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Abstract: Aircraft engines are complex, high-performance machines operating under 
extreme conditions, where reliability is critical for aviation safety. Early detection of 
engine faults is essential not only to ensure passenger safety but also to reduce 
operational costs and maintain efficient flight schedules. Traditional fault detection 
methods rely on rule-based diagnostics, setting predetermined thresholds for engine 
parameters such as temperature and pressure. However, these methods are limited in 
accuracy and often fail to capture the intricate degradation patterns of engine components, 
leading to late fault detection and frequent false alarms. Recent advancements in machine 
learning, particularly in deep learning, offer promising alternatives. Machine learning 
models can analyze large-scale time-series data and recognize complex patterns that 
human expertise might overlook. Among these, Long Short-Term Memory (LSTM) 
networks, combined with self-attention mechanisms, have shown potential in capturing 
temporal dependencies crucial for predictive maintenance. This study proposes a 
Residual Self-Attention-based LSTM model for predicting aircraft engine failures. By 
integrating residual connections with self-attention, the model enhances pattern 
recognition and interpretability, offering improved fault prediction accuracy over 
traditional models. The model was trained on aircraft engine sensor data, achieving high 
performance across various metrics, suggesting that this architecture holds significant 
promise for proactive aircraft maintenance applications. 

 
Keywords: Component; Aircraft Engine Failure Prediction; Self-attention; Residual 
Connection. 

 

1. Introduction 

Aircraft engines are complex, high-performance machinery that operate under extreme conditions, 

making their reliability critical to aviation safety [1][2]. The prediction and early detection of 

engine faults are essential not only for ensuring passenger safety but also for minimizing 

operational costs and maintaining efficient scheduling. Faults in aircraft engines can lead to severe 

consequences, including in-flight engine shutdowns, which jeopardize passenger safety and entail 

significant financial losses. Therefore, the timely and accurate prediction of engine failure is 

paramount, and recent advancements in machine learning offer promising avenues for improved 

predictive models in this field. 

 

In the past, traditional methods for aircraft engine fault detection relied primarily on rule-based 

diagnostics and condition monitoring systems due to their simplicity in many tasks [3][4][5]. These 
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conventional techniques typically involve setting predetermined thresholds for various engine 

parameters, such as temperature, pressure, and vibration levels. When these values exceed safe 

thresholds, alerts are triggered, and maintenance actions are recommended. However, such rule- 

based systems often fall short in accuracy and flexibility. They tend to generate false alarms 

because they cannot fully capture the complexities of an engine's degradation process. Furthermore, 

these methods are reactive; they detect problems only after certain symptoms have manifested, 

which can be too late to prevent engine failure. Additionally, traditional methods rely heavily on 

expert knowledge [6][7][8], which may vary in consistency and quality, leading to limitations in 

the system’s reliability. Given these constraints, the aviation industry requires a more robust 

solution that can proactively predict engine failures before critical faults occur. 

Recent advances in machine learning (ML) have transformed predictive maintenance approaches 

by enabling models to analyze large volumes of time-series data and identify patterns that human 

experts might overlook [9][10][11]. Machine learning-based predictive models have demonstrated 

considerable advantages over traditional methods in terms of both accuracy and scalability 

[12][13][14]. For instance, Xiong et al. introduced a novel Multifunctional End-to-End Model for 

Optical Character Classification and Denoising that integrates denoising and recognition processes 

using a dual-output autoencoder, achieving significant gains in OCR accuracy and efficiency, 

especially in noisy and degraded image conditions [11]. ML techniques can handle complex 

relationships [15][16][17][18] among multiple engine parameters, providing a comprehensive 

analysis of the engine's health status. In particular, deep learning models have shown remarkable 

success in temporal sequence analysis [19][20][21], which is crucial for predicting engine 

performance over time. These models can automatically extract meaningful features from raw data, 

reducing the dependency on domain-specific knowledge and enhancing the predictive accuracy of 

the system. 

Among ML techniques, recurrent neural networks (RNNs) [22][23][24], especially Long Short- 

Term Memory (LSTM) networks [25][26], have become popular for sequential data analysis due 

to their ability to retain long-term dependencies. LSTM networks are well-suited for analyzing 

time-series data, such as engine sensor readings, because they can remember information over 

extended sequences, which is essential for capturing the gradual degradation in engine 

performance. In recent studies, LSTM-based models have shown promising results in the field of 

predictive maintenance. These models are capable of learning from historical data and forecasting 

future trends, allowing them to predict engine failures within a specific operating cycle. 

 

However, despite the success of LSTMs in predictive maintenance, there are still challenges when 

applying them to complex systems like aircraft engines. One of the main limitations is the lack of 

interpretability in LSTM models, making it difficult to understand which features contribute to 

predictions. Additionally, traditional LSTM models might struggle to capture intricate 

dependencies between different temporal features without further enhancement. To address these 

limitations, researchers have explored the integration of attention mechanisms with LSTM 

networks. The self-attention mechanism, in particular, has gained popularity in recent years as a 

powerful tool for enhancing the model’s ability to focus on critical parts of the input sequence. By 

assigning different weights to various points in the input sequence, self-attention allows the model 

to identify and emphasize the most relevant features for prediction. 

 

The proposed study aims to utilize a Residual Self-Attention-Based Temporal Deep Model shown 

in Figure 1 for predicting aircraft engine failure within a specific cycle. By incorporating residual 

connections with self-attention layers, this approach seeks to address the limitations of traditional 
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LSTM models in two significant ways. First, the residual connections enhance the model's capacity 

to capture deep and complex patterns without vanishing gradient issues, enabling it to retain 

relevant information over longer sequences. Second, the self-attention mechanism allows the 

model to focus selectively on important segments of the data, improving interpretability and 

making the model more robust in analyzing complex temporal dependencies among engine 

parameters. These enhancements are particularly valuable in a predictive maintenance context, 

where understanding which factors contribute most to the likelihood of engine failure can provide 

actionable insights for maintenance teams. 

Figure 1. The workflow of the proposed residual self-attention-based temporal deep model. 

 

2. Literature Review 

 

A. Aircraft engine failure prediction based on machine learning 

The field of aircraft engine prognostics is rapidly advancing, and the use of machine learning 

techniques to predict faults has become a focal point because of its ability to improve maintenance 

approaches and enhance system reliability. Recent studies have investigated a range of methods, 

showcasing the use of both conventional machine learning and sophisticated deep learning 

techniques. These approaches are valued for their superior performance in numerous applications. 

 

Traditional machine learning techniques have been extensively employed in predictive 

maintenance scenarios. For instance, reference [27] discusses the classification of bearing defects 

using acoustic and vibrational signals that exhibit high noise levels and nonlinearity. The 

permutation entropy method, introduced in [28], is effectively used to analyze these complex time 

series data, followed by the implementation of the support vector machine (SVM) method for 

defect categorization. Additionally, reference [29] explores the successful use of SVM in 

regression tasks and examines the capability to estimate the remaining useful life (RUL) of aircraft 

engines based on unstructured and noisy data. Principal component analysis (PCA) [30][31][32] 

is applied to study the signals, employing a refined likelihood metric to compare systems under 

RUL evaluation with those in the training set. This methodology ensures that predictions for test 

set systems are based on their similarities to systems in the training set, allowing for precise 

prediction of duty cycle durations for each engine. 

 

 

3. Method 
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A. Dataset preparation 

To accurately predict aircraft engine failure within a specific cycle, we used an extensive dataset 

available on Kaggle. This dataset captures multiple operational cycles from a variety of aircraft 

engines, comprising thousands of individual records across numerous engines. Each record 

features sensor measurements and operational settings, creating a 24-dimensional feature set. The 

visualization of these sensor features is illustrated in Figure 2. The dataset has been pre-split into 

training and testing sets. For the training set, considering the use of time series models for 

predictive analysis, we segmented it into sequences with each sequence length set to 50, meaning 

50 consecutive sequences are utilized for prediction. Before inputting data into the model, we 

normalized the entire dataset. This task is formulated as a binary classification problem, with labels 

designated as 0 (failure within a specific cycle) and 1 (no failure within a specific cycle). 
 

Figure 2. The visualization of sensor features in this dataset. 

 

B. The residual self-attention-based LSTM model 

1. Preliminaries of the LSTM 

Long Short-Term Memory (LSTM) networks [33][34][35] are a type of recurrent neural network 

(RNN) capable of learning long-term dependencies in sequence prediction problems. Unlike 

standard feedforward neural networks, LSTMs have feedback connections that make them 

powerful for processing entire sequences of data. This makes LSTMs ideal for tasks such as time 

series prediction, natural language processing, and speech recognition. 

 

The LSTM was introduced by Hochreiter & Schmidhuber in 1997 to specifically address the 

vanishing gradient problem that traditional RNNs face. The vanishing gradient problem occurs 

during backpropagation in deep networks when gradients are propagated back in time across many 

layers, causing them to shrink exponentially. This makes it difficult for the RNN to learn 

correlations between distant events. LSTMs solve this problem by incorporating memory cells that 

can maintain information in memory for long periods of time. 

 

An LSTM unit includes three gates: the input gate, the output gate, and the forget gate. These gates 

determine whether to let new input in (input gate), delete the information (forget gate), or let it 
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impact the output at the current timestep (output gate): 1) Input Gate: This gate decides the extent 

to which a new value flows into the cell. It involves a sigmoid activation layer that decides which 

values are allowed to update the memory state and a tanh layer that creates a vector of new 

candidate values that could be added to the state. 2) Forget Gate: It allows the cell to forget the 

previously stored information, depending on the new input and the previous output. This is crucial 

for the model to discard irrelevant information and prevent the neural network from becoming 

overwhelmed with too much information. 3) Output Gate: The output gate controls the extent to 

which the value in the cell is used to compute the output activation of the LSTM unit. The output 

gate takes the current input and the previous output into account, and decides which part of the 

current cell state will make it to the output. 

LSTMs are particularly useful for learning sequences with varying time intervals and lengths. They 

have been successfully applied to predicting stock market trends, generating text, and even 

composing music. The ability to connect previous information to the current task (e.g., using 

previous video frames to predict the movement in a video) is what makes LSTMs superior to other 

models for sequence modeling tasks. 

 

2. Preliminaries of the self-attention 

Self-attention [36][37][38], a key component of the transformer architecture, is a mechanism that 

allows a model to weigh the significance of different parts of an input sequence independently of 

their position in the sequence. This approach has revolutionized natural language processing (NLP) 

and other sequence-based tasks by providing a flexible way of handling input data. The core idea 

behind self-attention is to compute the relevance of all parts of the input to each part of the output. 

In practice, this means that each output element, such as a word in a sentence, is expressed as a 

weighted sum of all input elements. This weighting determines how much attention or importance 

is given to each input element when computing a particular output. 

 

Self-attention is implemented using three vectors for each input element: Query, Key, and Value. 

These vectors are derived by transforming the input elements through learned linear 

transformations. For a given element, the Query vector is used to compute a score against every 

Key vector from the other elements in the sequence. These scores determine the weights for how 

much each element’s Value vector should be considered for the output. The scores are typically 

normalized using a softmax function to ensure they add up to one, representing probabilities. 

 

This mechanism allows the model to focus on the most relevant parts of the input data, which is 

particularly useful in tasks like machine translation, where the relevance of input words can vary 

significantly depending on the context. By computing the attention dynamically for each pair of 

input and output, self-attention models can adaptively highlight or downplay features as needed, 

without relying on the rigid structure of recurrent layers. 

 

Moreover, self-attention facilitates parallel processing of data, significantly speeding up training, 

as it does not require sequential processing like RNNs. This efficiency, combined with its ability 

to manage long-range dependencies in data, makes self-attention a powerful tool in building 

advanced neural network architectures. 

 

3. Preliminaries of the residual connection 
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Residual connections [39][40], also known as skip connections, are a network architecture 

innovation introduced to address the problem of training very deep neural networks. As networks 

increase in depth, training them becomes challenging due to issues like vanishing gradients, where 

the gradients become too small to make significant updates, leading to stagnant training processes. 

Residual connections help mitigate this by allowing gradients to flow directly through the 

network's architecture via shortcuts past one or more layers. 

 

Introduced by He et al. in their seminal paper on ResNet [41], residual connections revolutionized 

deep learning by enabling the development of networks that are significantly deeper than those 

that were previously feasible. The key idea is simple yet powerful: instead of trying to learn an 

underlying mapping directly, a layer in a network with a residual connection learns the difference 

(or residual) between the input and the output of the layer. The mathematical representation is 

F(x)+x, where x is the input to the layer, and F(x) is the output of the transformation applied by 

the layer. This output is then added back to the original input. 

 

This setup forms a shortcut or a direct path for the backward pass during training, ensuring that the 

gradient can be propagated directly back through the network without diminishing in strength, 

effectively addressing the vanishing gradient problem. The outputs of layers are thus the sum of 

their inputs and the residuals, meaning the network only needs to learn the adjustments rather than 

the entire transformation, making learning easier and more efficient. 

 

4. The architecture of the proposed model 

In this study, we propose a neural network architecture designed to enhance fault prediction 

capabilities in aircraft engine prognostics. Architecture integrates several layers aimed at 

effectively capturing and processing temporal relationships inherent in sequential data. Initially, 

the model defines input and output dimensions tailored to handle one output label for each 

sequence with a predetermined number of features per sequence. 

 

Central to our architecture is a LSTM layer, which addresses the vanishing gradient problem 

typically associated with standard recurrent neural networks. This layer is configured to return 

sequences, facilitating a deeper temporal analysis across the input data. To mitigate the risk of 

overfitting, a dropout layer with a rate of 20% follows the LSTM layer, randomly omitting a subset 

of features during training. Subsequently, an attention mechanism is employed, focusing the 

model's capacity to weigh different parts of the sequence based on their relevance to the task at 

hand. This custom attention layer applies a softmax function [42] to the tanh-activated [43] product 

of the inputs and a learned weight matrix, producing a context vector that summarily represents 

the most salient features in the sequence. To further enhance the model’s ability to leverage both 

learned features and original input information, a residual connection is introduced. This 

connection adds the output from the attention layer to a transformed version of the initial sequence 

data, averaged over all time steps, thereby enabling the integration of deep contextual information 

with less-transformed inputs. The architecture concludes with an output layer featuring a dense 

network equipped with a sigmoid activation function, which is suitable for binary classification 

tasks. This setup ensures that the model delivers a probability distribution across possible outcomes, 

facilitating its application in scenarios requiring binary decisions. 
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C. Implementation details 

The model is developed using the TensorFlow framework, configured to train about 30 epochs 

with a batch size of 200. The Adam optimizer is employed to enhance the training process by 

efficiently adjusting the weights based on the gradients. For evaluation, the model utilizes accuracy 

as the primary metric, which assesses the percentage of correctly predicted instances against the 

total predictions made, providing a clear measure of the model's performance. 

 

4. Results and Discussion 

 

A. The performance of the proposed residual self-attention-based LSTM model 

The comprehensive evaluation of three distinct machine learning models shown in Table 1, Figure 

3, Figure 4 and Figure 5, namely the proposed Residual Self-Attention-based LSTM model, the 

standard LSTM model, and the traditional RNN model, on a testing dataset, unveils intriguing 

insights into their performance capabilities across multiple metrics including accuracy, precision, 

recall, and F1-score. This detailed analysis delves into not only the numerical performance metrics 

but also the training curves and prediction samples, thereby offering a holistic view of each model's 

strengths and weaknesses. 

 

Starting with the Residual Self-Attention-based LSTM model, it achieves a notable accuracy of 

90.8%, which is the highest among the three models. This model incorporates a self-attention 

mechanism that allows it to prioritize information from more relevant parts of the data sequence, 

enhancing its ability to understand complex patterns. It achieves a precision of 87.5% and a recall 

of 81.3%, culminating in an F1-score of 84.3%. These metrics indicate that it not only makes 

correct predictions reliably but also maintains a balanced approach between precision and recall, 

effectively managing the trade-offs between these two metrics. The model's training curves reflect 

a consistent learning process, as evidenced by the accuracy and loss plots. The accuracy stabilizes 

around 90% early in training, demonstrating rapid learning and convergence. The loss curve shows 

a steep decline initially and flattens out, which suggests that the model quickly reduces error rates 

and then fine-tunes its parameters for optimal performance. 

In contrast, the LSTM model, while simpler than its self-attention counterpart, also shows robust 

performance with an accuracy of 88.5%. It excels particularly in precision at 90.8%, which is the 

highest among the three models, suggesting that when it predicts an instance as positive, it is very 

likely to be correct. However, its recall of 64.9% is notably lower, which indicates some 

shortcomings in identifying all relevant instances. The F1-score of 75.7% reflects these dynamics, 

pointing to a model that is conservative in its predictions, prioritizing certainty over coverage. The 

training curves for the LSTM model reveal a slightly less stable learning process compared to the 

Residual LSTM. The accuracy curve oscillates more noticeably, which may suggest overfitting on 

the training data or sensitivity to the training batch composition. The loss curve follows a similar 

trajectory to the Residual LSTM but with less smoothness, further supporting the inference of 

potential overfitting issues. 

The basic RNN model, despite being the simplest model architecture among the three, competes 

closely with an accuracy of 88.8%. Its precision and recall are reasonably balanced at 87.2% and 

67%, respectively, leading to an F1-score of 75.8%. This model's performance is commendable 

given its architectural simplicity, and it underscores the potential effectiveness of RNNs in tasks 

that do not require long-term dependency recognition or complex pattern understanding. The 
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training curves for the RNN model are the most stable among the three models, with both accuracy 

and loss exhibiting less fluctuation. This could indicate a better generalization to the validation 

data, although the ultimate performance ceiling is lower than the models with more sophisticated 

architectures. 

 

Moreover, the prediction sample plots provide visual insights into how each model performs with 

actual test data. These plots show the predicted versus actual values over a sample of test data 

points. For the Residual Self-Attention-based LSTM model, the predictions closely follow the 

actual values, demonstrating the model’s effective learning and prediction capabilities. In 

comparison, the LSTM and RNN models show slightly less alignment with the actual values, 

particularly in capturing the sharper peaks and troughs in the data, which may correspond to more 

nuanced aspects of the data that the basic RNN fails to capture entirely. 

 

This extensive analysis indicates that while more complex models like the Residual Self-Attention- 

based LSTM offer significant advantages in handling datasets where the understanding of context 

and focus within sequences is crucial, simpler models like the LSTM and RNN can also achieve 

commendable results depending on the specific requirements of the task. Therefore, the choice of 

model should be guided by the specific nuances of the dataset and task requirements, balancing 

the need for accuracy, computational efficiency, and ease of training. 

 

Table 1. The performance of different approaches in the testing dataset. 
 

Model Name Accuracy Precision Recall F1-score 

Residual self- 

attention-based 
 

0.908 
 

0.875 
 

0.813 
 

0.843 

LSTM model     

LSTM model 0.885 0.908 0.649 0.757 

RNN model 0.888 0.872 0.670 0.758 

 

Figure 3. The training curves of different models. 
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Figure 4. The prediction samples on the testing dataset. 
 

Figure 5. The confusion matrices of different models. 

 
A. The influence of sequence number on the model performance 

The bar chart illustrates the impact of different sequence lengths (50, 30, and 10) on the 

performance metrics of the Residual Self-Attention-based LSTM model. This analysis is crucial 

in understanding how the sequence length in time-series or sequence data affects model 

performance in terms of accuracy, precision, recall, and F1-score. 

 

From the chart shown in Figure 6, it is evident that as the sequence length increases, there is a 

notable improvement in all the performance metrics. Specifically, the model with a sequence 

number of 50 showcases the highest scores across all metrics, indicating that a longer sequence 

length provides the model with more context and a better understanding of the dependencies in the 

data. This model achieves the highest precision and F1-score, which are critical for models where 

the cost of false positives and false negatives is high. Precision is particularly high, suggesting that 

the model is very reliable when it predicts positive classes, making it valuable in applications 

where precision is more critical than recall. 

 

For sequence number 30, there is a slight decrease in all metrics compared to sequence number 50. 

However, the performance is still robust, suggesting that the model effectively captures and utilizes 

the temporal information in the sequences but might be missing some nuances that longer 

sequences capture. This could be a sweet spot for applications that require a balance between 

computational efficiency and model performance. 
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The model with sequence number 10 shows the lowest scores among the three configurations. This 

substantial drop, especially in recall and F1-score, indicates that shorter sequences provide 

insufficient context for the model to make accurate predictions. The limited data points in each 

sequence may lead to overfitting on less significant features, reducing the model's ability to 

generalize well on unseen data. This configuration might only be suitable for very specific 

applications where the computational cost is a critical factor, and the sequences inherently contain 

less temporal dependency. 

Figure 6. The influence of the sequence number on the model performance. 

 
B. Ablation study 

Table 2 presents an ablation study that compares three different models: the Residual Self- 

Attention-based LSTM model, the Self-Attention-based LSTM model, and a standard LSTM 

model. Each model's performance is evaluated based on four key metrics: accuracy, precision, 

recall, and F1-score. 

 

Among the three models, the Residual Self-Attention-based LSTM model achieves the highest 

scores across most metrics, with an accuracy of 90.8%, precision of 87.5%, recall of 81.3%, and 

an F1-score of 84.3%. These results suggest that adding both self-attention and residual 

connections enhances the model’s ability to capture complex patterns in the data, resulting in better 

overall performance. The high recall of this model indicates it is particularly effective at identifying 

positive cases, which can be critical in applications where missing positive instances carries a high 

cost. 

 

The Self-Attention-based LSTM model, which uses self-attention but lacks residual connections, 

shows slightly lower results across most metrics, with an accuracy of 89.9%, precision of 87.3%, 

recall of 80.6%, and an F1-score of 83.8%. While it still performs well, the absence of residual 

connections may reduce its effectiveness in capturing and retaining important information over 
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long sequences. This model maintains a good balance between precision and recall, but it doesn’t 

reach the top performance seen in the residual-enhanced version. 

 

The standard LSTM model, without self-attention or residual connections, has the lowest scores 

overall, with an accuracy of 88.5%, precision of 90.8%, recall of 64.9%, and an F1-score of 75.7%. 

Although it achieves the highest precision, its recall is notably lower, indicating it struggles to 

identify as many positive cases. This model may perform well when precise positive predictions 

are required but could miss many relevant cases, which makes it less ideal for tasks where 

comprehensive detection is needed. 

 

Table 2. The ablation study. 
 

Model Name Accuracy Precision Recall F1-score 

Residual self- 

attention-based 
 

0.908 
 

0.875 
 

0.813 
 

0.843 

LSTM model     

self-attention- 

based LSTM 
 

0.899 
 

0.873 
 

0.806 
 

0.838 

model     

LSTM model 0.885 0.908 0.649 0.757 

 

 
C. Discussion 

While this Residual Self-Attention-based LSTM approach is effective in capturing complex 

temporal dependencies and prioritizing critical information in sequential data, it also has several 

limitations. 

 

First, this model architecture is computationally intensive. The combination of LSTM cells with 

self-attention layers, as well as the residual connections, requires substantial processing power and 

memory. LSTM networks are already known for their high computational cost due to the iterative 

processing of sequences, and the addition of self-attention layers exacerbates this, as it involves 

matrix operations that scale with the length of the sequence. This results in slower training and 

inference times, which may not be suitable for real-time applications or large datasets without 

access to advanced computational resources. 

 

Second, this model's complexity may lead to challenges in interpretability. The residual 

connections and self-attention mechanisms, while useful for enhancing the model’s performance, 

create a more opaque structure. Understanding why the model makes certain predictions becomes 

difficult, especially as the attention weights interact with the outputs of multiple LSTM states. This 

lack of transparency can be a drawback in fields like healthcare or finance, where model 

interpretability is essential for trust and regulatory compliance. In addition, tuning the various 

hyperparameters for both the LSTM and attention layers requires expertise and can be time- 

consuming, which may pose a barrier for some users. 

 

5. Conclusion 

The Residual Self-Attention-based LSTM model demonstrated superior performance in predicting 

aircraft engine faults compared to traditional LSTM and RNN models. By incorporating self- 



12 
 

attention and residual connections, this model efficiently captures essential temporal dependencies, 

providing a more accurate and interpretable framework for predictive maintenance. The model 

achieved high precision and recall, highlighting its ability to reliably detect potential failures before 

they become critical, thus contributing to both safety and operational efficiency in aviation. 

However, while effective, the model also comes with challenges, including high computational 

demands and complexity in interpretation. These factors may limit its applicability in real-time 

systems without sufficient processing power. Nevertheless, the model’s performance suggests it 

could be a valuable asset in scheduled predictive maintenance, helping maintenance teams make 

more informed decisions and reduce unexpected failures, ultimately promoting a safer and more 

efficient aviation industry. 
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