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Abstract: Aircraft engines are complex, high-performance machines operating under
extreme conditions, where reliability is critical for aviation safety. Early detection of
engine faults is essential not only to ensure passenger safety but also to reduce
operational costs and maintain efficient flight schedules. Traditional fault detection
methods rely on rule-based diagnostics, setting predetermined thresholds for engine
parameters such as temperature and pressure. However, these methods are limited in
accuracy and often fail to capture the intricate degradation patterns of engine components,
leading to late fault detection and frequent false alarms. Recent advancements in machine
learning, particularly in deep learning, offer promising alternatives. Machine learning
models can analyze large-scale time-series data and recognize complex patterns that
human expertise might overlook. Among these, Long Short-Term Memory (LSTM)
networks, combined with self-attention mechanisms, have shown potential in capturing
temporal dependencies crucial for predictive maintenance. This study proposes a
Residual Self-Attention-based LSTM model for predicting aircraft engine failures. By
integrating residual connections with self-attention, the model enhances pattern
recognition and interpretability, offering improved fault prediction accuracy over
traditional models. The model was trained on aircraft engine sensor data, achieving high
performance across various metrics, suggesting that this architecture holds significant
promise for proactive aircraft maintenance applications.

Keywords: Component; Aircraft Engine Failure Prediction; Self-attention; Residual
Connection.

1. Introduction

Aircraft engines are complex, high-performance machinery that operate under extreme conditions,
making their reliability critical to aviation safety [1][2]. The prediction and early detection of
engine faults are essential not only for ensuring passenger safety but also for minimizing
operational costs and maintaining efficient scheduling. Faults in aircraft engines can lead to severe
consequences, including in-flight engine shutdowns, which jeopardize passenger safety and entail
significant financial losses. Therefore, the timely and accurate prediction of engine failure is
paramount, and recent advancements in machine learning offer promising avenues for improved
predictive models in this field.

In the past, traditional methods for aircraft engine fault detection relied primarily on rule-based
diagnostics and condition monitoring systems due to their simplicity in many tasks [3][4][5]. These
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conventional techniques typically involve setting predetermined thresholds for various engine
parameters, such as temperature, pressure, and vibration levels. When these values exceed safe
thresholds, alerts are triggered, and maintenance actions are recommended. However, such rule-
based systems often fall short in accuracy and flexibility. They tend to generate false alarms
because they cannot fully capture the complexities of an engine's degradation process. Furthermore,
these methods are reactive; they detect problems only after certain symptoms have manifested,
which can be too late to prevent engine failure. Additionally, traditional methods rely heavily on
expert knowledge [6][7][8], which may vary in consistency and quality, leading to limitations in
the system’s reliability. Given these constraints, the aviation industry requires a more robust
solution that can proactively predict engine failures before critical faults occur.

Recent advances in machine learning (ML) have transformed predictive maintenance approaches
by enabling models to analyze large volumes of time-series data and identify patterns that human
experts might overlook [9][10][11]. Machine learning-based predictive models have demonstrated
considerable advantages over traditional methods in terms of both accuracy and scalability
[12][13][14]. For instance, Xiong et al. introduced a novel Multifunctional End-to-End Model for
Optical Character Classification and Denoising that integrates denoising and recognition processes
using a dual-output autoencoder, achieving significant gains in OCR accuracy and efficiency,
especially in noisy and degraded image conditions [11]. ML techniques can handle complex
relationships [15][16][17][18] among multiple engine parameters, providing a comprehensive
analysis of the engine's health status. In particular, deep learning models have shown remarkable
success in temporal sequence analysis [19][20][21], which is crucial for predicting engine
performance over time. These models can automatically extract meaningful features from raw data,
reducing the dependency on domain-specific knowledge and enhancing the predictive accuracy of
the system.

Among ML techniques, recurrent neural networks (RNNs) [22][23][24], especially Long Short-
Term Memory (LSTM) networks [25][26], have become popular for sequential data analysis due
to their ability to retain long-term dependencies. LSTM networks are well-suited for analyzing
time-series data, such as engine sensor readings, because they can remember information over
extended sequences, which is essential for capturing the gradual degradation in engine
performance. In recent studies, LSTM-based models have shown promising results in the field of
predictive maintenance. These models are capable of learning from historical data and forecasting
future trends, allowing them to predict engine failures within a specific operating cycle.

However, despite the success of LSTMs in predictive maintenance, there are still challenges when
applying them to complex systems like aircraft engines. One of the main limitations is the lack of
interpretability in LSTM models, making it difficult to understand which features contribute to
predictions. Additionally, traditional LSTM models might struggle to capture intricate
dependencies between different temporal features without further enhancement. To address these
limitations, researchers have explored the integration of attention mechanisms with LSTM
networks. The self-attention mechanism, in particular, has gained popularity in recent years as a
powerful tool for enhancing the model’s ability to focus on critical parts of the input sequence. By
assigning different weights to various points in the input sequence, self-attention allows the model
to identify and emphasize the most relevant features for prediction.

The proposed study aims to utilize a Residual Self-Attention-Based Temporal Deep Model shown
in Figure 1 for predicting aircraft engine failure within a specific cycle. By incorporating residual
connections with self-attention layers, this approach seeks to address the limitations of traditional
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LSTM models in two significant ways. First, the residual connections enhance the model's capacity
to capture deep and complex patterns without vanishing gradient issues, enabling it to retain
relevant information over longer sequences. Second, the self-attention mechanism allows the
model to focus selectively on important segments of the data, improving interpretability and
making the model more robust in analyzing complex temporal dependencies among engine
parameters. These enhancements are particularly valuable in a predictive maintenance context,
where understanding which factors contribute most to the likelihood of engine failure can provide
actionable insights for maintenance teams.
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Figure 1. The workflow of the proposed residual self-attention-based temporal deep model.

2. Literature Review

A.  Aircraft engine failure prediction based on machine learning

The field of aircraft engine prognostics is rapidly advancing, and the use of machine learning
techniques to predict faults has become a focal point because of its ability to improve maintenance
approaches and enhance system reliability. Recent studies have investigated a range of methods,
showcasing the use of both conventional machine learning and sophisticated deep learning
techniques. These approaches are valued for their superior performance in numerous applications.

Traditional machine learning techniques have been extensively employed in predictive
maintenance scenarios. For instance, reference [27] discusses the classification of bearing defects
using acoustic and vibrational signals that exhibit high noise levels and nonlinearity. The
permutation entropy method, introduced in [28], is effectively used to analyze these complex time
series data, followed by the implementation of the support vector machine (SVM) method for
defect categorization. Additionally, reference [29] explores the successful use of SVM in
regression tasks and examines the capability to estimate the remaining useful life (RUL) of aircraft
engines based on unstructured and noisy data. Principal component analysis (PCA) [30][31][32]
is applied to study the signals, employing a refined likelihood metric to compare systems under
RUL evaluation with those in the training set. This methodology ensures that predictions for test
set systems are based on their similarities to systems in the training set, allowing for precise
prediction of duty cycle durations for each engine.

3. Method



A. Dataset preparation

To accurately predict aircraft engine failure within a specific cycle, we used an extensive dataset
available on Kaggle. This dataset captures multiple operational cycles from a variety of aircraft
engines, comprising thousands of individual records across numerous engines. Each record
features sensor measurements and operational settings, creating a 24-dimensional feature set. The
visualization of these sensor features is illustrated in Figure 2. The dataset has been pre-split into
training and testing sets. For the training set, considering the use of time series models for
predictive analysis, we segmented it into sequences with each sequence length set to 50, meaning
50 consecutive sequences are utilized for prediction. Before inputting data into the model, we
normalized the entire dataset. This task is formulated as a binary classification problem, with labels
designated as O (failure within a specific cycle) and 1 (no failure within a specific cycle).
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Figure 2. The visualization of sensor features in this dataset.

B.  The residual self-attention-based LSTM model
1. Preliminaries of the LSTM

Long Short-Term Memory (LSTM) networks [33][34][35] are a type of recurrent neural network
(RNN) capable of learning long-term dependencies in sequence prediction problems. Unlike
standard feedforward neural networks, LSTMs have feedback connections that make them
powerful for processing entire sequences of data. This makes LSTMs ideal for tasks such as time
series prediction, natural language processing, and speech recognition.

The LSTM was introduced by Hochreiter & Schmidhuber in 1997 to specifically address the
vanishing gradient problem that traditional RNNs face. The vanishing gradient problem occurs
during backpropagation in deep networks when gradients are propagated back in time across many
layers, causing them to shrink exponentially. This makes it difficult for the RNN to learn
correlations between distant events. LSTMs solve this problem by incorporating memory cells that
can maintain information in memory for long periods of time.

An LSTM unit includes three gates: the input gate, the output gate, and the forget gate. These gates
determine whether to let new input in (input gate), delete the information (forget gate), or let it
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impact the output at the current timestep (output gate): 1) Input Gate: This gate decides the extent
to which a new value flows into the cell. It involves a sigmoid activation layer that decides which
values are allowed to update the memory state and a tanh layer that creates a vector of new
candidate values that could be added to the state. 2) Forget Gate: It allows the cell to forget the
previously stored information, depending on the new input and the previous output. This is crucial
for the model to discard irrelevant information and prevent the neural network from becoming
overwhelmed with too much information. 3) Output Gate: The output gate controls the extent to
which the value in the cell is used to compute the output activation of the LSTM unit. The output
gate takes the current input and the previous output into account, and decides which part of the
current cell state will make it to the output.

LSTMs are particularly useful for learning sequences with varying time intervals and lengths. They
have been successfully applied to predicting stock market trends, generating text, and even
composing music. The ability to connect previous information to the current task (e.g., using
previous video frames to predict the movement in a video) is what makes LSTMs superior to other
models for sequence modeling tasks.

2. Preliminaries of the self-attention

Self-attention [36][37][38], a key component of the transformer architecture, is a mechanism that
allows a model to weigh the significance of different parts of an input sequence independently of
their position in the sequence. This approach has revolutionized natural language processing (NLP)
and other sequence-based tasks by providing a flexible way of handling input data. The core idea
behind self-attention is to compute the relevance of all parts of the input to each part of the output.
In practice, this means that each output element, such as a word in a sentence, is expressed as a
weighted sum of all input elements. This weighting determines how much attention or importance
is given to each input element when computing a particular output.

Self-attention is implemented using three vectors for each input element: Query, Key, and Value.
These vectors are derived by transforming the input elements through learned linear
transformations. For a given element, the Query vector is used to compute a score against every
Key vector from the other elements in the sequence. These scores determine the weights for how
much each element’s Value vector should be considered for the output. The scores are typically
normalized using a softmax function to ensure they add up to one, representing probabilities.

This mechanism allows the model to focus on the most relevant parts of the input data, which is
particularly useful in tasks like machine translation, where the relevance of input words can vary
significantly depending on the context. By computing the attention dynamically for each pair of
input and output, self-attention models can adaptively highlight or downplay features as needed,
without relying on the rigid structure of recurrent layers.

Moreover, self-attention facilitates parallel processing of data, significantly speeding up training,
as it does not require sequential processing like RNNs. This efficiency, combined with its ability
to manage long-range dependencies in data, makes self-attention a powerful tool in building
advanced neural network architectures.

3. Preliminaries of the residual connection



Residual connections [39][40], also known as skip connections, are a network architecture
innovation introduced to address the problem of training very deep neural networks. As networks
increase in depth, training them becomes challenging due to issues like vanishing gradients, where
the gradients become too small to make significant updates, leading to stagnant training processes.
Residual connections help mitigate this by allowing gradients to flow directly through the
network's architecture via shortcuts past one or more layers.

Introduced by He et al. in their seminal paper on ResNet [41], residual connections revolutionized
deep learning by enabling the development of networks that are significantly deeper than those
that were previously feasible. The key idea is simple yet powerful: instead of trying to learn an
underlying mapping directly, a layer in a network with a residual connection learns the difference
(or residual) between the input and the output of the layer. The mathematical representation is
F(x)+x, where x is the input to the layer, and F(x) is the output of the transformation applied by
the layer. This output is then added back to the original input.

This setup forms a shortcut or a direct path for the backward pass during training, ensuring that the
gradient can be propagated directly back through the network without diminishing in strength,
effectively addressing the vanishing gradient problem. The outputs of layers are thus the sum of
their inputs and the residuals, meaning the network only needs to learn the adjustments rather than
the entire transformation, making learning easier and more efficient.

4. The architecture of the proposed model

In this study, we propose a neural network architecture designed to enhance fault prediction
capabilities in aircraft engine prognostics. Architecture integrates several layers aimed at
effectively capturing and processing temporal relationships inherent in sequential data. Initially,
the model defines input and output dimensions tailored to handle one output label for each
sequence with a predetermined number of features per sequence.

Central to our architecture is a LSTM layer, which addresses the vanishing gradient problem
typically associated with standard recurrent neural networks. This layer is configured to return
sequences, facilitating a deeper temporal analysis across the input data. To mitigate the risk of
overfitting, a dropout layer with a rate of 20% follows the LSTM layer, randomly omitting a subset
of features during training. Subsequently, an attention mechanism is employed, focusing the
model's capacity to weigh different parts of the sequence based on their relevance to the task at
hand. This custom attention layer applies a softmax function [42] to the tanh-activated [43] product
of the inputs and a learned weight matrix, producing a context vector that summarily represents
the most salient features in the sequence. To further enhance the model’s ability to leverage both
learned features and original input information, a residual connection is introduced. This
connection adds the output from the attention layer to a transformed version of the initial sequence
data, averaged over all time steps, thereby enabling the integration of deep contextual information
with less-transformed inputs. The architecture concludes with an output layer featuring a dense
network equipped with a sigmoid activation function, which is suitable for binary classification
tasks. This setup ensures that the model delivers a probability distribution across possible outcomes,
facilitating its application in scenarios requiring binary decisions.



C. Implementation details

The model is developed using the TensorFlow framework, configured to train about 30 epochs
with a batch size of 200. The Adam optimizer is employed to enhance the training process by
efficiently adjusting the weights based on the gradients. For evaluation, the model utilizes accuracy
as the primary metric, which assesses the percentage of correctly predicted instances against the
total predictions made, providing a clear measure of the model's performance.

4. Results and Discussion

A.  The performance of the proposed residual self-attention-based LSTM model

The comprehensive evaluation of three distinct machine learning models shown in Table 1, Figure
3, Figure 4 and Figure 5, namely the proposed Residual Self-Attention-based LSTM model, the
standard LSTM model, and the traditional RNN model, on a testing dataset, unveils intriguing
insights into their performance capabilities across multiple metrics including accuracy, precision,
recall, and F1-score. This detailed analysis delves into not only the numerical performance metrics
but also the training curves and prediction samples, thereby offering a holistic view of each model's
strengths and weaknesses.

Starting with the Residual Self-Attention-based LSTM model, it achieves a notable accuracy of
90.8%, which is the highest among the three models. This model incorporates a self-attention
mechanism that allows it to prioritize information from more relevant parts of the data sequence,
enhancing its ability to understand complex patterns. It achieves a precision of 87.5% and a recall
of 81.3%, culminating in an Fl-score of 84.3%. These metrics indicate that it not only makes
correct predictions reliably but also maintains a balanced approach between precision and recall,
effectively managing the trade-offs between these two metrics. The model's training curves reflect
a consistent learning process, as evidenced by the accuracy and loss plots. The accuracy stabilizes
around 90% early in training, demonstrating rapid learning and convergence. The loss curve shows
a steep decline initially and flattens out, which suggests that the model quickly reduces error rates
and then fine-tunes its parameters for optimal performance.

In contrast, the LSTM model, while simpler than its self-attention counterpart, also shows robust
performance with an accuracy of 88.5%. It excels particularly in precision at 90.8%, which is the
highest among the three models, suggesting that when it predicts an instance as positive, it is very
likely to be correct. However, its recall of 64.9% is notably lower, which indicates some
shortcomings in identifying all relevant instances. The F1-score of 75.7% reflects these dynamics,
pointing to a model that is conservative in its predictions, prioritizing certainty over coverage. The
training curves for the LSTM model reveal a slightly less stable learning process compared to the
Residual LSTM. The accuracy curve oscillates more noticeably, which may suggest overfitting on
the training data or sensitivity to the training batch composition. The loss curve follows a similar
trajectory to the Residual LSTM but with less smoothness, further supporting the inference of
potential overfitting issues.

The basic RNN model, despite being the simplest model architecture among the three, competes
closely with an accuracy of 88.8%. Its precision and recall are reasonably balanced at 87.2% and
67%, respectively, leading to an Fl-score of 75.8%. This model's performance is commendable
given its architectural simplicity, and it underscores the potential effectiveness of RNNs in tasks
that do not require long-term dependency recognition or complex pattern understanding. The
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training curves for the RNN model are the most stable among the three models, with both accuracy
and loss exhibiting less fluctuation. This could indicate a better generalization to the validation
data, although the ultimate performance ceiling is lower than the models with more sophisticated
architectures.

Moreover, the prediction sample plots provide visual insights into how each model performs with
actual test data. These plots show the predicted versus actual values over a sample of test data
points. For the Residual Self-Attention-based LSTM model, the predictions closely follow the
actual values, demonstrating the model’s effective learning and prediction capabilities. In
comparison, the LSTM and RNN models show slightly less alignment with the actual values,
particularly in capturing the sharper peaks and troughs in the data, which may correspond to more
nuanced aspects of the data that the basic RNN fails to capture entirely.

This extensive analysis indicates that while more complex models like the Residual Self-Attention-
based LSTM offer significant advantages in handling datasets where the understanding of context
and focus within sequences is crucial, simpler models like the LSTM and RNN can also achieve
commendable results depending on the specific requirements of the task. Therefore, the choice of
model should be guided by the specific nuances of the dataset and task requirements, balancing
the need for accuracy, computational efficiency, and ease of training.

Table 1. The performance of different approaches in the testing dataset.

Model Name Accuracy Precision Recall Fl-score
Residual self-
attention-based 0.908 0.875 0.813 0.843
LSTM model
LSTM model 0.885 0.908 0.649 0.757
RNN model 0.888 0.872 0.670 0.758
Residual self-attention-based LSTM model

Model Accuracy

LSTM model

Model Accuracy

epoch

RNN model

Model Accuracy

Figure 3. The training curves of different models.
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Figure 5. The confusion matrices of different models.

A. The influence of sequence number on the model performance

The bar chart illustrates the impact of different sequence lengths (50, 30, and 10) on the
performance metrics of the Residual Self-Attention-based LSTM model. This analysis is crucial
in understanding how the sequence length in time-series or sequence data affects model
performance in terms of accuracy, precision, recall, and F1-score.

From the chart shown in Figure 6, it is evident that as the sequence length increases, there is a
notable improvement in all the performance metrics. Specifically, the model with a sequence
number of 50 showcases the highest scores across all metrics, indicating that a longer sequence
length provides the model with more context and a better understanding of the dependencies in the
data. This model achieves the highest precision and F1-score, which are critical for models where
the cost of false positives and false negatives is high. Precision is particularly high, suggesting that
the model is very reliable when it predicts positive classes, making it valuable in applications
where precision is more critical than recall.

For sequence number 30, there is a slight decrease in all metrics compared to sequence number 50.
However, the performance is still robust, suggesting that the model effectively captures and utilizes
the temporal information in the sequences but might be missing some nuances that longer
sequences capture. This could be a sweet spot for applications that require a balance between
computational efficiency and model performance.



The model with sequence number 10 shows the lowest scores among the three configurations. This
substantial drop, especially in recall and Fl-score, indicates that shorter sequences provide
insufficient context for the model to make accurate predictions. The limited data points in each
sequence may lead to overfitting on less significant features, reducing the model's ability to
generalize well on unseen data. This configuration might only be suitable for very specific
applications where the computational cost is a critical factor, and the sequences inherently contain
less temporal dependency.
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Sequence number = 50 Sequence number = 30 Sequence number = 10

Model

Figure 6. The influence of the sequence number on the model performance.

B. Ablation study

Table 2 presents an ablation study that compares three different models: the Residual Self-
Attention-based LSTM model, the Self-Attention-based LSTM model, and a standard LSTM
model. Each model's performance is evaluated based on four key metrics: accuracy, precision,
recall, and F1-score.

Among the three models, the Residual Self-Attention-based LSTM model achieves the highest
scores across most metrics, with an accuracy of 90.8%, precision of 87.5%, recall of 81.3%, and
an Fl-score of 84.3%. These results suggest that adding both self-attention and residual
connections enhances the model’s ability to capture complex patterns in the data, resulting in better
overall performance. The high recall of this model indicates it is particularly effective at identifying
positive cases, which can be critical in applications where missing positive instances carries a high
cost.

The Self-Attention-based LSTM model, which uses self-attention but lacks residual connections,
shows slightly lower results across most metrics, with an accuracy of 89.9%, precision of 87.3%,
recall of 80.6%, and an Fl-score of 83.8%. While it still performs well, the absence of residual
connections may reduce its effectiveness in capturing and retaining important information over
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long sequences. This model maintains a good balance between precision and recall, but it doesn’t
reach the top performance seen in the residual-enhanced version.

The standard LSTM model, without self-attention or residual connections, has the lowest scores
overall, with an accuracy of 88.5%, precision of 90.8%, recall of 64.9%, and an F1-score of 75.7%.
Although it achieves the highest precision, its recall is notably lower, indicating it struggles to
identify as many positive cases. This model may perform well when precise positive predictions
are required but could miss many relevant cases, which makes it less ideal for tasks where
comprehensive detection is needed.

Table 2. The ablation study.

Model Name Accuracy Precision Recall Fl-score
Residual self-

attention-based 0.908 0.875 0.813 0.843
LSTM model

self-attention-
based LSTM 0.899 0.873 0.806 0.838

model
LSTM model 0.885 0.908 0.649 0.757

C. Discussion

While this Residual Self-Attention-based LSTM approach is effective in capturing complex
temporal dependencies and prioritizing critical information in sequential data, it also has several
limitations.

First, this model architecture is computationally intensive. The combination of LSTM cells with
self-attention layers, as well as the residual connections, requires substantial processing power and
memory. LSTM networks are already known for their high computational cost due to the iterative
processing of sequences, and the addition of self-attention layers exacerbates this, as it involves
matrix operations that scale with the length of the sequence. This results in slower training and
inference times, which may not be suitable for real-time applications or large datasets without
access to advanced computational resources.

Second, this model's complexity may lead to challenges in interpretability. The residual
connections and self-attention mechanisms, while useful for enhancing the model’s performance,
create a more opaque structure. Understanding why the model makes certain predictions becomes
difficult, especially as the attention weights interact with the outputs of multiple LSTM states. This
lack of transparency can be a drawback in fields like healthcare or finance, where model
interpretability is essential for trust and regulatory compliance. In addition, tuning the various
hyperparameters for both the LSTM and attention layers requires expertise and can be time-
consuming, which may pose a barrier for some users.

5. Conclusion

The Residual Self-Attention-based LSTM model demonstrated superior performance in predicting
aircraft engine faults compared to traditional LSTM and RNN models. By incorporating self-
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attention and residual connections, this model efficiently captures essential temporal dependencies,
providing a more accurate and interpretable framework for predictive maintenance. The model
achieved high precision and recall, highlighting its ability to reliably detect potential failures before
they become critical, thus contributing to both safety and operational efficiency in aviation.
However, while effective, the model also comes with challenges, including high computational
demands and complexity in interpretation. These factors may limit its applicability in real-time
systems without sufficient processing power. Nevertheless, the model’s performance suggests it
could be a valuable asset in scheduled predictive maintenance, helping maintenance teams make
more informed decisions and reduce unexpected failures, ultimately promoting a safer and more
efficient aviation industry.
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