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Abstract: Toxic comments on social media, often involving hate speech and insults,
pose significant challenges for online safety. While many studies have focused on
detecting toxic comments within a single platform, cross-platform toxicity prediction
remains underexplored. This task is particularly challenging due to linguistic differences
and varying user behaviors across platforms, which reduce the effectiveness of models
trained on one dataset when applied to another. To address these challenges, this paper
proposes a Residual Self-Attention-Based LSTM framework with transfer learning. The
model is first trained on a large source dataset (Twitter) and then fine-tuned on a smaller
target dataset (YouTube). Residual connections ensure smooth gradient flow, while self-
attention captures critical contextual features. Transfer learning enables the model to
adapt to platform-specific nuances without retraining from scratch. Experiments show
that the proposed approach significantly improves generalization across platforms,
achieving higher precision, recall, and F1-scores compared to baseline methods. These
results highlight the potential of combining advanced deep learning techniques with
transfer learning for cross-platform toxicity detection, providing a foundation for future
research in this area.
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1. Introduction

Social media platforms have become indispensable tools for modern communication, connecting
billions of users worldwide. From sharing personal experiences to engaging in global debates,
these platforms enable unprecedented opportunities for interaction. However, alongside their
positive impact, they have also facilitated the rise of harmful online behaviors, including the
proliferation of toxic comments [1][2][3]. Toxic comments—often characterized by hate speech,
cyberbullying, insults, or derogatory remarks—pose serious challenges to the well-being of
individuals and the broader online community. Beyond their immediate impact on mental health,
such comments can escalate into larger societal issues, fostering divisiveness and hostility.
Recognizing the severity of this problem, researchers and practitioners have focused on devising
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effective methods to identify and mitigate toxic content, making toxic comment prediction a vital
task for creating safer digital spaces.

The process of detecting toxic comments is inherently complex. Unlike traditional methods
[4][5][6], toxicity often resides in nuanced language that depends on context, tone, and cultural
sensitivities. For example, a phrase that may seem benign in one cultural context can be deeply
offensive in another. Similarly, sarcasm, slang, and emerging internet trends complicate the task
of identifying harmful language. As a result, straightforward solutions like manual moderation or
basic keyword filtering have proven insufficient in addressing the scale and subtlety of the problem.
Manual moderation, while effective for small-scale platforms, is labor-intensive, prone to human
error, and unsustainable for platforms with millions of active users. On the other hand, keyword-
based approaches [7][8], which rely on predefined lists of offensive words, are rigid and frequently
misclassify non-toxic comments as harmful or fail to detect cleverly disguised toxicity.

In response to these limitations, automated methods [9][10][11] for toxic comment detection have

gained traction over the past decade. Early automated systems relied heavily on rule-based

algorithms and handcrafted features, such as term frequency-inverse document frequency (TF-IDF)
[12][13] and simple word embeddings. While these approaches improved efficiency compared to

manual moderation, they still struggled with the contextual and dynamic nature of online language.

The evolution of machine learning technologies [14][15][16], particularly in the field of natural

language processing (NLP), has transformed toxic comment prediction by introducing models

capable of learning intricate patterns from large datasets.

Machine learning models such as Support Vector Machines (SVM) [17][18], Random Forests
[19][20], and Gradient Boosting [21][22] initially demonstrated notable improvements in toxic
comment detection. However, their reliance on shallow feature representations limited their
generalizability across diverse datasets. The advent of deep learning marked a paradigm shift in
this domain, with models like convolutional neural networks (CNNs) [23][24] and recurrent neural
networks (RNNs) [25][26] proving adept at handling complex tasks. For instance, Xiong et al.
proposed an effective distributed data parallel acceleration-based generative adversarial network
for fingerprint generation, demonstrating the superiority of the model [27]. More recently,
transformer-based models like BERT and GPT [28][29][30] have set new benchmarks in NLP
tasks, including toxic comment prediction, by leveraging attention mechanisms to capture long-
range dependencies and subtle semantic nuances.

While these advancements are impressive, most research and applications have focused on
achieving high accuracy on individual datasets or specific platforms. For example, a model trained
on Twitter data often performs well within that domain but struggles to generalize when applied
to comments from other platforms like YouTube, Reddit, or Facebook. This lack of cross-platform
generalizability is a critical limitation, as toxic behaviors and linguistic styles vary significantly
across platforms. A comment that might be flagged as toxic on Twitter due to its brevity and
informal tone may go undetected on YouTube, where comments are often longer and follow
different conversational norms. This gap in generalizability hinders the development of robust,
universally applicable models, leaving platforms vulnerable to toxic content that falls outside their
training scope.

The importance of addressing cross-platform generalizability cannot be overstated similar to the
issues in other tasks [31][32]. Social media platforms often intersect, with users frequently sharing
content across multiple channels. Toxic behaviors, too, are not confined to a single platform but
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propagate across the digital ecosystem, exacerbating their societal impact. Developing models
capable of adapting to diverse datasets is essential for creating holistic solutions that ensure safer
interactions across the entire social media landscape. Furthermore, enhancing model
generalizability is not just a technical challenge but also a step toward reducing biases in machine
learning. Many current models inadvertently reflect the biases present in their training data, leading
to unfair or inconsistent outcomes when applied to new datasets.

To address these challenges, this paper proposes a Residual Self-Attention-Based LSTM
framework combined with transfer learning shown in Figure 1 to enhance toxic comment
prediction across platforms. The approach begins with training on a source domain (e.g., Twitter)
using a residual connection-enhanced LSTM module, which captures sequential dependencies
while preserving critical information. A self-attention mechanism is applied to extract high-level
contextual features, enabling the model to focus on relevant input aspects. To adapt the model to
a target domain (e.g., YouTube), transfer learning is employed by fine-tuning only the fully
connected layers while freezing pre-trained feature extraction layers. This strategy retains general
knowledge of toxicity patterns while adapting to platform-specific nuances. The framework
improves cross-platform applicability, reduces computational costs, and ensures efficient training.
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Figure 1. The workflow of the proposed model for social media toxic comments prediction
across diverse data platforms.

2. Literature Review

A.  Toxic comments prediction

The detection of toxicity in conversational data has been an active area of research, employing
both traditional machine learning methods and advanced deep learning techniques due to their
excellent performance in many tasks [33][34][35][36]. Traditional approaches often leverage
classifiers such as Decision Trees [37], Logistic Regression [38], Support Vector Machines (SVM)
[39], and Ensemble Models [40]. These models have proven effective in structured data scenarios
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and are frequently applied beyond toxicity detection, such as in identifying other types of anti-
social behaviors. For instance, Naive Bayes and Random Forests were successfully utilized to
detect fake reviews on Amazon, relying on features like seller attributes, product details, and
review content to classify fraudulent activity [41]. Similarly, [42] examined how the performance
of classification models changes when applied in dynamic, real-world scenarios requiring online
learning, revealing the challenges these methods face in maintaining robust performance under
evolving data distributions.

In the domain of toxicity detection, more tailored approaches have been developed to handle the
complexities of online communication. For example, [43] proposed a method for monitoring
discussion threads to identify emerging aggressive behavior, using text representations alongside
classifiers such as Radial Basis Function, SVMs, and Hidden Markov Models. These methods
underscore the importance of capturing nuanced patterns in user interactions to predict potential
toxicity accurately. Additionally, work by [44] focused on understanding how text length
influences classification outcomes, particularly in detecting fake reviews, demonstrating that
shorter texts often pose a greater challenge for model learning. Such findings emphasize the need
for models capable of adapting to diverse text properties while maintaining high performance. In
addition, deep learning models also attracted much attention due to its effectiveness in many tasks.
In [45], the authors utilized Convolutional Neural Networks (CNNs) for multi-label classification
of online comments, demonstrating the effectiveness of this approach by experimenting with
various word embeddings to enhance feature representation and classification performance.
Building on this, [46] conducted a comparative study evaluating the performance of CNNs against
Long Short-Term Memory (LSTM) networks, highlighting the strengths and weaknesses of each
architecture in capturing textual features for toxicity detection. Meanwhile, [47] introduced a novel
approach leveraging Capsule Networks, which offer a hierarchical understanding of features,
making them particularly useful for recognizing intricate relationships within toxic content.
Monitoring the dynamics of toxicity in social networks adds another dimension to this research.
For instance, [48] presented a CNN-based model designed to detect toxic tweets while
incorporating temporal aspects. Their methodology extended beyond simple classification,
utilizing hashtags associated with toxic tweets to analyze the propagation of toxicity over time.
This approach not only identified toxic content but also provided insights into its spread and
evolution within online communities, offering valuable perspectives for developing more
proactive moderation systems.

3. Method

A. Dataset preparation

In this study, we utilized two datasets from Kaggle: one large dataset from Twitter as the source
domain and another smaller dataset from YouTube, both focusing on toxic comment detection.
The task at hand was a binary classification problem where the goal was to determine whether a
given comment was toxic or not. The Twitter dataset comprised 56,745 samples, while the
YouTube dataset contained 1,000 samples. The Twitter dataset was used for training dataset. The
Youtube data was split into two parts: one half was used as the training set for fine-tuning the
model through transfer learning, while the remaining portion served as the test set. Given that the
data consisted of textual information, we applied text vectorization using Term Frequency-Inverse
Document Frequency (TF-IDF). This method transforms raw text into numerical vectors, making
it suitable for input into machine learning models. We restricted the number of features to 50 using
the vectorizer to reduce the dimensionality of the data while retaining significant information.
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Figure 2 and Figure 3 illustrate the label distribution of both datasets. Since the overall distribution
was almost balanced, no further balancing techniques were applied.
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Figure 2. The label data distribution of the Twitter dataset.
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Figure 3. The label data distribution of the YouTube dataset.

B.  The residual self-attention-based LSTM model
1. Preliminaries of the LSTM

Long Short-Term Memory (LSTM) networks are a specialized type of recurrent neural network
(RNN) designed to handle complex sequence prediction problems by learning long-term
dependencies within data. Unlike conventional feedforward neural networks, LSTMs possess
feedback connections that enable them to process entire sequences effectively. This unique
characteristic makes LSTMs particularly well-suited for tasks involving sequential data, such as
time series forecasting, natural language processing, and speech recognition.

The concept of LSTM was introduced by Hochreiter and Schmidhuber in 1997 to tackle a

fundamental issue faced by traditional RNNs: the vanishing gradient problem. This problem arises

during backpropagation when gradients, which are propagated backward through the network

across multiple layers, diminish exponentially over time. This shrinkage makes it difficult for the

network to learn and model long-range dependencies or correlations between distant events.

LSTMs address this challenge by incorporating specialized memory cells that can maintain and
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manage information for extended periods, ensuring that significant data is retained and utilized
effectively. An LSTM unit consists of three types of gates: the input gate, the forget gate, and the
output gate. These gates govern the flow of information through the network, determining which
data is updated, retained, or discarded. More information is provided as follows: 1) Input Gate:
This gate controls the degree to which new information is added to the cell's memory. It uses a
sigmoid activation function to decide which values should be allowed to modify the memory state,
paired with a tanh function that generates a set of candidate values for updating the memory. 2)
Forget Gate: This gate is responsible for deciding which information from the cell's memory should
be removed. Based on the current input and the previous output, the forget gate enables the model
to discard outdated or irrelevant data, preventing information overload and promoting efficient
learning. 3) Output Gate: The output gate determines how much of the information stored in the
cell's memory should contribute to the final output of the LSTM unit. It evaluates the current input
and the preceding output to decide which portion of the cell state is passed forward and used in the
subsequent computation.

2. Preliminaries of the self-attention

Self-attention, a pivotal element of the transformer architecture, is an innovative mechanism that
enables a model to independently assess the importance of different parts of an input sequence,
regardless of their position. This has dramatically transformed fields such as natural language
processing (NLP) and other tasks that involve sequential data by providing a versatile and efficient
way to handle complex input information. The essence of self-attention lies in evaluating the
relevance of all components of the input to each specific output element. In practical terms, this
means that each output unit—such as a word in a sentence—can be represented as a weighted
combination of all input units, with the weights indicating the importance of each input to the
computation of the output.

The self-attention mechanism operates through three distinct vectors for each input element: the
Query, the Key, and the Value. These vectors are created by applying learned linear
transformations to the input elements. To compute attention for a given element, its Query vector
is matched against the Key vectors of all other elements in the sequence to generate scores. These
scores, which determine the importance of the corresponding Value vectors, are then normalized
using a softmax function to create a distribution of attention weights that sum to one.

This mechanism allows the model to selectively focus on the most relevant sections of the input
sequence, adapting its attention based on context. Such adaptability is especially beneficial for
tasks like machine translation, where the relationships between input words can shift considerably
based on the context. By dynamically computing attention for each input-output pair, self-attention
can emphasize or minimize features as necessary, unlike recurrent layers that operate within a fixed
order.

Additionally, self-attention supports parallel processing, which accelerates training compared to
the sequential nature of RNNs. This parallelization, along with its capacity to handle long-range
dependencies within data, establishes self-attention as an essential component in modern neural
network architectures, paving the way for powerful and efficient models that achieve state-of-the-
art performance across a range of tasks.

3. Preliminaries of the residual connection



Residual connections, also known as skip connections, are an architectural innovation in deep
learning that helps overcome the challenges associated with training very deep neural networks.
One of the main difficulties of training deep networks is the vanishing gradient problem, where
gradients become so small during backpropagation that they fail to make meaningful updates to
the network's parameters, leading to stagnant training and poor convergence. Residual connections
mitigate this issue by creating shortcuts that allow gradients to flow more effectively through the
network, bypassing one or more layers.

These connections were popularized by He et al. in their groundbreaking work on ResNet, which
demonstrated that deep networks could be trained effectively by using residual structures. The core
concept behind residual connections is straightforward: instead of directly learning a
transformation from input to output, a layer learns the difference between the input and the output,
known as the residual. Mathematically, this is expressed as F(x)+x where x is the input to the layer,
and F(x) is the output of the transformation applied by the layer. The result of this operation is
added back to the original input, creating a direct path for the signal. This setup forms a shortcut
path for the backward pass during training, ensuring that the gradient can be passed directly
through the network without diminishing significantly. This makes it possible to train much deeper
networks than was previously possible, as each layer only needs to learn the adjustments required
rather than the full transformation. Consequently, residual connections simplify the learning
process, improve the flow of gradients, and lead to more efficient training of deep neural networks.

4. The architecture of the proposed model

The architecture of the proposed model starts with an input layer that receives a sequence of data,
which is typically vectorized text input. This input passes through an embedding layer with output
dimension of 16, which transforms the raw integer-encoded input into dense vector representations,
capturing semantic relationships between words. The output of the embedding layer is then
processed by a bidirectional LSTM layer with 16 neurons and relu activation function, which
enhances the model's ability to learn sequential dependencies by processing the input in both
forward and backward directions. The bidirectional LSTM output is further refined by a self-
attention layer, which allows the model to weigh different parts of the input sequence differently
based on their relevance. This attention mechanism helps the model focus on important sections
of the input for better performance in tasks like sequence classification. The output of the self-
attention mechanism is combined with the original output from the bidirectional LSTM through a
residual connection, aiding in smoother gradient flow and more efficient training by bypassing
some layers. Finally, the refined features are passed through a series of fully connected dense layers
with 8 and 1 neurons, with the last layer using a sigmoid activation function to output a binary
classification, indicating whether a given input is toxic or non-toxic.

5. Transfer learning-based prediction

Transfer learning is a powerful technique in machine learning where knowledge gained from
training a model on one task (the source domain) is applied to a different but related task (the target
domain). This approach is particularly beneficial when the target task has limited data available,
as it allows the model to leverage existing knowledge from the source task, reducing the need for
extensive training from scratch. By reusing learned features and representations, transfer learning
helps improve the efficiency and effectiveness of training models for new tasks.

After the initial training phase, transfer learning is used to modify the model for the target domain
(e.g., YouTube). This process involves fine-tuning only the fully connected layers while keeping
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the pre-trained feature extraction layers frozen. By doing so, the model retains the valuable
knowledge and learned representations from the source domain while dedicating its capacity to
adapt its predictions to the unique features of the target domain. In addition, this study uses
TensorFlow for model training, employing the Adam optimizer for efficient optimization. The loss
function utilized is binary cross-entropy, which is well-suited for binary classification tasks such
as detecting toxic comments. To evaluate model performance, metrics including precision, recall,
F1-score, and accuracy are used. These evaluation metrics provide a comprehensive understanding
of the model's ability to correctly identify toxic comments while balancing false positives and false
negatives.

4. Results and Discussion

A.  The performance of the model

Figure 4 shows the training and validation performance of our proposed model. The training
accuracy and loss curves are based on the Tweet dataset, which was used as the source domain for
initial training. The validation curves, on the other hand, were generated using 50% training dataset
of the previously split YouTube dataset, which was designated as the validation set to monitor the
model's performance and save the best weights. In the accuracy plot on the left, the training
accuracy (green line) steadily increases over the epochs, showing that the model is effectively
learning patterns from the Tweet dataset. However, the validation accuracy (dashed orange line)
fluctuates throughout the training process, likely due to the smaller size and different
characteristics of the YouTube dataset. This indicates that the model struggles to fully adapt to the
target domain, which may be an early sign of overfitting, where the model starts to perform better
on the training data but not as well on new data. In the loss plot on the right, the training loss (blue
line) decreases consistently, reflecting that the model is minimizing the objective function on the
Tweet data. However, the validation loss (dashed red line) remains relatively stable but shows less
improvement compared to the training loss, which further suggests potential overfitting.
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Figure 4. The training curve of the proposed model without transfer learning.



The experimental results shown in Table 1, Figure 5 and Figure 6 demonstrate the performance
differences between the Residual Self-Attention-Based LSTM and the Residual Self-Attention-
Based LSTM+Transfer Learning models when applied to the YouTube dataset for toxicity
detection. The Residual Self-Attention-Based LSTM model, trained solely on the Twitter dataset,
exhibited limited generalization to the YouTube dataset. This is evident in its performance metrics,
where the recall was particularly low at 0.0082, indicating its inability to capture most toxic
samples in the target domain. The precision was 0.5000, suggesting a high rate of false positives,
while the F1-score, which balances precision and recall, was only 0.0162. The overall accuracy of
this model was 0.5140, demonstrating its poor predictive capability when applied to a dataset with
different domain characteristics. The confusion matrix further reveals the significant number of
toxic samples that were misclassified as non-toxic, emphasizing the model's difficulty in adapting
to the YouTube data.

In contrast, the Residual Self-Attention-Based LSTM+Transfer Learning model, which was fine-
tuned on a portion of the YouTube training set after initial training on the Twitter dataset, showed
substantial improvements across all evaluation metrics. The recall increased to 0.2551, reflecting
the model's enhanced ability to identify toxic comments. Additionally, the precision rose to 0.9688,
indicating that the majority of toxic predictions were accurate, thereby reducing the number of
false positives. This improvement in both recall and precision led to a significant increase in the
Fl-score to 0.4039, highlighting the model's balanced performance in predicting toxic and non-
toxic samples. The accuracy also improved to 0.6340, confirming the model's better overall
effectiveness in the target domain. The confusion matrix for this model shows a notable reduction
in false negatives and false positives, with more toxic comments correctly classified as such.

Table 1. The performance of the model with and without transfer learning in YouTube testing
dataset prediction

Model Name Precision Recall Accuracy F1-score
Residual Self-
Attention-Based 0.5000 0.0082 0.5140 0.0162
LSTM
Residual Self-
Attention-Based
LSTM-+transfer
learning

0.9688 0.2551 0.6340 0.4039
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Figure 7 represents the outputs of the first fully connected layer from the models, reduced to two
dimensions using PCA for better interpretability. On the left, the Residual Self-Attention-Based
LSTM model, trained exclusively on the Twitter dataset and applied directly to the YouTube
dataset, shows a relatively compact clustering of feature representations. However, the data points
are not well-separated, indicating limited ability to discriminate between toxic and non-toxic
samples. This reflects the model's struggle to generalize across domains, as seen in the earlier
metrics. On the right, the Residual Self-Attention-Based LSTM+Transfer Learning model
demonstrates a more diverse and better-distributed feature space. This model, which underwent
fine-tuning on the YouTube dataset after initial training on the Twitter dataset, clearly benefits
from transfer learning. The representation shows improved separability and richer clustering,
which indicates that the model has adapted its feature extraction process to better capture the
nuances of the YouTube dataset. This adaptation enables the model to distinguish between toxic
and non-toxic samples more effectively, resulting in improved performance metrics.
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Figure 7. The visualization of the learned high-level representations from the first fully
connected layer of the model.

B.  The influence of different components on the model performance

The results presented in Table 2 and the accompanying visualizations shown in Figure 8 and Figure
9 illustrate the impact of different components on the performance of the models for toxicity
detection. Three models were evaluated: LSTM+Transfer Learning, Self-Attention-Based
LSTM+Transfer Learning, and Residual Self-Attention-Based LSTM+Transfer Learning.

The LSTM+Transfer Learning model serves as the baseline and leverages the sequential modeling
capabilities of LSTM networks. While it achieves a high precision of 0.9608, its recall is notably
low at 0.2016, indicating its limited ability to identify toxic samples. The accuracy of 0.6080
reflects reasonable performance on the majority class, but the F1-score of 0.3333 highlights an
imbalance between precision and recall. The confusion matrix reveals a significant number of false
negatives, suggesting that the sequential modeling alone struggles to capture nuanced relationships
in the target domain without additional architectural enhancements.

The introduction of a self-attention mechanism in the Self-Attention-Based LSTM+Transfer
Learning model significantly improves the model's performance. Self-attention enables the
network to assign varying levels of importance to different parts of the input sequence, allowing it
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to capture complex dependencies and contextual information more effectively. This model
achieves a recall of 0.2346, an improvement over the baseline, indicating enhanced detection of
toxic samples. The precision increases slightly to 0.9661, and the accuracy rises to 0.6240,
reflecting better overall generalization. The F1-score improves to 0.3775, highlighting a more
balanced trade-off between precision and recall. The confusion matrix demonstrates a reduction in
false negatives compared to the baseline, validating the contribution of the self-attention
mechanism in refining the model's understanding of input sequences. The Residual Self-Attention-
Based LSTM+Transfer Learning model further enhances performance by incorporating residual
connections alongside the self-attention mechanism. Residual connections address the issue of
gradient vanishing and allow the model to retain critical information across layers, ensuring better
feature propagation.

Table 2. The influence of different components on the model performance

Model Name Precision Recall Accuracy F1-score
LSTMttransfer 0.9608 0.2016 0.6080 0.3333
learning
Self-Attention-
Based
LSTM-+transfer 0.9661 0.2346 0.6240 0.3775
learning
Residual Self-
Attention-Based
LSTM-+transfer 0.9688 0.2551 0.6340 0.4039
learning
LSTM Self-Attention-Based LSTM Residual Self-Attention-Based LSTM
+Transfer Learning +Transfer Learning +Transfer Learning
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Figure 8. The confusion matrix related to the influence of different components on the model
performance
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C. Discussion

The Residual Self-Attention-Based LSTM+Transfer Learning model demonstrates notable
improvements in cross-domain toxicity detection, particularly when compared to its simpler
counterparts. However, despite its superior performance, the model still faces limitations that
require attention in future research. One primary limitation lies in the reliance on a large amount
of labeled data in the source domain (Twitter) to pre-train the model, as well as a subset of labeled
data from the target domain (YouTube) for fine-tuning. This dependency makes the approach less
feasible for applications where labeled data is scarce or expensive to obtain. Additionally, while
the inclusion of self-attention and residual connections enhances the model’s ability to capture
contextual and long-range dependencies, it also increases the complexity and computational
overhead, which may not be suitable for resource-constrained environments or real-time
applications. In the future, the advanced methods from other domains should be considered for
further improvement of the model performance [49][50].

5. Conclusion

This study highlights the challenges of cross-platform toxicity detection, particularly the variability
in linguistic patterns and user behaviors across different social media platforms. The proposed
Residual Self-Attention-Based LSTM+Transfer Learning model effectively addresses these issues
by leveraging self-attention for contextual understanding and transfer learning for domain
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adaptation. By fine-tuning on a small target dataset, the model retains general knowledge while
adapting to platform-specific characteristics, resulting in improved performance across all key
metrics. However, challenges remain, such as the reliance on labeled data for both source and
target domains and the computational cost of advanced architectures. Future work should explore
unsupervised transfer learning and lightweight model designs to enhance scalability and reduce
dependency on labeled data. Despite these limitations, the study demonstrates the importance of
cross-platform research and offers a promising approach for developing adaptable and effective
toxicity detection models.
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