown in Figure 3
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Figure 3. Structure diagram of ECANet.

The core idea of ECANEet is to use one-dimensional convolution (1D Convolution) instead of fully
connected layers to capture local cross-channel interactions. First, the input feature map X €
RHXWXC s globally average-pooled to obtain the global feature vector z € R® along the channel
dimension.

H W

1 ..
z=F,(X) ZWZZX(" )
i=1 j=1 (10)

Then, a one-dimensional convolution kernel of size k is applied to the global feature vector z,
generating the channel attention weights s € RC. Here, k is an adjustable parameter used to
control the size of the convolution kernel.

s=F,(z) =o(ConvlD(z,k)) (11)



Finally, the generated channel attention weights s are multiplied with the original feature map
X, resulting in the re-calibrated feature map Y € REXWXC,

Y = Fsca|e(X,S):S'X (12)

where o is the sigmoid activation function, and ConvlD(z, k) denotes convolution operation
with a one-dimensional kernel of size k applied to the feature vector z.

3.3 End-to-End Learning

End-to-end learning refers to integrating the entire learning process into a single model, optimizing
directly from the raw input to the final output. Compared to traditional staged learning methods,
end-to-end learning can better capture the global features of the data, reduce information loss from
intermediate steps, and enhance the overall performance and robustness of the model.

We use the cross-entropy loss function to measure the discrepancy between the model's
predictions and the true labels. The formula for the cross-entropy loss function is as follows:

N

L [y, log(,)+ - ;) logd— )], 13

L=——
N =

where N is the number of samples, y; is the true label of the i-th sample, and ¥, is the predicted
probability from the model. We use the Adam optimizer to update the model parameters. The
Adam optimizer can efficiently process large-scale data and high-dimensional parameter space
through adaptive learning rate adjustment. Its update formula is as follows:

m, = ﬂlmt—l + (1_ﬁl)gt (14)
V, =BV +1- )9 (15)
.m
= n (16)
Ly
n V,
v, = tt (17)
1-B
0,=0,-a—2 (18)
vV, +e€

Among them, m; and v; are the first-order and second-order moment estimates, respectively,
B, and B, are the decay rates, a is the learning rate, g; is the gradient, and 6; is the model
parameter. We divide the training data into training set and validation set, and continuously adjust
the model parameters through iterative optimization until the loss function converges. During the
training process, the Early Stopping method is used to prevent overfitting.



The pseudo code of this model is as follows:

Algorithm 1 Training Process for Mamba-ECANet

NSL-KDD Dataset, UNSW-NB15 Dataset, CICIDS 2017 Dataset, AWID Dataset Trained
Mamba-ECANet Model, Performance Metrics: Accuracy, Precision, Recall, AUC Initialize
parameters Opamba> OFcanet> l€arning rate a, batch size B, epochs E

Load datasets: Dys;—kpp> Dunsw-nB1ss» Dcicips2017> Dawip

for each dataset D in {Dys.-kpp, Dunsw-ne1s> Dcicips2017> Dawip} do
Split D into training set Di.q;, and test set Dypop

for epoch e in 1 to E do
for batch b in Dypgin do
Extract features X, and labels y, from batch b
hyviamba < MambaModel(Xp, Oyiamba)
hecanet < ECANetModel(Ayvtamba, OEcaNet)
Ypred < Softmax(hgcanet)
Compute loss L(ypred, yb) using cross-entropy:

1 5 i i
‘C(ypred ’ yb) = _EZ yé ) Iog(y;(nréd)
i=1

Compute gradients Vg, L, Vg . L
Update parameters:

gMamba <~ 0

Mamba

— aV(,Mamba L

Occanet < Oecane — angCANet L

end
end
Evaluate model on D
for each sample(x, y) in Dipgr do
Myvamba < MambaModel (x, Oyjamba)
hgcanet < ECANetModel(hyampa, Orcanet)
Ypred < Softmax(hecanet)
Collect predictions and true labels
end
Compute evaluation metrics:

TP + TN
ACCURACY =I5 TN + FP + FN
. TP
Precision = TP - FP




TP

Recall = ——
AT TP FEN

1
AUC = f TPR(FPR) d(FPR)
0

Store results for dataset D
end
Compare metrics across datasets and finalize model

4. Experiment

The experimental flow chart of this paper is shown in Figure 4.
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Figure 4. Experimental flowchart.

4.1 Experimental Environment

The experiments were conducted on a high-performance computing platform to ensure the
efficiency of data processing and model training. The hardware environment includes: Intel Core
i9-10900K processor with 10 cores and 20 threads; NVIDIA GeForce RTX 3090 graphics
processor with 24GB video memory; 256GB DDR4 memory; and 2TB NVMe SSD storage. The
software environment includes: Ubuntu 20.04 LTS operating system; TensorFlow 2.4 and PyTorch
1.7.1 deep learning frameworks for model building and training; NumPy 1.19.4 and Pandas 1.1.4
data processing libraries for data preprocessing and analysis; Matplotlib 3.3.3 and Seaborn 0.11.0
visualization tools for visualization and analysis of results.

4.2 Experimental Data

. NSL-KDD Dataset

The NSL-KDD dataset is an improved version of the KDD Cup 1999 dataset, designed to address
the redundancy issues in the original dataset. It contains 125,973 training records and 22,544
testing records. The records in the NSL-KDD dataset are categorized into normal traffic and



various types of attack traffic, including DoS (Denial of Service), Probe, U2R (User to Root), and
R2L (Remote to Local). The NSL-KDD dataset is widely used for research and evaluation of
network intrusion detection systems because it provides a standardized testing platform and has a
relatively small number of records, making it suitable for preliminary validation and comparative
experiments.

. UNSW-NBI15 Dataset

The UNSW-NB15 dataset, released by the University of New South Wales (UNSW), contains real
network traffic and various attack traffic. This dataset includes 100,000 training records and 82,332
testing records. It covers 9 types of attacks, including Analysis, Backdoor, DoS (Denial of Service),
Exploits, Fuzzers, Malware, Shellcode, Worms, and Generic. The diversity and complexity of the
UNSW-NB15 dataset make it an important tool for evaluating the effectiveness of intrusion
detection systems in real-world network environments.

. CICIDS 2017 Dataset

The CICIDS 2017 dataset, released by the Canadian Institute for Cybersecurity (CIC), contains
network traffic data generated in 2017. This dataset records various types of attacks, including
DDoS (Distributed Denial of Service), Brute Force, XSS (Cross-Site Scripting), SQL Injection,
and more. The CICIDS 2017 dataset encompasses a wide range of network activities from normal
traffic to complex attack scenarios, making it a valuable resource for studying and evaluating the
performance of intrusion detection systems. Its detailed traffic records and diverse attack types aid
in the application research of deep learning models in real-world scenarios.

. AWID Dataset

The AWID (Aegean Wi-Fi Intrusion Dataset) dataset focuses on intrusion detection in wireless
networks and is released by TU Wien (Vienna University of Technology). This dataset includes
normal traffic and various types of wireless attack traffic, primarily used for researching wireless
network security and intrusion detection. The AWID dataset is divided into sub-datasets, including
AWID-ATK-R and AWID-CLS, where AWID-ATK-R is mainly used for identifying attack types,
and AWID-CLS is used for classifying attacks and normal traffic. The dataset's focus on the
wireless network environment makes it suitable for evaluating the performance of wireless
network intrusion detection systems.

4.3 Evaluation Metrics

In evaluating the proposed deep learning-based data security intrusion detection system, the
following four main metrics are used to measure the performance of the model: Accuracy,
Precision, Recall, and AUC. These metrics help comprehensively assess the detection capability
and robustness of the system, ensuring it can effectively detect and defend against data security
intrusions in practical applications.

. Accuracy

Accuracy is an intuitive metric that measures the overall prediction performance of the model. It
represents the proportion of correctly predicted samples out of the total number of samples. For an
intrusion detection system, high accuracy means the model can correctly classify normal traffic
and attack traffic in most cases.

TP+TN
Accuracy = (19)

TP+TN + FP+FN




where TP represents True Positives, the correctly detected attack traffic; TN represents True
Negatives, the correctly detected normal traffic; FP represents False Positives, the normal traffic
mistakenly detected as attack traffic; and FN represents False Negatives, the attack traffic
mistakenly detected as normal traffic.

. Precision:

Precision measures the proportion of actual attack traffic out of all samples predicted as attack
traffic. High precision indicates that the model rarely misclassifies normal traffic as attack traffic,
which is crucial for reducing interference with normal traffic.

Precision = L (20)
TP+ FP

. Recall:

Recall measures the proportion of correctly detected attack traffic out of all actual attack traffic
samples. High recall means the model can effectively detect most attack traffic, reducing the risk
of missed attacks.

Recall = TP (1)
TP+FN

. AUC:

In a data security intrusion detection system, AUC helps evaluate the system's detection
performance for intrusion and non-intrusion behavior at different thresholds. By calculating the
AUC, we can quantify the model's overall classification performance, ensuring the system has
good detection capability and robustness in practical applications. The higher the AUC value, the
better the classification performance in detecting intrusion and non-intrusion behavior.

AUC = [ TPR(FPR)d (FPR) 22)

Here, TPR stands for True Positive Rate, and FPR stands for False Positive Rate.

4.4 Experimental Comparison and Analysis

To validate the effectiveness of the proposed deep learning-based data security intrusion detection
system, we conducted extensive experimental comparisons and analyses. The experiments utilized
multiple public network security datasets, including NSL-KDD, UNSW-NB15, CICIDS 2017, and
AWID, and were compared with traditional intrusion detection systems.

Table 1 shows the performance comparison of different models on the NSL-KDD and UNSW-
NB15 datasets. It is evident that the proposed intrusion detection system significantly outperforms
other models across all evaluation metrics. On the NSL-KDD dataset, our model achieved an
accuracy of 96.45%, a precision of 97.64%, a recall of 96.14%, and an AUC of 97.64%. These
results are substantially higher than those of Yang et al. (89.90% accuracy), Sarvari et al. (89.21%
accuracy), and other comparison models. Similarly, on the UNSW-NB15 dataset, our model
demonstrated excellent performance, achieving an accuracy of 95.64%, a precision of 97.54%, a
recall of 96.73%, and an AUC of 96.76%, significantly surpassing other models. This indicates
that the proposed system offers higher detection accuracy, lower false positive rates, and greater



robustness in practical applications, effectively enhancing the overall performance of data security
intrusion detection. Figure 5 visualizes the comparison of various metrics on the two datasets.

Table 1. Comparison of indicators of various models under NSL-KDD Dataset and UNSW-
NB15 Dataset.

NSL-KDD Dataset UNSW-NB15 Dataset
Model
ACC(%) P(%) R(%) AUC(%) ACC(%) P(%) R(%) AUC(%)
Yang et al. (Yang & Wang, 2019) 89.90 89.10 91.34 90.88 89.66 92.44  89.87 89.04
Sarvari et al. (Sarvari et al., 2020) 89.21 90.87  89.68 93.63 89.63 91.16  90.40 91.60
Wang et al. (Wang et al., 2020) 90.07 89.68  90.84 91.81 88.21 89.73  89.94 88.08
Huynh-The et al. (Huynh-The et al., 2022) 89.67 92.27  92.20 89.06 88.30 91.51 91.09 89.42
Huang et al. (Huang et al., 2021) 92.27 89.63  90.92 93.79 90.06 90.46  90.67 90.42
Chen et al. (Chen et al., 2022) 92.14 89.99  92.66 92.76 90.94 89.48  92.39 89.55
Ours 96.45 97.64 96.14 97.64 95.64 97.54  96.73 96.76
NSL-KDD Dataset UNSW-NBI5 Dataset
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Figure 5. Comparative visualization of each model indicator under the NSL-KDD Dataset and
UNSW-NB15 Dataset.

Table 2. Comparison of indicators of various models under the CICIDS 2017 Dataset and AWID

Dataset.
CICIDS 2017 Dataset AWID Dataset
Model
ACC(%) P(%) R(%) AUC(%) ACC(%) P(%) R(%) AUC(%)
Yang et al. (Yang & Wang, 2019) 91.30 89.24  89.29 91.92 91.82 90.47  88.74 91.38
Sarvari et al. (Sarvari et al., 2020) 93.39 90.43  90.39 91.42 89.00 92.81  89.47 89.42
Wang et al. (Wang et al., 2020) 93.81 92.16  91.97 89.5 90.87 89.04 91.21 92.42
Huynh-The et al. (Huynh-The et al., 2022) 92.02 91.03  91.67 89.79 91.65 90.30  91.70 89.29
Huang et al. (Huang et al., 2021) 91.04 92.63  90.56 92.97 92.48 92.05 91.56 92.30

Chen et al. (Chen et al., 2022) 93.85 92.83  90.44 90.01 93.00 91.09 88.32 90.48




Ours 97.64 9521 97.72 98.09 96.41 96.37  95.34 97.54

Table 2 presents the performance comparison of different models on the CICIDS 2017 and
AWID datasets. The results indicate that our proposed intrusion detection system outperforms
other models across all evaluation metrics. On the CICIDS 2017 dataset, our model achieved an
accuracy of 97.64%, a precision of 95.21%, a recall of 97.72%, and an AUC of 98.09%,
significantly higher than Sarvari et al. Similarly, on the AWID dataset, our model also
demonstrated excellent performance, achieving an accuracy of 96.41%, a precision of 96.37%, a
recall of 95.34%, and an AUC of 97.54%, all of which significantly surpass other models. These
results show that our deep learning intrusion detection system has higher detection accuracy and
robustness in dealing with different types of network attacks and datasets, effectively enhancing

data security protection capabilities. Similarly, Figure 6 visualizes the comparison of various
metrics on the two datasets.
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Figure 6. Comparative visualization of each model indicator under the CICIDS 2017 Dataset and
AWID Dataset.
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Figure 7. Visual comparison of training indicators of multiple models on four datasets.

Table 3 shows the training metrics of various models on four datasets, including the number
of training epochs, inference time, and training time. The results indicate that our proposed model
demonstrates superior training efficiency across all datasets. On the NSL-KDD and UNSW-NB15
datasets, our model requires only 115 and 120 epochs, respectively, with inference times of
291.34ms and 289.64ms and training times of 302.42s and 310.51s, respectively, all of which are
the lowest values. On the CICIDS 2017 and AWID datasets, our model also performs excellently,
requiring 110 and 100 epochs, respectively, with inference times of 284.64ms and 271.64ms and



training times of 314.62s and 214.53s. This indicates that our proposed system not only
outperforms other models in terms of performance but also shows significant advantages in
training and inference efficiency, enabling it to quickly and effectively adapt to the needs of real-
world applications. Figure 7 visualizes the comparison of various training metrics across the four

datasets.

Table 3. Training indicators of each model on four datasets.

NSL-KDD Dataset

UNSW-NBI15 Dataset

Inference Trainning Inference Trainning
Model Epochs . ) Epochs ) )
Time(ms) Time(s) Time(ms) Time(s)
Yang et al. (Yang & Wang,
130 375.39 373.75 135 394.64 417.77
2019)
Sarvari et al. (Sarvari et al.,
140 356.58 320.48 150 310.42 355.73
2020)
Wang et al. (Wang et al., 2020) 135 306.32 365.86 145 377.05 393.72
Huynh-The et al. (Huynh-The
125 339.71 314.41 140 393.35 333.17
et al., 2022)
Huang et al. (Huang et al.,
120 391.74 390.09 130 304.43 412.11
2021)
Chen et al. (Chen et al., 2022) 135 308.32 355.8 135 339.3 405.99
Ours 115 291.34 302.42 120 289.64 310.51
CICIDS 2017 Dataset AWID Dataset
Inference Trainning Inference Trainning
Model Epochs ) ) Epochs ) )
Time(ms) Time(s) Time(ms) Time(s)
Yang et al. (Yang & Wang,
120 365.43 378.21 125 319.66 280.18
2019)
Sarvari et al. (Sarvari et al.,
125 423.66 398.24 130 320.71 298.8
2020)
Wang et al. (Wang et al., 2020) 125 352.85 371.71 130 361.83 231.54
Huynh-The et al. (Huynh-The
135 431.2 396.99 145 322.5 288.83
et al., 2022)
Huang et al. (Huang et al.,
120 388.87 390.51 120 371.94 236.26
2021)
Chen et al. (Chen et al., 2022) 125 427.2 379.18 135 300.21 260.27
Ours 110 284.64 314.62 100 271.64 214.53

Table 4 presents the ablation study results of our model on the NSL-KDD and UNSW-NB15
datasets, verifying the impact of different components on the model's performance. The baseline
model shows relatively low performance, with an accuracy of 86.54% on the NSL-KDD dataset
and 85.25% on the UNSW-NB15 dataset. After introducing the Mamba model, all metrics
improved, with accuracy increasing to 89.31% and 88.67% on the two datasets, respectively. The
addition of the ECANet model further enhanced performance, achieving accuracies of 93.06% and



91.74% on the NSL-KDD and UNSW-NB15 datasets, respectively. When both the Mamba and
ECANet models were introduced simultaneously, the model performance reached its peak, with
an accuracy of 96.45% on the NSL-KDD dataset and 95.64% on the UNSW-NB15 dataset,
significantly improving all metrics. This demonstrates that the combination of Mamba and
ECANet models significantly enhances the detection capability and robustness of the intrusion
detection system. Figure 8 visualizes the comparison of the ablation study.

Table 4. Ablation experiments of this model on the NSL-KDD Dataset and UNSW-NB15

Dataset.
Dataset
Model NSL-KDD Dataset UNSW-NB15 Dataset

ACC(%) P(%) R(%) AUC(%) ACC(%) P(%) R(%) AUC(%)

baseline 86.54 87.5 86.34 88.6 85.25 86.19 86.16 85.64

+Mamba 89.31 91.73 90.6 91.63 88.67 89.15 90.17 88.14

+ECANet 93.06 92.74 92.49 93.46 91.74 93.58 92.37 91.47

+Mamba ECANet 96.45 97.64 96.14 97.64 95.64 97.54 96.73 96.76
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Figure 8. Comparative visualization of ablation experiments on NSL-KDD Dataset and UNSW-
NB15 Dataset.

Table 5. Ablation experiments of this model on the CICIDS 2017 Dataset and AWID Dataset.

Model Dataset
CICIDS 2017 Dataset AWID Dataset
ACC(%) P(%) R(%) AUC(%) ACC(%) P(%) R(%) AUC(%)
baseline 86.14 87.71 84.46 86.14 87.34 85.49 87.36 86.46
+Mamba 89.48 90.14 88.17 91.74 90.6 88.49 89.06 91.73
+ECANet 92.17 91.61 93.63 94.1 92.8 914 91.8 93.94

+Mamba ECANet 97.64 95.21 97.72 98.09 96.41 96.37 95.34 97.54




Table 5 shows the ablation study results of our model on the CICIDS 2017 and AWID datasets,
further verifying the impact of different components on the model's performance. The baseline
model shows relatively modest performance, with an accuracy of 86.14% on the CICIDS 2017
dataset and 87.34% on the AWID dataset. After introducing the Mamba model, all metrics
significantly improved, with accuracies increasing to 89.48% and 90.6% on the CICIDS 2017 and
AWID datasets, respectively. The addition of the ECANet model further enhanced performance,
achieving accuracies of 92.17% on the CICIDS 2017 dataset and 92.8% on the AWID dataset.
When both the Mamba and ECANet models were introduced simultaneously, the model
performance reached its peak, with an accuracy of 97.64% on the CICIDS 2017 dataset and 96.41%
on the AWID dataset. These results demonstrate that the combination of Mamba and ECANet
models significantly enhances the detection capability of the intrusion detection system, especially
on complex datasets. Similarly, Figure 9 visualizes the comparison of the ablation study.
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Figure 9. Comparative visualization of ablation experiments on CICIDS 2017 Dataset and AWID
Dataset.

5. Conclusion

This paper proposes an end-to-end data security intrusion detection system based on deep learning,
integrating the Mamba and ECANet models and employing end-to-end learning for training and
optimization. By introducing the Mamba model, we effectively address the efficiency and accuracy
issues of traditional methods in handling complex network data. The combination with the
ECANet model further enhances feature selection through attention mechanisms, significantly
improving the system's capability and accuracy in detecting anomalous behaviors. Experiments on
multiple public datasets including NSL-KDD, UNSW-NB15, CICIDS 2017, and AWID validate
the effectiveness and robustness of our approach, demonstrating the system's ability to maintain
high detection performance across different network environments and attack types. Furthermore,
through ablation studies, we further demonstrate the significant role of integrating the Mamba and
ECANet models in enhancing system performance. Despite achieving satisfactory experimental
results, there are still areas for further research. Future work could focus on optimizing the
computational efficiency of the model to accommodate more complex and large-scale network
environments. Exploring additional data augmentation techniques and unsupervised learning
methods could reduce reliance on extensive labeled data. Applying the proposed method to more
real-world scenarios would validate its generality and applicability across diverse network
environments.
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