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Abstract: Insurance fraud detection is a critical task for insurance companies, as
fraudulent claims result in financial losses and increased premiums for honest
policyholders. Traditional fraud detection methods rely on rule-based approaches and
manual investigation, which are limited in their ability to adapt to evolving fraud patterns.
In this study, we propose a novel approach using an artificial neural network (ANN)
combined with N?argin Disparity Blscre ancy (MDD)-based domain adaptation to
improve the generalization ability of fraud detection models across different datasets. We
first preprocess the data by applying K-Means clustering to segment source and target
domains based on distribution differences. We then compare multiple machine learning
models, including decision trees, random forests, k-nearest neighbors, and gradient-
boosted decision trees, finding that ANN achieves the best performance. To further
enhance generalizability, we introduce MDD-based domain adaptation, aligning feature
distributions between tKe source and target domains. Experimental results demonstrate
that the adapted ANN significantly improves fraud detection accuracy, achieving a higher
F1-score and recall while reducing the false negative rate. These findings highlight the
effectiveness of domain adaptation in addressing distributional shifts in fraud detection,
making the proposed model a promising solution for real-world insurance fraud detection
systems.

Keywords: Vehicle insurance claim fraud detection;, Machine learning; Neural network;
Domain adaptation.

1. Introduction

Insurance is a fundamental component of modern financial systems, providing individuals and
businesses with financial protection against unforeseen risks [1][2]. Among various types of
insurance, vehicle insurance plays a critical role in mitigating financial losses associated with
accidents, theft, and other damages. Policyholders pay premiums to insurance companies, which,
in turn, cover financial liabilities arising from claims. However, the insurance industry faces a
persistent challenge in the form of fraudulent claims, which result in significant financial losses for
insurers and higher premiums for honest customers. Vehicle insurance claim fraud refers to
deceptive practices where individuals or groups intentionally manipulate insurance claims for
financial gain. Fraudulent activities can take several forms, including exaggerated damage claims,
staged accidents, and false theft reports. This fraudulent behavior creates substantial financial
burdens for insurance providers, leading to increased operational costs and inflated premiums for
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policyholders. According to industry reports, insurance fraud costs billions of dollars annually,
making fraud detection an essential component of efficient insurance operations [3][4].

Detecting fraudulent claims effectively is crucial for maintaining the financial stability of insurance
companies and ensuring fairness in premium pricing [5][6]. Traditional fraud detection methods
primarily rely on rule-based systems and manual investigations [7][8][9] conducted by claim
adjusters. These approaches often involve predefined heuristics and business rules to flag
suspicious claims. While these traditional methods have been moderately effective, they suffer
from significant limitations, such as their reliance on expert knowledge [10][11][12], inability to
adapt to evolving fraud patterns, and high operational costs. Consequently, there is a growing need
for automated and data-driven approaches to enhance fraud detection accuracy [13][14].

With advancements in artificial intelligence (Al) and machine learning (ML) [15][16][17][18],
insurers have started leveraging Al-driven techniques to improve fraud detection efficiency. Al-
based fraud detection models can analyze vast amounts of claim data, identify complex patterns,
and detect anomalies that may indicate fraudulent behavior. Machine learning algorithms, such as
decision trees, random forests, and neural networks, have demonstrated superior performance in
fraud detection by learning from historical claim data and making informed predictions
[19][20][21]. Recent studies have explored various machine learning techniques for fraud detection
[22][23][24], showing promising results. Decision tree-based models provide interpretable results,
while deep learning methods, such as artificial neural networks (ANNSs) [25][26][27], offer high
accuracy by capturing intricate relationships within the data. However, one major drawback of
existing machine learning models is their limited generalizability across different datasets. A model
trained on one dataset (source domain) may not perform well when applied to another dataset
(target domain) due to differences in data distribution. This challenge necessitates the adoption of
domain adaptation techniques to enhance model adaptability.

Domain adaptation [28][29][30] is a subfield of transfer learning that aims to improve the
generalization ability of machine learning models by aligning the feature distributions of the source
and target domains. In the context of vehicle insurance fraud detection, domain adaptation can be
used to bridge the gap between different claim datasets, allowing fraud detection models trained on
one dataset to generalize effectively to another.

In this study, we propose a novel approach shown in Figure 1 leveraging Margin Disparity
Discrepancy (MDD)-based domain adaptation to enhance the applicability of ANNs in vehicle
insurance claim fraud detection. Our framework addresses the issue of domain shift by aligning
feature distributions between the source and target domains, thereby improving model performance
across different datasets. Our approach first involves data preprocessing and clustering using the
K-Means algorithm. This step helps in identifying variations in claim data and allows for the
formation of distinct source domain and target domain datasets with different distributions. Next,
we train multiple machine learning models, including Decision Trees, Random Forest, K-Nearest
Neighbors (KNN), Gradient Boosting Decision Trees (GBDT), and ANNSs, on the source domain.
These models are then evaluated based on their performance in predicting fraudulent claims in the
target domain. Our findings reveal that among all tested models, ANN outperforms others in terms
of fraud detection accuracy, making it the most suitable choice for further enhancement. To further
improve the generalization of ANN model, we incorporate MDD-based domain adaptation. This
involves implementing a domain adaptation mechanism that consists of two neural networks: Net-
1, trained on the source domain, and Net-2, adapted for the target domain. These networks share
model weights, ensuring that learned features are consistent across domains. An MDD loss function
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is used to minimize the difference between feature distributions extracted by neural networks. This
alignment ensures that ANN model learns domain-invariant representations, making it more robust

for fraud detection across different datasets.

—

( Data Preprocessing \l |f Multiple Machine Learning Algorithms } ( Domain Adaptation-based ANN Model \
| =’=, | | '
. . e ource Domain
| == : | Decision Tree : | (s Domai N |
s - RN
| Numerical Customer Features | | | | // ~ Prediction Layer |
| I | | | , \ \ Classification
| R R R [ Random Forest | | 1 . . e 3 Loss |
1
| | | \ 1 |
| Lo ‘ : |
: I ANN Model I ' O K t |
|
| I | ‘ ANN Model \l'ith Befter AN -_ -7 | |
| K-Means for Clustering Data into Various Distributions | | l Performhnce | | |
| :.| ‘ } 1< Weight Sharing { |
| ans Clustering with A || X I : |
| | } | AN | |
@ o | | ’ \ ¥
| DifferertDistributions | | K \ |
| E . I | | ;' \ :
[ || | \ / |
| H Target Domain | | ! ,
| 1, | | KNN | | \ / |
N | | N Pt |
| Source Domain | | S~--
| | . . |
o :
: : : GBDT | : Target Domain Domain Adaptation I
e /1 SN o~ ’

Figure 1. The process of the proposed vehicle insurance claim fraud detection method using
MDD-based domain adaptation.

2. Literature Review

A. Insurance fraud detection

Insurance fraud detection has garnered significant attention, leading to the development of various
machine learning methodologies aimed at enhancing detection accuracy and efficiency due to their
excellent performance in many tasks [31][32][33][34]. For instance, Roy et al. introduced a
framework that combines feature selection with ensemble learning techniques to detect fraudulent
claims, achieving notable improvements in accuracy and a reduction in false positives [35].
Gangadhar et al. developed a Chaotic Variational Autoencoder-based one-class classifier tailored
for insurance fraud detection, demonstrating significant improvements in identifying fraudulent
transactions [36]. Additionally, Asgarian et al. introduced AutoFraudNet, a multimodal network
designed to detect fraud in the auto insurance industry by integrating various data modalities to
enhance detection performance [37]. Gupta et al. applied a Markov model integrated with machine
learning techniques for fraud detection in health insurance, achieving high accuracy and F1-scores,
thereby demonstrating the model's effectiveness [38]. However, while these studies contribute
valuable insights into insurance fraud detection, they do not consider the issue of varying data
distributions across different datasets, which may limit their effectiveness in real-world
applications.

B.  Domain adaptation

Pan et al. categorized transfer learning into three primary types based on variations in domains and
tasks: inductive, transductive, and unsupervised transfer learning [39]. Inductive transfer learning
occurs when the source and target tasks differ, regardless of whether they belong to the same
domain. This type often utilizes labeled data from the source domain, but it also requires at least
some labeled data in the target domain for training. Transductive transfer learning, on the other

hand, maintains the same task across different domains but has labeled data only in the source
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domain. During training, a portion of the target domain’s unlabeled data is used to estimate its
marginal probability distribution. Lastly, unsupervised transfer learning involves differences in
both tasks and domains, similar to inductive learning, but without any labeled data in either domain,
relying entirely on unsupervised techniques.

From a methodological perspective, domain adaptation can be broadly divided into two categories
based on their structural approaches: shallow and deep methods. Shallow domain adaptation
methods, as referenced in [40][41][42], primarily employ instance-based and feature-based
strategies to align domain distributions. A common approach is minimizing the distance between
domains using metrics such as the Wasserstein metric, correlation alignment (CORAL), Kullback-
Leibler (KL) divergence, and contrastive domain discrepancy (CDD). In contrast, deep domain
adaptation methods [43][44][45] leverage neural networks, typically incorporating convolutional,
autoencoder, or adversarial architectures to bridge the domain gap. These approaches often
integrate distance metrics at different layers of dual-network structures, where one network
processes the source domain while the other handles the target domain, enabling the measurement
and reduction of discrepancies in feature representations across layers.

3. Method

A. Dataset descrption and preprocessing

Our study utilizes a publicly available dataset from Kaggle, which contains 33 features aimed at
detecting fraudulent claims in vehicle insurance. The primary objective of this research is to
develop an effective fraud detection model, where we consider the "FraudFound P" feature as the
target variable. The dataset includes various features representing different aspects of insurance
claims, such as claim-related attributes, policyholder information, and accident details. Some
example features include Month, WeekOfMonth, DayOfWeek, among others. The target variable
"FraudFound P" indicates whether a claim is fraudulent (1) or legitimate (0). In our dataset, fraud
accounts for approximately 5.99% of the total claims, while 94.01% of the claims are legitimate.
Figure 2 and Figure 3 illustrate the distribution of several numerical and categorical features,
providing insights into data characteristics and variability across different claim attributes.
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Figure 2. The distribution of some numerical features.
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To ensure the dataset is suitable for the domain adaptation task, we first split the data into a source
domain and a target domain. Determining the optimal number of clusters (K) was crucial in this
step. We applied the Elbow Method and Silhouette Scores, as shown in Figure 4, to analyze the
clustering performance across different values of K. The results indicated that K=2 provided the
best clustering effectiveness, leading us to divide the data into two clusters. Figure 5 illustrates the
PCA-based data distribution, where the left plot shows the original dataset projected onto two
principal components, while the right plot presents the segmented clusters based on K-means. The
two identified clusters will serve as our source and target domains, allowing for further domain
adaptation processing. Thereinto, cluster 1 and cluster 2 are used as the source domain (training
data) and target domain (validation and testing data), respectively in our study. Additionally, we
recognized that the dataset contains many irrelevant features which do not contribute meaningfully
to fraud detection. To address this, we applied a random forest model for feature selection, the
results of which will be discussed in the later experimental section. Furthermore, considering that
the dataset is highly imbalanced, with the number of fraud cases significantly lower than non-fraud
cases, we performed a downsampling operation to balance the dataset before proceeding with
model training.
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Figure 4. The curves of Elbow method and Silhouette scores used for determining k value.
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B.  Machine learning models

To determine the optimal model for integration with the domain adaptation algorithm, we first
trained five different machine learning models on the source domain and then tested their
performance directly on the target domain. These models include 1) Decision tree, 2) Random
Forest, 3) K-Nearest Neighbors, 4) Gradient-boosted decision trees, and 5) Artificial neural
network. Below is an introduction to the basic principles of each model.

1. Decision tree

A decision tree [46] is a tree-structured supervised learning algorithm commonly used for
classification and regression tasks. It recursively splits the dataset based on feature values to create
a hierarchical structure of decision nodes and leaf nodes. The splits are chosen to maximize
information gain using metrics such as Gini impurity or entropy for classification and mean squared
error for regression. Decision trees are easy to interpret and require minimal preprocessing, but
they are prone to overfitting, especially when the tree depth is not properly controlled.

2. Random forest

Random forest [47] is an ensemble learning method that builds multiple decision trees and
aggregates their predictions to improve model performance and robustness. Each tree is trained on
a randomly sampled subset of the data, and feature selection is performed randomly at each node
to increase diversity. The final prediction is determined by majority voting for classification or
averaging for regression. Random forests are more resistant to overfitting compared to single
decision trees and perform well with high-dimensional data. However, they can be computationally
expensive when dealing with large datasets.

3. K-Nearest neighbors

KNN [48] is a non-parametric, instance-based learning algorithm that classifies a sample by
analyzing the labels of its k nearest neighbors in feature space. It relies on distance metrics such as
Euclidean distance or Manhattan distance to determine similarity between points. KNN is simple
to implement and works well with well-separated classes but can be computationally expensive
when the dataset is large. Additionally, it is sensitive to irrelevant features and requires careful
selection of the k parameter for optimal performance.

4. Gradient-boosted decision trees

GBDT [49] is an ensemble learning technique that builds multiple decision trees sequentially,
where each tree corrects the errors of the previous one. The model optimizes a loss function using
gradient descent, making it highly effective for structured data. Unlike random forest, which builds
trees independently, GBDT learns iteratively by adjusting the weights of samples that were
misclassified in previous trees. It provides high accuracy and is widely used in various machine
learning applications. However, it is more prone to overfitting than random forests and requires
careful tuning of hyperparameters such as learning rate and number of trees.

5. Artificial neural network

ANN [50][51]is a deep learning model inspired by the structure of biological neural networks. It
consists of layers of interconnected neurons, where each neuron processes input data through
weighted connections and activation functions. ANN can capture complex patterns and non-linear
relationships in data, making it powerful for tasks such as fraud detection. Training an ANN
involves adjusting the weights using backpropagation and optimization algorithms such as
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stochastic gradient descent (SGD) or Adam. While ANNSs offer high flexibility and accuracy, they
require large amounts of data and computational resources, and they are less interpretable compared
to decision trees or random forests.

C. Domain adaptation-based artificial neural network model

Domain adaptation is a specialized area within transfer learning that focuses on enhancing model
performance when there are distributional differences between the source domain (training data)
and the target domain (test data). Unlike traditional machine learning methods that assume identical
distributions for training and testing, domain adaptation mitigates these discrepancies by aligning
feature distributions across domains. This adaptation ensures that models maintain strong
predictive performance even when applied to new or varied data. Domain adaptation techniques
can be broadly categorized into shallow and deep approaches. Shallow methods typically employ
statistical techniques to minimize discrepancies between domains, utilizing metrics such as
Kullback-Leibler (KL) divergence to achieve feature alignment. In contrast, deep domain
adaptation leverages neural networks to extract transferable features, often integrating adversarial
learning or dual-network architectures to enhance domain alignment.

This technique is particularly beneficial in situations where labeled data in the target domain is
limited or unavailable. By leveraging labeled data from the source domain alongside unlabeled or
sparsely labeled target data, domain adaptation improves generalization and reduces the need for
extensive data collection and annotation. It has found widespread applications in fields such as
image recognition, natural language processing, and biometric authentication, effectively
addressing challenges arising from domain shifts. Figure 6 provides a conceptual illustration of the
domain adaptation process.
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Figure 6. The schematic of the idea related to domain adaptation.

In our experiments, we observed that ANN outperformed the other models in terms of predictive

accuracy and generalization ability. Consequently, we selected ANN as the base model for

integrating with the domain adaptation framework. The ANN used in our study consists of five

fully connected layers. The first layer has 128 neurons and serves as the input layer, followed by

three hidden layers containing 64, 32, and 16 neurons, respectively. Each of these layers employs

the ReLU activation function, which helps in capturing complex patterns while mitigating the
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vanishing gradient problem. The final layer consists of a single neuron with a sigmoid activation
function, making it suitable for binary classification tasks. To optimize the network, we used an
adaptive gradient-based optimizer with a learning rate of 0.01, which helps efficiently update the
model weights during training. The loss function chosen for training is binary cross-entropy, a
standard choice for classification problems where the output is a probability score. The model was
trained with a batch size of 256 for 30 epochs, ensuring stable convergence and effective learning
from the source domain data. To incorporate domain adaptation, we extracted the output features
from the layer with 64 neurons, as this layer provides an optimal intermediate representation,
balancing abstraction and detailed feature retention. These extracted features were then used for
domain adaptation alignment between the source and target domains.

For distribution alignment, we employed the MDD loss function. MDD is a statistical metric that
measures the difference between two probability distributions by comparing their mean
embeddings in a reproducing kernel Hilbert space. By minimizing MDD loss, the model learns
domain-invariant feature representations, reducing the distributional gap between the source and
target domains. This enhances the model’s ability to generalize across domains, improving its
performance on the target domain despite differences in data distribution. The total loss function is
shown in equation (1).

Lrotar = Leg + ALypp (1)
where L¢g represents the binary cross-entropy loss, which is used for classification. Lypp denotes
the MDD loss, which aligns the feature distributions of the source and target domains. In this study,
the A which corresponds to the weight of MDD loss, was automatically adjusted during training
following a sigmoid-based schedule, gradually increasing from 0.0 to 1.0 over 1000 steps with a
speed factor of 1.0.

4. Results and Discussion

A.  The feature importance of the random forest

As we previously considered using a random forest model for feature selection, Figure 7 presents
the importance of features produced by the random forest model. The feature importance scores
indicate how much each feature contributes to the model’s predictive performance, helping to
identify the most relevant attributes for fraud detection. From the results, policy number emerges
as the most important feature, which is likely due to specific patterns or anomalies within policy
numbers that may be correlated with fraudulent claims. However, relying on such an identifier-
based feature could lead to data leakage, as policy numbers should not inherently determine fraud.
Age and rep number also show high importance, which seems reasonable, as older policyholders
may exhibit different claim behaviors compared to younger ones, and rep number may be
associated with claim history or adjustments by insurance representatives. Temporal features such
as month claimed, month, day of week, and week of month also rank highly in importance,
suggesting that fraud occurrence may have seasonal or time-dependent patterns. This aligns with
previous studies indicating that fraud claims often peak during certain periods, possibly due to
strategic filing behaviors. Other notable features include fault, driver rating, past number of claims,
and number of supplements, all of which relate to driving behavior, past claims, and additional
policy elements. These features align well with domain knowledge, as fraud is often linked to claim
history and driver-related characteristics. On the other hand, some features with relatively low
importance, such as witness present, agent type, and vehicle category, may not have strong
predictive power in fraud detection. This suggests that these attributes either contain redundant
information or lack a significant relationship with fraudulent claims.
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Figure 7. The importance of features produced from the random forest model.

B.  The performance of multiple machine learning models for direct prediction in target domain

To determine the most effective model for fraud detection before integrating domain adaptation,
we evaluated multiple machine learning models, including decision trees, random forests, KNN,
GBDT, and ANN. Each model was trained on the source domain and directly tested on the target
domain to assess its generalization ability. Table 1 presents the performance of these models based
on accuracy, Fl-score, precision, and recall. The results indicate that ANN outperformed other
models, particularly in terms of Fl-score and precision. Decision tree and random forest models
showed relatively high recall but extremely low precision, meaning they flagged a significant
number of fraudulent cases but with a high false positive rate. KNN and GBDT demonstrated better
overall balance, but their F1-scores were still considerably lower than ANN. Figure 8 illustrates the
training accuracy and loss curves of ANN model. The training and validation accuracy gradually
improve over the epochs, showing that the model successfully learns from the data. Meanwhile,
the loss curve indicates a rapid convergence within the first few epochs, stabilizing at a low value,
suggesting effective optimization.

To provide a clearer comparison, Figure 9 visualizes the performance metrics for each model. ANN
achieves the highest F1-score and precision, which are crucial in fraud detection since they indicate
the model’s ability to correctly identify fraudulent claims while minimizing false positives. While
decision tree and random forest models exhibit higher recall, their low precision makes them less
reliable for real-world deployment, as they would result in a large number of false alarms. Figure
10 presents the ROC curves for different models, where the area under the curve (AUC) serves as
an indicator of the model’s discrimination ability. ANN achieves the highest AUC of 0.55,
outperforming the other models, which remain around 0.50 to 0.53, indicating that they struggle to
differentiate fraudulent claims from legitimate ones effectively. Finally, Figure 11 displays the
confusion matrices for all models, highlighting their classification behavior. The ANN model
correctly identifies a significant number of fraud cases compared to the others, with a better balance
between false positives and false negatives. In contrast, traditional machine learning models,
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especially decision trees and random forests, classify most instances as non-fraudulent, failing to

capture the complex patterns of fraud detection.
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Figure 8. The training accuracy (left) and loss (right) of ANN model.

Table 1. The performance of models evaluated by different metrics.

Metrics Accuracy Fl-score Recall Preicision
Decision tree 0.5018 0.0081 0.0041 0.8824
Random forest 0.5035 0.0145 0.0073 0.9643

K-Nearest 0.5141 0.1485 0.0847 0.5998
neighbors

Gradient-

boosted decision 0.5270 0.1627 0.0919 0.7077
tree

Artificial neural

0.5328 0.4781 0.4280 0.5415
network
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Figure 11. Confusion matrices of different models.

C. The performance of domain adaptation-based artificial neural network in target domain

To evaluate the effectiveness of domain adaptation in improving fraud detection, we compared the
performance of the original ANN model with the domain adaptation-based ANN. The results
demonstrate significant improvements in key evaluation metrics after applying domain adaptation.
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Figure 12 presents the discriminator loss during training and the feature distribution after applying
domain adaptation. The left plot shows the discriminator loss fluctuating at the beginning of
training before stabilizing, indicating the model’s learning process in aligning the source and target
distributions. The right plot visualizes the transformed feature space after applying dimensionality
reduction, showing a more overlapped distribution of the source and target domain data, suggesting
that the adaptation process successfully reduced the domain shift.

Table 2 provides a quantitative comparison of model performance. The domain adaptation-based
ANN achieved an accuracy of 0.7351, compared to 0.5328 for the original ANN. The F1-score also
saw a significant increase from 0.4781 to 0.6499, indicating improved balance between precision
and recall. The precision improved slightly from 0.4280 to 0.4918, while the recall increased
dramatically from 0.5415 to 0.9578. This suggests that domain adaptation enabled the model to
correctly identify a significantly larger portion of fraudulent claims while maintaining a reasonable
false positive rate. Figure 13 further illustrates these improvements using confusion matrices. The
original ANN model misclassified a large number of fraudulent claims, with many fraud cases
being classified as non-fraudulent. In contrast, the domain adaptation-based ANN significantly
reduced false negatives, correctly identifying a greater proportion of fraud cases. The number of
false positives also decreased, highlighting the model’s improved reliability in distinguishing
fraudulent and legitimate claims.

Discriminator Loss Feature Distribution after Dimensionality Reduction
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Figure 12. The discriminator loss during ANN training process (left) and transformed
distributions of source and target domains (right).

Table 2. The performance of ANN model with and without domain adaptation.

Metrics Accuracy Fl-score Recall Preicision
Original artificial neural network 0.5328 0.4781 0.4280  0.5415
Domain adaptation-based artificial neural network ~ 0.7351 0.6499 0.4918  0.9578
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Figure 13. The confusion matrices of original and domain adaptation-based artificial neural
networks.

D. Discussion

While the results demonstrate significant improvements in fraud detection using domain adaptation,
several limitations should be acknowledged. One major limitation is the reliance on labeled data
from the source domain while assuming no or very limited labeled data in the target domain.
Although domain adaptation techniques attempt to bridge the distributional gap, the model’s
performance still heavily depends on the quality and representativeness of the source domain data.
If the source domain data is biased or lacks diversity, the model may struggle to generalize
effectively, even after adaptation. Another challenge is the choice of hyperparameters in both ANN
and the domain adaptation framework. The adaptation strength, learning rate, and the balancing
coefficient for MDD loss all play critical roles in model performance. While we employed an
adaptive balancing parameter for MDD loss, further fine-tuning may be necessary to optimize the
trade-off between classification accuracy and domain alignment. Additionally, the ANN
architecture itself, including the number of layers and neurons, could be further refined to better
capture complex fraud patterns.

The evaluation also reveals that, despite improvements in recall, precision remains relatively low.
This indicates that the model still produces a considerable number of false positives, which could
lead to inefficiencies in real-world fraud detection systems. While reducing false negatives is
critical to identifying fraudulent claims, a high false positive rate could increase operational costs
for insurance companies, requiring further manual verification. Future work could explore
alternative domain adaptation strategies, such as adversarial training or contrastive learning, to
better distinguish between fraudulent and legitimate claims.

5. Conclusion

This study investigates the application of domain adaptation in fraud detection, addressing the
challenge of distributional differences between datasets. Our experiments demonstrate that
conventional machine learning models struggle to generalize when trained on one dataset and tested
on another. By integrating an ANN with MDD-based domain adaptation, we improve the model’s
ability to detect fraudulent claims across different domains. The proposed approach effectively
reduces the domain shift by aligning feature distributions, resulting in significant performance gains
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in recall and overall detection accuracy. Despite these improvements, the model still faces
challenges related to false positives, which could increase operational costs in real-world
applications. Future research should explore advanced domain adaptation techniques, such as
adversarial learning, and incorporate dynamic adaptation strategies to enhance fraud detection
robustness. Overall, this study demonstrates that domain adaptation is a viable solution for
improving fraud detection models, providing insurance companies with a more reliable and
adaptable fraud detection framework.
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