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Abstract: With the rapid advancement of information technology, network security has 
become an increasingly critical concern. In particular, data security intrusions pose 
significant risks to the privacy of data and the security of both enterprise and personal 
systems. Traditional intrusion detection systems often struggle with low detection 
accuracy and high false alarm rates, especially in complex and dynamic network 
environments with diverse attack techniques. To address these challenges, this paper 
proposes a deep learning-based data security intrusion detection system that integrates 
the Mamba model and the ECANet model, employing an end-to-end learning approach 
for training and optimization. First, the Mamba model is utilized for initial data feature 
extraction, offering efficient feature representation that lays a strong foundation for the 
detection process. Next, the ECANet model is incorporated to optimize feature selection 
using the attention mechanism, allowing the model to focus on the most critical features. 
Finally, the entire system is trained and optimized through an end-to-end learning 
approach, ensuring robust performance and reliability in real-world applications. 
Experimental results demonstrate that the proposed intrusion detection system achieves 
higher detection accuracy across various test datasets, with a 5% improvement over 
traditional methods, offering a novel and effective solution for data security. 

 

Keywords: Data Security; Anomaly Detection; Mamba Model; ECANet Model; 
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1. Introduction 

In the realm of cybersecurity, intrusion detection systems (IDS) are crucial for protecting networks 

from malicious attacks, enhancing overall system security, reducing the risk of data breaches, and 

ensuring data integrity. With the continuous advancement of information technology and the 

increasing complexity of network environments, the demand for automated and intelligent 

cybersecurity protection systems has become more urgent. These systems not only help to reduce 

the likelihood of potential threats but also demonstrate superior performance in enhancing network 

defense capabilities and handling complex network environments. 

Deep learning-based models, such as Convolutional Neural Networks (CNNs) (Kim et al., 

2020) and Long Short-Term Memory Networks (LSTMs) (Imrana et al., 2021), have achieved 
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remarkable results in intrusion detection. CNNs utilize their weight-sharing characteristics to 

efficiently extract important features from network data, thereby accelerating processing speed, 

while LSTMs maintain long-term temporal relationships between data features. However, these 

models still underperform when dealing with limited or highly imbalanced intrusion samples. 

Additionally, these models typically rely on large amounts of labeled data to achieve high 

performance, which is often challenging to obtain in real-world cybersecurity environments. 

State Space Models (SSMs) (Toorani & Beheshti, 2008), known for their efficiency in 

handling long sequence modeling, have recently been applied in the field of cybersecurity. For 

instance, the Mamba model, by introducing a data-dependent selection mechanism (Waleffe et al., 

2024), significantly improves the model's efficiency and accuracy while maintaining linear 

scalability in processing long sequences. In the field of computer vision, variants of the Mamba 

model, such as VMamba (Shi et al., 2024), combine selective scanning mechanisms (S6) (Jia et 

al., 2021) to handle non-causal two-dimensional image data, further enhancing the model's 

processing capabilities. This innovative design not only improves detection accuracy but also 

significantly reduces computational costs. Moreover, the application of the Mamba model in multi-

class unsupervised anomaly detection (MUAD) demonstrates its powerful modeling capability and 

computational efficiency, providing new solutions for intrusion detection in complex network 

environments. The unique aspect of the Jamba model lies in its integration of the Transformer (Han 

et al., 2022) and Mamba architectures. Although the Transformer is popular in the field of language 

modeling, its memory and computational requirements are high, and it is limited by the key-value 

cache size when handling long contexts. Additionally, generating each token requires computing 

the entire context, resulting in slow inference speed and low throughput. In contrast, traditional 

Recurrent Neural Networks (RNNs) (Yin et al., 2017) can summarize arbitrarily long contexts in 

a single hidden state without these limitations, but they are expensive to train and struggle to handle 

long-distance relationships. 

Despite the significant advancements of these models in many areas, some unresolved issues 

persist in specific cybersecurity scenarios. To address these challenges, this paper proposes an end-

to-end data security intrusion detection system that combines the Mamba model with the ECANet 

model, aiming to improve detection accuracy and efficiency. First, the Mamba model, through its 

selective state space model (SSMs) approach, addresses the weaknesses of traditional discrete 

modalities and designs hardware-friendly parallel algorithms, achieving efficient inference and 

linear scalability, suitable for analyzing large and complex log data in intrusion detection systems. 

Second, to further enhance the model's detection performance, this paper introduces the Efficient 

Channel Attention (ECA) module. The ECA module effectively reduces model complexity while 

improving the model's sensitivity and accuracy to abnormal behavior by avoiding dimensionality 

reduction and adopting a local cross-channel interaction strategy. Finally, through an end-to-end 

learning approach, this paper designs a complete intrusion detection framework that automatically 

performs data preprocessing, feature extraction, anomaly detection, and classification tasks, 

achieving efficient detection and classification of various types of attack behaviors. 

The organization structure of this article is as follows: This section introduces the importance 

of cybersecurity and intrusion detection systems (IDS), provides an overview of the limitations 

and challenges of current intrusion detection methods, and presents the motivation and objectives 

of this study. The second section reviews recent research in the field of intrusion detection, 

covering both traditional methods and deep learning-based approaches, with a focus on the 

application and advantages and disadvantages of various models in different scenarios. The third 

section provides a detailed description of the proposed end-to-end data security intrusion detection 

system based on deep learning, including the design and integration of the Mamba model and 

ECANet model, as well as the application of end-to-end learning methods. The fourth section 

describes the experimental setup and procedures, including the selection of datasets, configuration 
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of the experimental environment, and definition of evaluation metrics, and validates the 

effectiveness and superiority of the proposed system through comparisons with existing methods. 

The fifth section summarizes the main contributions and experimental findings of this paper, 

discusses the limitations of the research, and outlines future research directions. The main 

contributions of this paper are as follows: 

1. The application of the Mamba model to the field of data security intrusion detection. This 

model, through its Selective State Space Model (SSM) approach, effectively addresses the 

weaknesses of traditional discrete modalities and designs hardware-friendly parallel algorithms, 

achieving efficient inference and linear scalability, suitable for analyzing large and complex log 

data in intrusion detection systems. 

2. The introduction of the Efficient Channel Attention (ECA) module. By avoiding 

dimensionality reduction and adopting a local cross-channel interaction strategy, this module 

effectively reduces the complexity of the model while improving its sensitivity and accuracy in 

detecting abnormal behavior. This combination enhances the model's robustness and precision in 

handling diverse and complex attacks. 

3. The design of a complete end-to-end intrusion detection framework capable of automatically 

performing data preprocessing, feature extraction, anomaly detection, and classification tasks. The 

end-to-end learning approach ensures that the optimization process of the entire system is global, 

improving the overall performance and robustness of the system. 

2. Related Work 

In recent years, intrusion detection systems (IDS) in cybersecurity have played a crucial role in 

addressing increasingly complex network threats. Traditional IDS methods are mainly divided into 

two categories: signature-based intrusion detection systems (SIDS) and anomaly-based intrusion 

detection systems (AIDS) (Khraisat et al., 2019). SIDS detect intrusions by matching the signatures 

of known attacks, offering high detection accuracy and low false alarm rates, but are limited in 

effectiveness against unknown attacks. AIDS, on the other hand, detect abnormal activities that 

deviate from expected behavior by constructing models of normal behavior, effectively identifying 

unknown attacks but potentially generating higher false alarm rates. 

With the rapid development of machine learning and deep learning technologies, many 

researchers have applied these technologies to intrusion detection systems to improve their 

detection performance and ability to handle complex attacks. For example, Çavuşoğlu (C ̧ 

avus o̧ ğlu, 2019) proposed a new hybrid method that combines various machine learning 

techniques to enhance the accuracy and efficiency of intrusion detection. However, this method 

still faces challenges when dealing with large-scale high-dimensional data. Ferrag et al. (Aldhaheri 

et al., 2023) reviewed various deep learning-based intrusion detection methods, finding that these 

methods perform well in handling complex network traffic and evolving attack techniques, but are 

highly dependent on training datasets and may face issues with frequent model updates in practical 

applications. Longlong Li et al. (Li et al., 2024) proposed an end-to-end intrusion detection 

framework based on contrastive learning, employing hierarchical convolutional neural networks 

(CNNs) and gated recurrent units (GRUs) to automatically extract spatiotemporal features from 

raw network traffic data. This method achieved a detection accuracy of 99.9% for known attacks 

and a weighted recall rate of 95% for unknown attacks, demonstrating excellent detection 

capabilities. 

In addition to the aforementioned studies, Yang and Wang (Yang & Wang, 2019) improved 

the application of convolutional neural networks (CNNs) for wireless network intrusion detection, 

significantly enhancing detection accuracy and efficiency. Jiang et al. (Jiang et al., 2016) proposed 

an energy-efficient multi-constrained routing algorithm in smart city applications, improving 

network efficiency through load balancing. Although this method mainly targets routing 
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optimization, its approach is insightful for resource management in intrusion detection systems. 

Moreover, Dong and Wang (Dong & Wang, 2016) compared traditional methods and deep learning 

methods in network intrusion detection, finding that deep learning methods perform better in 

handling complex network traffic and unknown attacks. Sarvari et al. (Sarvari et al., 2020) 

proposed an efficient anomaly intrusion detection method by combining feature selection and 

evolutionary neural networks, significantly improving detection accuracy. Tian et al. (Tian et al., 

2020) proposed an industrial network intrusion detection algorithm based on a multi-feature data 

clustering optimization model, demonstrating the potential of data fusion technology in enhancing 

detection performance. However, these methods still face challenges such as high dependency on 

datasets and frequent model updates, particularly in real-world applications where obtaining 

representative high-quality datasets remains a significant challenge. 

In the study of deep learning-based end-to-end data security intrusion detection systems, the 

Mamba model, as a novel selective state space model (SSM), has shown significant advantages 

and potential. Albert Gu and Tri Dao (Gu & Dao, 2023) first proposed the Mamba model to address 

the computational efficiency issues of the Transformer architecture when processing long 

sequences. The Mamba model sets the SSM parameters as functions of the input, allowing the 

model to selectively propagate or forget information based on the current input, achieving linear 

time complexity expansion while maintaining context-relevant reasoning capabilities. Based on 

the Mamba architecture, researchers developed the Vision Mamba (Vim) (Xu et al., 2024) model 

for efficient visual representation learning. The Vim model, through bidirectional state space 

modeling and positional embedding techniques, performs excellently in image classification, 

object detection, and semantic segmentation tasks, significantly improving computational and 

memory efficiency. In the ImageNet classification task, the Vim model outperformed many 

existing visual Transformer models and demonstrated outstanding efficiency in high-resolution 

image processing. Additionally, Gu et al. (Gu & Dao, 2023) further extended the Mamba model 

by introducing the Selective State Space model (S6), enhancing the selectivity of information 

processing, resulting in superior performance in handling long-sequence data. This improvement 

has made the Mamba model more stable and efficient in multimodal learning tasks. However, the 

Mamba model still has some limitations. For example, the selective information processing 

mechanism of the Mamba model in handling discrete modalities (such as language) may lead to 

adaptability issues in specific application scenarios. Despite its hardware-friendly parallel 

algorithms enhancing computational efficiency, further optimization may be needed to avoid 

potential computational bottlenecks when processing extremely long sequence data. 

Channel attention mechanisms have shown great potential in enhancing the performance of 

deep convolutional neural networks (CNNs). However, most existing methods focus on 

developing more complex attention modules to pursue better performance, inevitably increasing 

model complexity. To address the trade-off between performance and complexity, Wang et al. 

(Wang et al., 2020) proposed an Efficient Channel Attention (ECA) module. The ECA module 

effectively reduces model complexity while significantly improving performance by avoiding 

dimensionality reduction and adopting a local cross-channel interaction strategy. For instance, 

experiments on ResNet-50 demonstrated that the ECA module could achieve over a 2% increase 

in Top-1 accuracy with minimal additional parameters and computational load. Besides the work 

of Wang et al., Huynh-The et al. (Huynh-The et al., 2022) proposed a high-performance 

convolutional network (RF-UAVNET) based on the ECA attention mechanism for RF signal-

based UAV monitoring systems. Their method integrated the ECA module to improve accuracy 

and efficiency in UAV detection and identification tasks. However, while their method performed 

well in specific applications, further validation of the model's generalization ability in handling 

other types of complex data is necessary. Huang et al. (Huang et al., 2021) explored the application 

of the ECA attention mechanism in multi-channel 1D convolutional neural networks for UAV 
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detection and identification using RF signals. Their method highlighted the advantages of the ECA 

module in processing time-series data by reducing redundant computations to enhance real-time 

performance. However, the study also noted that the ECA module still faces challenges when 

dealing with high-noise and complex background data. Additionally, Chen et al. (Chen et al., 2022) 

proposed a deep learning method combining the ECA module for UAV detection and classification. 

Their method leveraged the ECA attention mechanism to enhance feature extraction capability in 

complex scenarios, effectively improving detection and classification accuracy. Nonetheless, 

further optimization is needed to address computational efficiency and resource consumption when 

handling larger datasets. ECA-Net, through its innovative design, strikes a balance between 

complexity and performance, providing new insights for performance enhancement in deep 

learning models. 

3. Method 

Figure 1 shows the overall algorithm architecture of the data security intrusion detection system 

used in this paper. This model first performs a linear projection on the input data and transforms it 

into both the frequency and time domains to capture multi-dimensional features. Subsequently, it 

utilizes ECANet for feature extraction and further optimizes the extracted features through a 

Selective State Space Model. The optimized features are then combined via linear projection and 

processed through the subsequent Add & Norm and Feed-forward mechanisms to ensure stable 

signal processing and feature extraction, ultimately outputting the detection results. 

 

Figure 1. Overall algorithm architecture. 

3.1 Mamba Architecture 

Mamba is a Selective Structured State Space Model (S4) designed to handle long-sequence data. 

By introducing a selection mechanism, it overcomes the limitations of traditional State Space 

Models (SSMs) in contextual reasoning capability. The Mamba model effectively extracts 

complex data features, providing a solid foundation for subsequent deep learning processing. The 

architecture diagram of Mamba is shown in Figure 2. 
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Figure 2. Structure diagram of Mamba. 

The core idea of SSM is to connect the input and output sequences through latent states. The 

classic form of SSM is as follows: 

 ( ) ( ) ( )'     h t Ah t Bx t= +                          (1) 

 ( ) ( )  y t Ch t=  (2) 

where A ∈ RN×N, B ∈ RN×𝟙, C ∈ R𝟙×N are the model parameters. When processing discrete input 

sequences, SSM discretizes these parameters using the zero-order hold (ZOH) method. The 

discretized parameters are expressed as: 

 exp( )A A=   (3) 

 
1( ) (exp( ) )B A A I B−=   −   (4) 

Then, the discretized SSM is represented as:： 

 1 ,t t th Ah Bx−= +  (5) 

 ,t ty Ch=  (6) 
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The recursive computation process of SSM can also be expressed as a convolution operation:  

1( , , , ),LK CB CAB CA B−=                        (7) 

 * ,y x K=  (8) 

where L is the length of the input sequence and K ∈ RL is the SSM convolution kernel.The key 

improvement of the Mamba model lies in its selection mechanism, which achieves context-related 

interaction by making the parameters of the SSM dependent on the input sequence. Specifically, 

the parameters B, C, Δ of the selective SSM are expressed as functions of the input sequence x： 

 , , Linear( ),B C x =  (9) 

3.2 ECANet Architecture 

In this study, we adopt ECANet (Efficient Channel Attention Network) as one of the base models 

to enhance the feature selection capability of the data security intrusion detection system. ECANet, 

by introducing an efficient channel attention mechanism, improves model performance while 

reducing computational complexity. The channel attention mechanism aims to weight the channels 

of the input feature map, enabling the network to focus more on important features. The 

architecture diagram of ECANet is shown in Figure 3  

 

Figure 3. Structure diagram of ECANet. 

The core idea of ECANet is to use one-dimensional convolution (1D Convolution) instead of fully 

connected layers to capture local cross-channel interactions. First, the input feature map X ∈
RH×W×C is globally average-pooled to obtain the global feature vector z ∈ RC along the channel 

dimension. 

 1 1

1
( ) ( , )

H W

sq

i j

F i j
H W = =

= =


z X X

 (10) 

Then, a one-dimensional convolution kernel of size k  is applied to the global feature vector z, 

generating the channel attention weights s ∈ RC . Here, k is an adjustable parameter used to 

control the size of the convolution kernel. 

 ( ) (Conv1D( , ))exF k= =s z z  (11) 



 8 

Finally, the generated channel attention weights s are multiplied with the original feature map 

X, resulting in the re-calibrated feature map Y ∈ RH×W×C. 

 ( , )scaleF= = Y X s s X  (12) 

where σ is the sigmoid activation function, and Conv1D(z, k) denotes convolution operation 

with a one-dimensional kernel of size k applied to the feature vector z. 

3.3 End-to-End Learning 

End-to-end learning refers to integrating the entire learning process into a single model, optimizing 

directly from the raw input to the final output. Compared to traditional staged learning methods, 

end-to-end learning can better capture the global features of the data, reduce information loss from 

intermediate steps, and enhance the overall performance and robustness of the model. 

We use the cross-entropy loss function to measure the discrepancy between the model's 

predictions and the true labels. The formula for the cross-entropy loss function is as follows: 

  
1

1
ˆ ˆlog( ) (1 )log(1 ) ,

N

i i i i

i

L y y y y
N =

= − + − −  (13) 

where N is the number of samples, yi is the true label of the i-th sample, and yî is the predicted 

probability from the model. We use the Adam optimizer to update the model parameters. The 

Adam optimizer can efficiently process large-scale data and high-dimensional parameter space 

through adaptive learning rate adjustment. Its update formula is as follows: 

 1 1 1(1 )t t tm m g −= + −  (14) 

 
2

2 1 2(1 )t t tv v g −= + −  (15) 

 

1

ˆ
1

t
t t

m
m


=

−
 (16) 

 

2

ˆ
1

t
t t

v
v


=

−
 (17) 

 1

ˆ

ˆ

t
t t

t

m

v
  −= −

+
 (18) 

Among them, mt and vt are the first-order and second-order moment estimates, respectively, 

β1 and β2 are the decay rates, α is the learning rate, gt is the gradient, and θt is the model 

parameter. We divide the training data into training set and validation set, and continuously adjust 

the model parameters through iterative optimization until the loss function converges. During the 

training process, the Early Stopping method is used to prevent overfitting. 
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The pseudo code of this model is as follows: 

Algorithm 1 Training Process for Mamba-ECANet 

NSL-KDD Dataset, UNSW-NB15 Dataset, CICIDS 2017 Dataset, AWID Dataset Trained 

Mamba-ECANet Model, Performance Metrics: Accuracy, Precision, Recall, AUC Initialize 

parameters θ𝑀𝑎𝑚𝑏𝑎, θ𝐸𝐶𝐴𝑁𝑒𝑡, learning rate α, batch size 𝐵, epochs 𝐸 

Load datasets: 𝐷𝑁𝑆𝐿−𝐾𝐷𝐷, 𝐷𝑈𝑁𝑆𝑊−𝑁𝐵15, 𝐷𝐶𝐼𝐶𝐼𝐷𝑆2017, 𝐷𝐴𝑊𝐼𝐷 

for each dataset 𝐷 in {DNSL−KDD, 𝐷𝑈𝑁𝑆𝑊−𝑁𝐵15, 𝐷𝐶𝐼𝐶𝐼𝐷𝑆2017, 𝐷𝐴𝑊𝐼𝐷} do 

Split 𝐷 into training set 𝐷𝑡𝑟𝑎𝑖𝑛 and test set 𝐷𝑡𝑒𝑠𝑡 

for epoch 𝑒 in 1 to 𝐸 do 

for batch 𝑏 in 𝐷𝑡𝑟𝑎𝑖𝑛 do 

Extract features 𝑋𝑏 and labels 𝑦𝑏 from batch 𝑏 

ℎMamba ← MambaModel(𝑋𝑏 , θMamba) 

ℎECANet ← ECANetModel(ℎMamba, θECANet) 

𝑦pred ← Softmax(ℎECANet) 

Compute loss ℒ(𝑦pred, 𝑦𝑏) using cross-entropy: 

( ) ( )

pred pred

1

1
( , ) log( )

B
i i

b b

i

y y y y
B =

= −   

Compute gradients ∇θMamba
ℒ, ∇θECANet

ℒ 

Update parameters: 

MambaMamba Mamba    −   

ECANetECANet ECANet    −   

end 

end 

Evaluate model on 𝐷test 

for each sample(𝑥, 𝑦) in 𝐷𝑡𝑒𝑠𝑡 do 

     ℎMamba ← MambaModel(𝑥, θMamba) 

     ℎECANet ← ECANetModel(ℎ𝑀𝑎𝑚𝑏𝑎, θ𝐸𝐶𝐴𝑁𝑒𝑡) 

     𝑦pred ← Softmax(ℎECANet) 

     Collect predictions and true labels 

end 

  Compute evaluation metrics: 

Accuracy =
TP + TN

TP + TN + FP + FN
 

Precision =
TP

TP + FP
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Recall =
TP

TP + FN
 

AUC = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)
1

0

 𝑑(𝐹𝑃𝑅) 

    Store results for dataset 𝐷 

end 

Compare metrics across datasets and finalize model 

 

4. Experiment 

The experimental flow chart of this paper is shown in Figure 4. 

 

Figure 4. Experimental flowchart. 

4.1 Experimental Environment 

The experiments were conducted on a high-performance computing platform to ensure the 

efficiency of data processing and model training. The hardware environment includes: Intel Core 

i9-10900K processor with 10 cores and 20 threads; NVIDIA GeForce RTX 3090 graphics 

processor with 24GB video memory; 256GB DDR4 memory; and 2TB NVMe SSD storage. The 

software environment includes: Ubuntu 20.04 LTS operating system; TensorFlow 2.4 and PyTorch 

1.7.1 deep learning frameworks for model building and training; NumPy 1.19.4 and Pandas 1.1.4 

data processing libraries for data preprocessing and analysis; Matplotlib 3.3.3 and Seaborn 0.11.0 

visualization tools for visualization and analysis of results. 

4.2 Experimental Data 

• NSL-KDD Dataset 

The NSL-KDD dataset is an improved version of the KDD Cup 1999 dataset, designed to address 

the redundancy issues in the original dataset. It contains 125,973 training records and 22,544 

testing records. The records in the NSL-KDD dataset are categorized into normal traffic and 
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various types of attack traffic, including DoS (Denial of Service), Probe, U2R (User to Root), and 

R2L (Remote to Local). The NSL-KDD dataset is widely used for research and evaluation of 

network intrusion detection systems because it provides a standardized testing platform and has a 

relatively small number of records, making it suitable for preliminary validation and comparative 

experiments. 

• UNSW-NB15 Dataset 

The UNSW-NB15 dataset, released by the University of New South Wales (UNSW), contains real 

network traffic and various attack traffic. This dataset includes 100,000 training records and 82,332 

testing records. It covers 9 types of attacks, including Analysis, Backdoor, DoS (Denial of Service), 

Exploits, Fuzzers, Malware, Shellcode, Worms, and Generic. The diversity and complexity of the 

UNSW-NB15 dataset make it an important tool for evaluating the effectiveness of intrusion 

detection systems in real-world network environments. 

• CICIDS 2017 Dataset 

The CICIDS 2017 dataset, released by the Canadian Institute for Cybersecurity (CIC), contains 

network traffic data generated in 2017. This dataset records various types of attacks, including 

DDoS (Distributed Denial of Service), Brute Force, XSS (Cross-Site Scripting), SQL Injection, 

and more. The CICIDS 2017 dataset encompasses a wide range of network activities from normal 

traffic to complex attack scenarios, making it a valuable resource for studying and evaluating the 

performance of intrusion detection systems. Its detailed traffic records and diverse attack types aid 

in the application research of deep learning models in real-world scenarios. 

• AWID Dataset 

The AWID (Aegean Wi-Fi Intrusion Dataset) dataset focuses on intrusion detection in wireless 

networks and is released by TU Wien (Vienna University of Technology). This dataset includes 

normal traffic and various types of wireless attack traffic, primarily used for researching wireless 

network security and intrusion detection. The AWID dataset is divided into sub-datasets, including 

AWID-ATK-R and AWID-CLS, where AWID-ATK-R is mainly used for identifying attack types, 

and AWID-CLS is used for classifying attacks and normal traffic. The dataset's focus on the 

wireless network environment makes it suitable for evaluating the performance of wireless 

network intrusion detection systems. 

4.3 Evaluation Metrics 

In evaluating the proposed deep learning-based data security intrusion detection system, the 

following four main metrics are used to measure the performance of the model: Accuracy, 

Precision, Recall, and AUC. These metrics help comprehensively assess the detection capability 

and robustness of the system, ensuring it can effectively detect and defend against data security 

intrusions in practical applications. 

• Accuracy 

Accuracy is an intuitive metric that measures the overall prediction performance of the model. It 

represents the proportion of correctly predicted samples out of the total number of samples. For an 

intrusion detection system, high accuracy means the model can correctly classify normal traffic 

and attack traffic in most cases. 

 Accuracy
TP TN

TP TN FP FN

+
=

+ + +
 (19) 
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where TP represents True Positives, the correctly detected attack traffic; TN represents True 

Negatives, the correctly detected normal traffic; FP represents False Positives, the normal traffic 

mistakenly detected as attack traffic; and FN represents False Negatives, the attack traffic 

mistakenly detected as normal traffic. 

 

• Precision： 

Precision measures the proportion of actual attack traffic out of all samples predicted as attack 

traffic. High precision indicates that the model rarely misclassifies normal traffic as attack traffic, 

which is crucial for reducing interference with normal traffic. 

 Precision
TP

TP FP
=

+
 (20) 

• Recall： 

Recall measures the proportion of correctly detected attack traffic out of all actual attack traffic 

samples. High recall means the model can effectively detect most attack traffic, reducing the risk 

of missed attacks. 

 Recall
TP

TP FN
=

+
 (21) 

• AUC： 

In a data security intrusion detection system, AUC helps evaluate the system's detection 

performance for intrusion and non-intrusion behavior at different thresholds. By calculating the 

AUC, we can quantify the model's overall classification performance, ensuring the system has 

good detection capability and robustness in practical applications. The higher the AUC value, the 

better the classification performance in detecting intrusion and non-intrusion behavior. 

 
1

0
( ) ( )AUC TPR FPR d FPR=   (22) 

Here, TPR stands for True Positive Rate, and FPR stands for False Positive Rate. 

4.4 Experimental Comparison and Analysis 

To validate the effectiveness of the proposed deep learning-based data security intrusion detection 

system, we conducted extensive experimental comparisons and analyses. The experiments utilized 

multiple public network security datasets, including NSL-KDD, UNSW-NB15, CICIDS 2017, and 

AWID, and were compared with traditional intrusion detection systems. 

Table 1 shows the performance comparison of different models on the NSL-KDD and UNSW-

NB15 datasets. It is evident that the proposed intrusion detection system significantly outperforms 

other models across all evaluation metrics. On the NSL-KDD dataset, our model achieved an 

accuracy of 96.45%, a precision of 97.64%, a recall of 96.14%, and an AUC of 97.64%. These 

results are substantially higher than those of Yang et al. (89.90% accuracy), Sarvari et al. (89.21% 

accuracy), and other comparison models. Similarly, on the UNSW-NB15 dataset, our model 

demonstrated excellent performance, achieving an accuracy of 95.64%, a precision of 97.54%, a 

recall of 96.73%, and an AUC of 96.76%, significantly surpassing other models. This indicates 

that the proposed system offers higher detection accuracy, lower false positive rates, and greater 
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robustness in practical applications, effectively enhancing the overall performance of data security 

intrusion detection. Figure 5 visualizes the comparison of various metrics on the two datasets. 

 

Table 1. Comparison of indicators of various models under NSL-KDD Dataset and UNSW-

NB15 Dataset. 

Model 
NSL-KDD Dataset UNSW-NB15 Dataset 

ACC(%) P(%) R(%) AUC(%) ACC(%) P(%) R(%) AUC(%) 

Yang et al. (Yang & Wang, 2019) 89.90 89.10 91.34 90.88 89.66 92.44 89.87 89.04 

Sarvari et al. (Sarvari et al., 2020) 89.21 90.87 89.68 93.63 89.63 91.16 90.40 91.60 

Wang et al. (Wang et al., 2020) 90.07 89.68 90.84 91.81 88.21 89.73 89.94 88.08 

Huynh-The et al. (Huynh-The et al., 2022) 89.67 92.27 92.20 89.06 88.30 91.51 91.09 89.42 

Huang et al. (Huang et al., 2021) 92.27 89.63 90.92 93.79 90.06 90.46 90.67 90.42 

Chen et al. (Chen et al., 2022) 92.14 89.99 92.66 92.76 90.94 89.48 92.39 89.55 

Ours 96.45 97.64 96.14 97.64 95.64 97.54 96.73 96.76 

 

Figure 5. Comparative visualization of each model indicator under the NSL-KDD Dataset and 

UNSW-NB15 Dataset. 

 

Table 2. Comparison of indicators of various models under the CICIDS 2017 Dataset and AWID 

Dataset. 

Model 
CICIDS 2017 Dataset AWID Dataset 

ACC(%) P(%) R(%) AUC(%) ACC(%) P(%) R(%) AUC(%) 

Yang et al. (Yang & Wang, 2019) 91.30 89.24 89.29 91.92 91.82 90.47 88.74 91.38 

Sarvari et al. (Sarvari et al., 2020) 93.39 90.43 90.39 91.42 89.00 92.81 89.47 89.42 

Wang et al. (Wang et al., 2020) 93.81 92.16 91.97 89.5 90.87 89.04 91.21 92.42 

Huynh-The et al. (Huynh-The et al., 2022) 92.02 91.03 91.67 89.79 91.65 90.30 91.70 89.29 

Huang et al. (Huang et al., 2021) 91.04 92.63 90.56 92.97 92.48 92.05 91.56 92.30 

Chen et al. (Chen et al., 2022) 93.85 92.83 90.44 90.01 93.00 91.09 88.32 90.48 
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Ours 97.64 95.21 97.72 98.09 96.41 96.37 95.34 97.54 

Table 2 presents the performance comparison of different models on the CICIDS 2017 and 

AWID datasets. The results indicate that our proposed intrusion detection system outperforms 

other models across all evaluation metrics. On the CICIDS 2017 dataset, our model achieved an 

accuracy of 97.64%, a precision of 95.21%, a recall of 97.72%, and an AUC of 98.09%, 

significantly higher than Sarvari et al. Similarly, on the AWID dataset, our model also 

demonstrated excellent performance, achieving an accuracy of 96.41%, a precision of 96.37%, a 

recall of 95.34%, and an AUC of 97.54%, all of which significantly surpass other models. These 

results show that our deep learning intrusion detection system has higher detection accuracy and 

robustness in dealing with different types of network attacks and datasets, effectively enhancing 

data security protection capabilities. Similarly, Figure 6 visualizes the comparison of various 

metrics on the two datasets. 

 

Figure 6. Comparative visualization of each model indicator under the CICIDS 2017 Dataset and 

AWID Dataset. 

 

Figure 7. Visual comparison of training indicators of multiple models on four datasets. 

Table 3 shows the training metrics of various models on four datasets, including the number 

of training epochs, inference time, and training time. The results indicate that our proposed model 

demonstrates superior training efficiency across all datasets. On the NSL-KDD and UNSW-NB15 

datasets, our model requires only 115 and 120 epochs, respectively, with inference times of 

291.34ms and 289.64ms and training times of 302.42s and 310.51s, respectively, all of which are 

the lowest values. On the CICIDS 2017 and AWID datasets, our model also performs excellently, 

requiring 110 and 100 epochs, respectively, with inference times of 284.64ms and 271.64ms and 
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training times of 314.62s and 214.53s. This indicates that our proposed system not only 

outperforms other models in terms of performance but also shows significant advantages in 

training and inference efficiency, enabling it to quickly and effectively adapt to the needs of real-

world applications. Figure 7 visualizes the comparison of various training metrics across the four 

datasets. 

Table 3. Training indicators of each model on four datasets. 

NSL-KDD Dataset UNSW-NB15 Dataset 

Model Epochs 
Inference 

Time(ms) 

Trainning 

Time(s) 
Epochs 

Inference 

Time(ms) 

Trainning 

Time(s) 

Yang et al. (Yang & Wang, 

2019) 
130 375.39 373.75 135 394.64 417.77 

Sarvari et al. (Sarvari et al., 

2020) 
140 356.58 320.48 150 310.42 355.73 

Wang et al. (Wang et al., 2020) 135 306.32 365.86 145 377.05 393.72 

Huynh-The et al. (Huynh-The 

et al., 2022) 
125 339.71 314.41 140 393.35 333.17 

Huang et al. (Huang et al., 

2021) 
120 391.74 390.09 130 304.43 412.11 

Chen et al. (Chen et al., 2022) 135 308.32 355.8 135 339.3 405.99 

Ours 115 291.34 302.42 120 289.64 310.51 

CICIDS 2017 Dataset AWID Dataset 

Model Epochs 
Inference 

Time(ms) 

Trainning 

Time(s) 
Epochs 

Inference 

Time(ms) 

Trainning 

Time(s) 

Yang et al. (Yang & Wang, 

2019) 
120 365.43 378.21 125 319.66 280.18 

Sarvari et al. (Sarvari et al., 

2020) 
125 423.66 398.24 130 320.71 298.8 

Wang et al. (Wang et al., 2020) 125 352.85 371.71 130 361.83 231.54 

Huynh-The et al. (Huynh-The 

et al., 2022) 
135 431.2 396.99 145 322.5 288.83 

Huang et al. (Huang et al., 

2021) 
120 388.87 390.51 120 371.94 236.26 

Chen et al. (Chen et al., 2022) 125 427.2 379.18 135 300.21 260.27 

Ours 110 284.64 314.62 100 271.64 214.53 

 

Table 4 presents the ablation study results of our model on the NSL-KDD and UNSW-NB15 

datasets, verifying the impact of different components on the model's performance. The baseline 

model shows relatively low performance, with an accuracy of 86.54% on the NSL-KDD dataset 

and 85.25% on the UNSW-NB15 dataset. After introducing the Mamba model, all metrics 

improved, with accuracy increasing to 89.31% and 88.67% on the two datasets, respectively. The 

addition of the ECANet model further enhanced performance, achieving accuracies of 93.06% and 
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91.74% on the NSL-KDD and UNSW-NB15 datasets, respectively. When both the Mamba and 

ECANet models were introduced simultaneously, the model performance reached its peak, with 

an accuracy of 96.45% on the NSL-KDD dataset and 95.64% on the UNSW-NB15 dataset, 

significantly improving all metrics. This demonstrates that the combination of Mamba and 

ECANet models significantly enhances the detection capability and robustness of the intrusion 

detection system. Figure 8 visualizes the comparison of the ablation study. 

Table 4. Ablation experiments of this model on the NSL-KDD Dataset and UNSW-NB15 

Dataset. 

Model 

Dataset 

NSL-KDD Dataset UNSW-NB15 Dataset 

ACC(%) P(%) R(%) AUC(%) ACC(%) P(%) R(%) AUC(%) 

baseline 86.54 87.5 86.34 88.6 85.25 86.19 86.16 85.64 

+Mamba 89.31 91.73 90.6 91.63 88.67 89.15 90.17 88.14 

＋ECANet 93.06 92.74 92.49 93.46 91.74 93.58 92.37 91.47 

+Mamba ECANet 96.45 97.64 96.14 97.64 95.64 97.54 96.73 96.76 

 

Figure 8. Comparative visualization of ablation experiments on NSL-KDD Dataset and UNSW-

NB15 Dataset. 

 

Table 5. Ablation experiments of this model on the CICIDS 2017 Dataset and AWID Dataset. 

 

Model Dataset 

CICIDS 2017 Dataset AWID Dataset 

ACC(%) P(%) R(%) AUC(%) ACC(%) P(%) R(%) AUC(%) 

baseline 86.14 87.71 84.46 86.14 87.34 85.49 87.36 86.46 

+Mamba 89.48 90.14 88.17 91.74 90.6 88.49 89.06 91.73 

+ECANet 92.17 91.61 93.63 94.1 92.8 91.4 91.8 93.94 

+Mamba ECANet 97.64 95.21 97.72 98.09 96.41 96.37 95.34 97.54 
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Table 5 shows the ablation study results of our model on the CICIDS 2017 and AWID datasets, 

further verifying the impact of different components on the model's performance. The baseline 

model shows relatively modest performance, with an accuracy of 86.14% on the CICIDS 2017 

dataset and 87.34% on the AWID dataset. After introducing the Mamba model, all metrics 

significantly improved, with accuracies increasing to 89.48% and 90.6% on the CICIDS 2017 and 

AWID datasets, respectively. The addition of the ECANet model further enhanced performance, 

achieving accuracies of 92.17% on the CICIDS 2017 dataset and 92.8% on the AWID dataset. 

When both the Mamba and ECANet models were introduced simultaneously, the model 

performance reached its peak, with an accuracy of 97.64% on the CICIDS 2017 dataset and 96.41% 

on the AWID dataset. These results demonstrate that the combination of Mamba and ECANet 

models significantly enhances the detection capability of the intrusion detection system, especially 

on complex datasets. Similarly, Figure 9 visualizes the comparison of the ablation study. 

 

Figure 9. Comparative visualization of ablation experiments on CICIDS 2017 Dataset and AWID 

Dataset. 

5. Conclusion 

This paper proposes an end-to-end data security intrusion detection system based on deep learning, 

integrating the Mamba and ECANet models and employing end-to-end learning for training and 

optimization. By introducing the Mamba model, we effectively address the efficiency and accuracy 

issues of traditional methods in handling complex network data. The combination with the 

ECANet model further enhances feature selection through attention mechanisms, significantly 

improving the system's capability and accuracy in detecting anomalous behaviors. Experiments on 

multiple public datasets including NSL-KDD, UNSW-NB15, CICIDS 2017, and AWID validate 

the effectiveness and robustness of our approach, demonstrating the system's ability to maintain 

high detection performance across different network environments and attack types. Furthermore, 

through ablation studies, we further demonstrate the significant role of integrating the Mamba and 

ECANet models in enhancing system performance. Despite achieving satisfactory experimental 

results, there are still areas for further research. Future work could focus on optimizing the 

computational efficiency of the model to accommodate more complex and large-scale network 

environments. Exploring additional data augmentation techniques and unsupervised learning 

methods could reduce reliance on extensive labeled data. Applying the proposed method to more 

real-world scenarios would validate its generality and applicability across diverse network 

environments. 
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