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Abstract: The rapid development of the automotive industry has intensified the 
challenges faced by traditional fault diagnosis systems. This study proposes an efficient 
vehicle fault diagnosis model based on deep learning to improve fault identification 
accuracy and real-time performance, facilitating deployment in embedded systems. The 
model integrates a sequence-to-sequence architecture, an attention mechanism, and 
causal learning. The sequence-to-sequence structure captures complex time-series 
dependencies, while the attention mechanism enhances focus on critical features, 
improving fault pattern recognition. Causal learning further strengthens the model's 
understanding of fault relationships, enhancing diagnostic performance. Experimental 
evaluation on real-world vehicle datasets, including sensor data and maintenance records, 
demonstrates the model's superiority over state-of-the-art methods in accuracy, precision, 
recall, and F1 score. The results validate the model’s effectiveness in complex fault 
scenarios and its potential for embedded system integration. This research provides a 
robust foundation for advancing real-time data analysis in in-vehicle diagnostic systems 
within the Internet of Things framework. 
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1 Introduction 
With the rapid development of the automotive industry, the design and manufacturing of modern 
vehicles have become increasingly complex. These new vehicles are not only equipped with 
numerous sensors, electronic control units, and intelligent driving systems, but also integrate 
sophisticated network communication technologies[1]. This transformation has significantly 
enhanced vehicle performance and functionality, enabling advanced features such as autonomous 
driving, intelligent navigation, and efficient energy management. However, as these technologies 
continue to evolve, traditional fault diagnosis systems face growing challenges[2]. Diagnostic 
methods that previously relied on fixed rules and human expertise are increasingly inadequate when 
dealing with complex, multidimensional data. These traditional approaches lack flexibility and are 
unable to quickly adapt to changing driving environments, model updates, and the growing 
diversity of potential fault modes[3]. Recent studies have shown that improving domain adaptation 
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techniques can significantly enhance model stability across diverse vehicle operating environments, 
thereby improving the practical adaptability of fault diagnosis systems[4]. Therefore, there is an 
urgent need to develop new diagnostic strategies to address the complexity brought by modern 
vehicles and ensure their reliability in terms of safety and performance. 
 
At the same time, the rise of Connected Vehicles (CV) presents unprecedented opportunities for 
fault diagnosis. Through Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) 
communication, these connected vehicles can collect and transmit large amounts of operational 
data in real time, including vehicle speed, location, environmental conditions, and fault logs[5]. 
This wealth of data can not only be used to improve driving safety, optimize traffic flow, and 
enhance overall road efficiency, but also provides an important information foundation for 
improving fault diagnosis systems. However, extracting valuable fault information from this 
massive, complex data remains a critical problem that needs to be solved. Traditional fault 
diagnosis methods often struggle to operate efficiently in such dynamic data environments[6]. 
Therefore, leveraging advanced data processing technologies, particularly deep learning and 
artificial intelligence, to analyze and interpret these data will be key to enhancing fault diagnosis 
accuracy and real-time performance. 
 
To address the challenges faced by current automotive fault diagnosis systems, the introduction of 
deep learning technology provides new possibilities for optimizing the diagnostic process[7]. 
Specifically, sequence-to-sequence (Seq2Seq) deep learning models have demonstrated strong 
pattern recognition and data processing capabilities[8]. These models can effectively handle large 
amounts of time-series data, capturing complex spatiotemporal features, which are crucial for 
understanding vehicle performance under various driving conditions[9]. Recent studies have shown 
that improving domain adaptation techniques can significantly enhance model stability across 
diverse vehicle operating environments, thereby improving the practical adaptability of fault 
diagnosis systems[10]. By leveraging the advantages of deep learning, we can build more 
intelligent and adaptive fault diagnosis systems that improve accuracy and real-time responsiveness 
in practical applications. Therefore, the objective of this paper is to design a deep learning model 
integrating attention mechanisms and causal learning to significantly improve the accuracy of 
vehicle fault diagnosis and enable real-time monitoring and feedback. Our research will focus on 
developing an encoder-decoder model based on the sequence-to-sequence architecture. In this 
architecture, the encoder is responsible for transforming the input sequence into a compact 
contextual representation, while the decoder generates the corresponding output based on this 
representation. During this process, we will employ self-attention mechanisms to effectively learn 
the relationships between features in the input sequence, ensuring that the model focuses on the 
most relevant information. By introducing causal learning, we will construct causal chains for fault 
occurrences, allowing the model not only to recognize potential faults but also to understand their 
root causes and impacts. This approach not only enhances fault diagnosis accuracy but also 
provides valuable insights, offering a more scientific basis for subsequent fault prediction and 
preventive measures. The goal of this research is to apply deep learning techniques to vehicle fault 
diagnosis, addressing the shortcomings of traditional systems. Ultimately, we hope that the model 
can be effectively deployed in embedded systems to provide real-time support for in-vehicle 
diagnostics and contribute to the development of a smarter and more efficient traffic management 
system. 
 
The contributions of this paper are as follows: 
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1. The sequence-to-sequence (Seq2Seq) model plays a key role in vehicle fault diagnosis by 
efficiently handling variable-length time-series data and predicting faults in real time. Through the 
encoder-decoder structure, the model converts historical sensor data into context vectors, capturing 
the main features of the input data. The decoder then uses these features to generate corresponding 
fault diagnosis results. The Seq2Seq model is particularly suited for capturing temporal 
dependencies and trends in data, allowing it to adapt to complex fault patterns and significantly 
improve diagnosis accuracy and flexibility. This innovative approach provides strong support for 
real-time fault diagnosis, enhancing vehicle safety and reliability. 
 
2. The attention mechanism significantly improves the performance of the vehicle fault diagnosis 
model, enabling it to more effectively handle long sequence data. By assigning different weights 
to each element in the input sequence, the attention mechanism allows the model to dynamically 
focus on the information most relevant to the current decoding state. This selective attention not 
only enhances the model's interpretability but also improves fault diagnosis accuracy. For example, 
when the model identifies a specific fault, it can prioritize the sensor data related to that fault, 
effectively capturing local features and reducing noise interference. This flexible attention strategy 
enables the model to provide more reliable diagnostic results under complex fault conditions. 
 
3. Causal learning can significantly improve the accuracy of fault recognition and prediction in 
vehicle fault diagnosis by revealing the causal relationships between variables, helping to 
understand the root causes and progression of faults. This approach focuses not only on correlations 
but also on identifying factors that directly affect system behavior. By constructing causal chains, 
the model can analyze the time-series relationships between sensor data and fault occurrences, 
revealing how specific faults are triggered by changes in other variables. This in-depth causal 
understanding provides a scientific basis for preventive measures and optimization of maintenance 
decisions, making vehicle maintenance more efficient and intelligent. 

2 Related Work 
In the field of vehicle fault diagnosis, traditional fault detection methods are gradually becoming 
insufficient to meet the increasingly complex demands of modern automobiles as automotive 
technology advances[11]. The design of modern vehicles increasingly relies on electronic systems, 
equipped with dozens to hundreds of sensors and electronic control units, which monitor and 
regulate various vehicle functions such as engine performance, braking systems, and safety devices 
in real time[12]. Through these sensors, vehicles can generate and collect vast amounts of data, 
including operational status, environmental conditions, and fault logs[13]. These real-time data 
provide rich information for fault diagnosis but also present new challenges for data processing and 
analysis[14]. 
 
Traditional fault detection methods are often rule-based or rely on expert knowledge, depending on 
manually set thresholds and rules. These methods may be effective for simple faults, but as the 
complexity of vehicle systems increases, the flexibility and adaptability of traditional methods 
become insufficient[15]. Many fault patterns are multidimensional, involving the interaction of 
multiple sensors and systems, so relying solely on experience or fixed rules is inadequate to adapt 
to the changing driving environment and potential fault modes in real-time[16]. In the field of 
vehicle fault diagnosis, traditional methods such as Convolutional Neural Networks (CNN), 
Recurrent Neural Networks (RNN), Autoencoders (AE), Variational Autoencoders (VAE), 
clustering, and density-based methods have been widely applied in recent years due to their 
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effectiveness in handling time-series data[17]. Convolutional Neural Networks (CNN)[18] are 
particularly suitable for handling structured data, as they can effectively capture local features by 
extracting spatial features from sensor data through convolutional layers. When dealing with time-
series data with translational invariance, CNNs can automatically learn complex patterns in the 
data, making them especially effective for processing combinations of image and time-series data 
(such as video streams). However, CNNs perform poorly when handling long-term dependencies 
in sequential data, as they primarily focus on local features, potentially ignoring global information 
in long sequences. Additionally, in vehicle fault diagnosis, faults often involve complex 
relationships across multiple sensors and time dimensions, limiting the applicability of CNNs. 
Recurrent Neural Networks (RNN)[19] are designed for sequential data and can maintain temporal 
dependencies, making them suitable for analyzing temporal features in time-series data. In fault 
diagnosis, RNNs can predict based on past sensor data, identifying potential fault patterns. 
However, RNNs suffer from issues like vanishing or exploding gradients when dealing with long 
time-series data, making training more difficult. Moreover, RNNs may lack the learning capacity 
to handle complex fault patterns, especially when multiple sensor data need to be analyzed together. 
Autoencoders (AE)[20] and Variational Autoencoders (VAE)[21], which learn low-dimensional 
representations of data, can effectively perform dimensionality reduction and feature extraction, 
making them suitable for anomaly detection. Autoencoders typically rely on unsupervised learning 
but may not capture all the complex relationships in the data, affecting the accuracy of anomaly 
detection. VAEs excel in generative models and can generate new samples similar to the input data, 
improving the recognition of anomalous conditions. However, these models still require labeled 
data to better distinguish between normal and anomalous states in vehicle fault diagnosis. 
Clustering and density-based methods are representative of unsupervised learning, capable of 
identifying outliers in data without labels, making them suitable for handling large-scale sensor 
data. Clustering methods group similar data together, helping to identify anomalous behavior that 
differs from the majority of data[22]. However, clustering methods are sensitive to parameter 
settings, and results may vary with different parameters, leading to instability. Density-based 
methods have higher computational complexity when dealing with high-dimensional data, which 
may impact real-time fault diagnosis efficiency[23]. In summary, traditional deep learning methods 
have shown good potential for application in vehicle fault diagnosis, effectively processing and 
analyzing large amounts of time-series data. However, these methods have certain limitations, 
especially as vehicle systems become more complex. Future research may need to combine these 
traditional methods with emerging technologies, such as sequence-to-sequence models and 
attention mechanisms, to improve the accuracy and real-time performance of fault diagnosis. 
 
To address these challenges, researchers have begun to explore fault diagnosis methods based on 
deep learning. In recent years, several advanced methods have been proposed for vehicle fault 
diagnosis. Sequence-to-sequence (Seq2Seq)-based methods are widely applied to fault diagnosis, 
effectively handling time-series data through the encoder-decoder architecture[24]. Studies have 
shown that this method can capture temporal dependencies in the data, achieving accurate 
predictions of future faults. However, traditional Seq2Seq models may face context information 
loss when handling long sequences, affecting prediction performance. Many researchers have 
introduced attention mechanisms into Seq2Seq models to enhance the model’s ability to focus on 
key information in the input sequence[25]. This method has shown excellent performance in fault 
diagnosis, as it can dynamically adjust the model’s focus on different sensor data, improving 
diagnostic accuracy and interpretability. However, excessive reliance on attention mechanisms may 
lead to bias in feature selection, affecting overall performance. Causal learning aims to model the 
causal relationships between variables, providing a deeper understanding of fault diagnosis[26]. By 
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identifying and constructing causal chains, researchers can reveal the direct influence relationships 
between faults, offering a scientific basis for fault prediction. The advantage of this method lies in 
its causal reasoning ability, but constructing accurate causal models remains a challenge in practical 
applications, especially in cases with sparse or noisy data. 
 
Despite the progress made with these methods in fault diagnosis, several shortcomings remain. 
First, the issue of context loss in traditional Seq2Seq models when handling long time-series data 
has not been effectively resolved. Second, existing attention mechanisms may lead to bias in feature 
selection, which affects the model’s generalization ability. Additionally, causal learning faces 
challenges in constructing causal relationship models, especially when data is sparse or noisy, 
limiting its wide application. In conclusion, combining the strengths of these methods while 
addressing their limitations and proposing a new fault diagnosis model will be an important 
direction for future research. 

3 Method 
The overall algorithm diagram of the vehicle fault diagnosis model is shown in Figure 1. 

 

Figure 1. Overall algorithm architecture. 

3.1 Seq2Seq 

Seq2Seq (Sequence-to-Sequence) model is a deep learning framework designed to transform an 
input sequence into an output sequence. It has been widely applied in tasks such as machine 
translation, speech recognition, and text summarization. For fault diagnosis, the Seq2Seq model 
can process sequence data to predict fault development trends and complete fault diagnosis 
reports[27]. The architecture diagram is shown in Figure 2. 
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Figure 2. Structure diagram of Seq2Seq. 

The Seq2Seq model typically consists of two main components: an encoder and a decoder. For the 
encoder part, the input sequence: X = (x!, x", … , x#) is fed into the encoder. The encoder is an 
RNN network that generates a hidden state sequence: h = (h!, h", … , h#). The final hidden state 
h# is used to create the context vector c, summarizing the entire input sequence. For the decoder 
part, the context vector c  is used as the initial input to generate the output sequence: Y =
(y!, y", … , y#!). The decoder is also an RNN network that produces the output step by step until 
the final stop token is generated. 
 
For each time step t, the encoder's hidden state h$ is updated via the recurrent neural network as 
follows: 

  (1) 

The RNN's update steps are as follows: 

  (2) 

Here, σ is the sigmoid activation function. The variables i$, f$, and o$ represent the input gate, 
forget gate, and output gate, respectively. 
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The decoder initializes with the final hidden state h# of the encoder as the initial state. The output 
sequence is Y = (y!, y", … , y#!). The hidden state is updated as: 

  (3) 

The output prediction is: 

  (4) 

In vehicle fault diagnosis, the input sequence can be sensor data or event logs, while the output 
sequence can be fault types or diagnostic reports. The Seq2Seq model learns the mapping 
relationship between the input and output, enabling accurate prediction of complex faults. 

3.2 Attention Mechanism 

The attention mechanism is a technique that improves the performance of Seq2Seq models, 
especially when processing long sequences. It allows the model to focus on different parts of the 
input sequence when generating each output step[28]. The architecture diagram is shown in Figure 
3. 

 

Figure 3. Structure diagram of attention mechanism. 

In the Seq2Seq model, the encoder maps the input sequence into a series of hidden states: h =
(h!, h", … , h#). The decoder generates the output step-by-step while attending to relevant parts of 
the input sequence through the attention mechanism. For each decoding step t, the alignment score 
between the decoder's current hidden state s$%! and each encoder hidden state h& is calculated as: 

  (5) 

Common scoring functions include: 
Dot Product: 

  (6) 

Bilinear: 

  (7) 

MLP (Multi-Layer Perceptron): 
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  (8) 

The attention weights are computed using softmax: 

  (9) 

The context vector c$ is computed as a weighted sum of encoder hidden states: 

  (10) 

The context vector c$ provides relevant input information for generating the next output.  
The decoder uses c$, along with the previous hidden state, to generate the next output: 

  (11) 

  (12) 

The attention mechanism allows the model to dynamically focus on different parts of the input 
sequence, which greatly enhances performance, especially for long sequences. By using attention 
weights, it is possible to interpret which parts of the input the model focused on when generating a 
particular output, which is very useful for identifying key features in fault diagnosis. In vehicle 
fault diagnosis, the attention mechanism helps the model more accurately identify fault 
characteristics, improving diagnostic accuracy and efficiency. 

3.3 Causal Learning 

Causal learning is a method for identifying and understanding causal relationships in data. Unlike 
correlation analysis, causal learning focuses on understanding the cause-and-effect relationships 
between variables. This is particularly important in fault diagnosis and root-cause analysis[29]. The 
architecture diagram is shown in Figure 4. Causal learning is deeply integrated with the Seq2Seq 
decoder and attention mechanism to construct an efficient and interpretable fault diagnosis 
framework. After the input data is processed by the Seq2Seq model to capture temporal features, 
the causal learning module builds a causal structure graph to model the relationships between 
variables and performs intervention analysis and causal effect estimation to identify key fault 
features. Additionally, by combining with the multi-head cross-attention mechanism, causal 
learning enhances the focus on critical features, seamlessly integrating causal inference results with 
the decoding process, ultimately producing accurate and interpretable diagnostic outcomes. 
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Figure 4. Structure diagram of causal learning. 

Causal learning often uses structural equations to express the causal relationships between variables. 
The causal relationship between variables is expressed as: 

  (13) 

Here, Parents(X&) represents the direct causal variables of X&, and ϵ& represents random noise. 
Through interventions, causal effects can be quantified. The key idea is to intervene on a variable 
and predict the resulting changes in other variables: 

  (14) 

This represents the probability distribution of Y when X is set to x through intervention. 
 
Using domain knowledge and data-driven methods (such as randomized experiments), causal 
graphs can be constructed. This method is used to estimate the causal effect of interventions. For 
example, to answer the question "What will happen if we do...?", causal learning helps to identify 
the root cause of faults. 
 
The Average Causal Effect (ACE) measures the average causal effect of variable X on Y: 

  (15) 

Here, E represents the expected value. Through causal learning, it is possible to identify and 
isolate key causal relationships, reduce the complexity of dimensionality, and improve the 
effectiveness and efficiency of diagnosis. Causal learning enables a deeper understanding of the 
causal relationships between variables and provides a practical tool for explaining faults compared 
to traditional correlation analysis. 
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4 Experiment 

4.1 Experimental Environment 

This study's experimental environment is based on modern deep learning frameworks and aims to 
evaluate the performance of a proposed vehicle fault diagnosis model based on a sequence-to-
sequence (Seq2Seq) model, attention mechanisms, and causal learning. The proposed vehicle fault 
diagnosis model focuses on identifying four typical fault types: Normal (no issues), Broke 
(mechanical damage), Net (electrical or communication faults), and Rope (overheating or overload). 
Input features include sensor data such as engine temperature, RPM, oil pressure, current, and 
voltage, as well as time-series features like state change trends and anomalies. The experiment is 
conducted on a server equipped with high-performance computing resources, including an NVIDIA 
Tesla V100 GPU (16GB VRAM) and an Intel Xeon processor (16 cores). This configuration 
supports large-scale parallel processing of data and efficient training of deep neural networks, 
making it particularly suitable for handling complex time-series data and the training requirements 
of deep learning models. The operating system used is Ubuntu 20.04 LTS, ensuring system stability 
and compatibility. To build the deep learning experimental environment, the TensorFlow 2.x 
framework is used, along with Keras for model construction and training. Keras provides a simple 
API interface, facilitating rapid prototyping of deep learning models. Throughout the experiment, 
all data processing and model training are performed on the GPU to accelerate the training process. 
Additionally, Python 3.8 and related deep learning libraries are employed for data processing, 
model evaluation, and result visualization. To ensure the model's robustness and the stability of the 
training process, multiple rounds of training and cross-validation methods are used, along with 
hyperparameter tuning. Specific parameters are shown in Tables 1 and 2. Table 1 presents the basic 
information of the dataset, including the number of samples, input features, and sequence length, 
while Table 2 lists the relevant configurations for model training, including the number of layers 
in the encoder and decoder, hidden layer dimensions, learning rates, and other key parameters. 

Table 1. Dataset Parameters 

Parameter Name Description Value or Range 

Total Samples Number of samples in each dataset 10,000 records 

Input Features Includes sensor data, usage data, etc. 100 features 

Sequence Length Number of time steps in the input sequence 30-60 

 

Table 2. Model Training Parameters 

Parameter Name Description Value or Range 

Encoder Layers Number of LSTM or GRU layers in the encoder 2-3 layers 

Decoder Layers Number of LSTM or GRU layers in the decoder 2-3 layers 
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Parameter Name Description Value or Range 

Hidden Layer 

Dimensions 

Dimensions of hidden layers in the encoder and 

decoder 

128-256 

Learning Rate Learning rate for the optimizer 0.001 

Batch Size Number of samples used in each iteration 32-64 

Training Epochs Total number of training epochs 50 

Optimizer Optimization algorithm used for training Adam 

Dropout Rate Dropout probability to prevent overfitting 0.3-0.5 

Activation Function Non-linear activation function for hidden layers ReLU 

Regularization Method Regularization method to prevent overfitting L2 regularization 

Evaluation Metrics Metrics used to assess model performance Accuracy, Precision, Recall, F1 

score 

4.2 Experimental Data 

l UCI Vehicle Data 

The UCI Vehicle Data[30] is a public dataset provided by the UCI Machine Learning Repository, 
primarily used for vehicle fault diagnosis and prediction. This dataset contains sensor data from 
different vehicles, including engine temperature, speed, fuel consumption, battery voltage, and 
other information. By using these multi-dimensional sensor data, researchers can train models to 
identify and predict potential faults in vehicle systems. The dataset is time-series data, making it 
suitable for testing fault diagnosis models based on time-series analysis. 
l Ford GoBike 

The Ford GoBike dataset[31] comes from the Ford GoBike bike-sharing system and includes user 
riding data such as bike rental duration, location, and rental/return station information. While it is 
not a traditional vehicle fault dataset, the dataset contains detailed records on the usage of shared 
bikes. Researchers can analyze this data to predict fault patterns, usage frequency, and failure trends. 
The dataset is suitable for exploring prediction models related to transportation vehicles, 
particularly in the analysis of the operation and maintenance of shared transportation systems. 
l CACHET 

The CACHET (Comprehensive Assessment of the Health Effects of Transport) dataset[32] focuses 
on the health effects of vehicle use, particularly health data related to vehicle operation. This dataset 
includes a large amount of sensor data related to vehicle performance, driving behavior, and 
environmental conditions. The unique feature of the CACHET dataset is that it includes health 
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factors, such as the physiological data of drivers, which allows researchers to explore health risks 
associated with vehicle use and potential fault warning mechanisms. 
l Nissan Vehicle Data 

The Nissan Vehicle Data[33] is provided by Nissan Motor Corporation and includes real-time 
sensor data and fault records from Nissan vehicles. This dataset contains information on vehicle 
acceleration, temperature, voltage, RPM, fault codes, and more. It is suitable for developing 
efficient vehicle fault diagnosis systems. The Nissan Vehicle Data set is notable for its large volume 
and variety, covering vehicle condition monitoring data from various driving scenarios. By 
analyzing this data, researchers can identify different types of vehicle faults and predict 
maintenance needs. 

4.3 Evaluation Metrics 

l Accuracy 

Accuracy is a fundamental metric for evaluating the overall classification performance of a model. 
It represents the proportion of correctly classified samples out of the total samples. In vehicle fault 
diagnosis, accuracy reflects the proportion of correct predictions in all diagnostic results. The 
formula is: 

  (16) 

Where: 
TP (True Positive): The number of samples that are truly faulty and correctly diagnosed as faulty.   
TN (True Negative): The number of samples that are truly non-faulty and correctly diagnosed as 
non-faulty.   
FP (False Positive): The number of samples that are truly non-faulty but incorrectly diagnosed as 
faulty.   
FN (False Negative): The number of samples that are truly faulty but incorrectly diagnosed as non-
faulty. 
l Precision 

Precision focuses on the proportion of samples predicted as faulty by the model that are actually 
faulty. In vehicle fault diagnosis, precision is particularly important because false alarms may lead 
to unnecessary repair costs. High precision means the model can accurately predict faults, reducing 
the likelihood of false positives and improving the reliability of diagnostics. The formula is: 

  (17) 

Improved precision ensures better accuracy in fault prediction. 

l Recall 

Recall measures the proportion of actual faults that the model correctly identifies as faulty. In 
vehicle fault diagnosis, recall reflects the model's ability to detect faults, especially in early fault 
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prediction. A higher recall means the model can identify more potential faults, reducing the risk of 
missed diagnoses, which is critical for enhancing vehicle safety and reliability. The formula is: 

  (18) 

In real-time fault monitoring and diagnosis, recall directly affects the timeliness and 
comprehensiveness of fault detection. 
l F1 Score 

The F1 score is the harmonic mean of precision and recall, taking both into account. In fault 
diagnosis tasks, the F1 score is particularly important because it finds a balance between tolerance 
for false positives and false negatives. The F1 score is especially useful for imbalanced datasets, as 
it helps prevent the model from being biased toward one class, providing a more balanced 
evaluation. The formula is: 

  (19) 

A high F1 score indicates that the model excels in both accuracy and completeness, optimizing both 
fault identification precision and recall. 

4.4 Experimental Comparison and Analysis 

In this section, we compare the performance of the proposed method with other state-of-the-art 
models across four datasets. The comparison includes several key performance indicators, such as 
accuracy, precision, recall, and F1-score. These metrics are essential for evaluating the 
effectiveness of fault diagnosis systems in vehicles. 
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Table3. Comparison of relevant indicators of the proposed method with other methods on four 
datasets. 

Model 
UCI Vehicle Data Ford GoBike 

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score 

Min et al. [34] 89.35 89.64 89.84 89.74 89.62 86.69 86.45 86.57 

Zhang et al. [35] 90.22 90.89 87.45 89.14 89.67 87.18 90.14 88.64 

Guo et al. [36] 87.43 87.38 88.78 88.07 91.14 87.58 87.62 87.60 

Surendran et al. [37] 89.83 91.84 90.31 91.07 91.49 88.56 88.70 88.63 

Shi et al. [38] 87.15 91.06 88.13 89.57 91.68 87.45 86.28 86.86 

Mao et al. [39] 88.65 88.97 89.02 88.99 88.05 90.58 90.89 90.73 

Ours 93.54 92.46 93.67 93.06 92.49 93.26 94.24 93.75 

Model 
CACHET Nissan Vehicle Data 

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score 

Min et al. [34] 87.43 88.97 91.63 90.28 88.36 89.89 88.38 89.13 

Zhang et al. [35] 87.32 89.70 88.04 88.86 89.36 91.57 89.74 90.65 

Guo et al. [36] 87.55 90.49 90.78 90.63 89.13 86.98 89.96 88.44 

Surendran et al. [37] 89.72 88.95 89.10 89.02 87.43 90.42 88.27 89.33 

Shi et al. [38] 90.32 89.00 91.68 90.32 88.27 90.92 88.33 89.61 

Mao et al. [39] 88.61 90.21 88.26 89.22 89.22 88.19 86.23 87.20 

Ours 93.79 94.27 93.26 93.76 92.54 92.48 93.71 93.09 

 
From Table 3, we observe that the proposed method consistently outperforms all other models in 
every metric across all four datasets. On the UCI Vehicle Data, the accuracy of the proposed model 
(93.54%) exceeds that of the second-best method (Zhang et al., 90.22%) by a significant margin. 
The same trend is seen on the Ford GoBike dataset, where the proposed method achieves an 
accuracy of 92.49%, surpassing other models by 1-4 percentage points. This consistent superiority 
across both datasets highlights the robustness of the proposed method in handling vehicle fault 
diagnosis tasks. Notably, the proposed model also leads in precision, recall, and F1-score, which 
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indicates its balanced performance in both minimizing false positives and detecting true faults 
effectively. Figure 4 provides a visual comparison of these results. 
 

 

Figure 4. Visual comparison of relevant indicators on four datasets. 

Next, we examine the comparison of training indicators, as shown in Table 4. The table presents 
key training metrics such as the number of parameters, inference time, and training time for the 
various models on each dataset. These indicators provide insights into the computational efficiency 
and scalability of the methods. 
 
  



16 

 

Table4. Comparison of training indicators on four datasets. 

Model 

UCI Vehicle Data Ford GoBike 

Parameters 

(M) 

Inference 

Time(ms) 

Trainning 

Time(s) 
Parameters(M) 

Inference 

Time(ms) 

Trainning 

Time(s) 

Min et al. 

[34] 
363.35 349.77 275.70 365.73 378.20 236.13 

Zhang et al. 

[35] 
382.90 376.91 207.81 352.67 360.52 300.09 

Guo et al. 

[36] 
353.83 366.64 213.75 383.75 353.37 223.53 

Surendran et 

al. [37] 
400.11 352.18 205.15 350.51 373.50 225.80 

Shi et al. 

[38] 
376.79 343.17 208.60 371.96 375.60 277.39 

Mao et al. 

[39] 
360.41 333.23 272.33 398.31 382.76 285.55 

Ours 347.62 312.84 168.74 343.47 322.64 187.52 

Model 

CACHET Nissan Vehicle Data 

Parameters 

(M) 

Inference 

Time(ms) 

Trainning 

Time(s) 
Parameters(M) 

Inference 

Time(ms) 

Trainning 

Time(s) 

Min et al. 

[34] 
403.24 354.13 285.53 360.72 371.56 257.41 

Zhang et al. 

[35] 
374.91 343.92 204.23 391.26 313.66 255.18 

Guo et al. 

[36] 
387.27 361.94 200.73 375.87 302.38 239.21 

Surendran et 

al. [37] 
393.40 388.08 295.90 371.69 349.91 225.54 

Shi et al. 

[38] 
366.50 380.12 196.18 390.11 342.29 301.71 

Mao et al. 

[39] 
408.51 366.72 201.00 371.32 362.79 244.44 

Ours 341.54 336.74 182.91 353.09 282.76 215.43 

 
Table 4 presents a comparison of training indicators, such as the number of parameters, inference 
time, and training time, which provide insights into the efficiency of the models in addition to their 
performance. While the proposed method delivers the best performance, it also demonstrates 
computational efficiency. For instance, it has fewer parameters compared to other models, such as 
those by Min et al. and Zhang et al., while maintaining high performance. This suggests that the 
proposed method is more parameter-efficient, making it potentially easier to deploy in resource-
constrained environments. In terms of training time, the proposed method shows significant 
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improvement, with training times of 168.74 seconds for UCI Vehicle Data and 187.52 seconds for 
Ford GoBike. These values are lower than those of many other models, such as Surendran et al. 
and Mao et al., indicating that the proposed model not only achieves superior performance but also 
requires less training time. This efficiency is particularly valuable when working with large-scale 
datasets and in scenarios requiring real-time fault detection. Figure 5 provides a visual comparison 
of these results. 

 

Figure 5. Visual comparison of training indicators. 

Furthermore, the results from the ablation experiments, summarized in Table 5, offer additional 
insights into the contributions of different components of the proposed model. The ablation study 
includes the baseline model, which is progressively enhanced by adding the Seq2Seq model, the 
attention mechanism (Att), and the combination of both (Seq2Seq-Att). 
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Table5. Ablation experiments on four datasets. 

Model 
UCI Vehicle Data Ford GoBike 

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score 

baseline 79.24 78.37 78.26 78.31 79.52 81.16 80.29 80.72 

+Seq2Seq 85.24 85.42 86.47 85.94 85.53 88.61 87.18 87.89 

+Att 89.17 88.06 90.54 89.28 88.24 90.32 90.92 90.62 

+Seq2Seq-Att 93.54 92.46 93.67 93.06 92.49 93.26 94.24 93.75 

Model 
CACHET Nissan Vehicle Data 

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score 

baseline 79.41 80.64 79.32 79.97 79.64 78.23 78.37 78.30 

+Seq2Seq 83.48 84.67 85.27 84.97 84.54 86.37 85.28 85.82 

+Att 89.72 88.32 89.95 89.13 89.84 89.47 90.42 89.94 

+Seq2Seq-Att 93.79 94.27 93.26 93.76 92.54 92.48 93.71 93.09 

 
Table 5 further elaborates on the contribution of different model components through an ablation 
study. The baseline model shows a lower performance in terms of accuracy, precision, recall, and 
F1-score. The addition of the Seq2Seq model provides a significant boost in all metrics, reflecting 
the importance of sequence modeling in fault diagnosis. When the attention mechanism (Att) is 
incorporated, the model's ability to focus on critical features is further enhanced, leading to 
improved performance, especially in recall and F1-score. The combination of Seq2Seq and 
attention mechanisms (Seq2Seq-Att) results in the highest performance across all datasets, 
confirming that both components contribute substantially to the model's overall effectiveness. On 
the UCI Vehicle Data, for instance, the Seq2Seq-Att model achieves an accuracy of 93.54%, a 
marked improvement over the baseline’s 79.24%. The increase in recall also indicates that the 
proposed model is better at identifying true faults, which is crucial for safety-critical applications. 
Figure 6 visually depict these trends. 
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Figure 6. Visual comparison of ablation experiments on four datasets. 

5 Conclusion 
In this paper, we proposed a novel vehicle fault diagnosis model based on a sequence-to-sequence 
(Seq2Seq) architecture with attention mechanisms. The model aims to improve the accuracy and 
efficiency of diagnosing potential faults in vehicles by leveraging time-series sensor data. Our 
approach was tested on four different datasets: UCI Vehicle Data, Ford GoBike, CACHET, and 
Nissan Vehicle Data, and the results demonstrated its superiority over existing state-of-the-art 
methods. The experimental results show that our proposed method significantly outperforms other 
models across all datasets in key performance metrics, including accuracy, precision, recall, and 
F1-score. The model's ability to accurately diagnose faults and predict maintenance needs was 
consistently better, making it a highly effective tool for real-world vehicle monitoring. In addition 
to its high performance, our approach is computationally efficient, with lower training times and 
fewer parameters compared to other methods, which makes it suitable for real-time applications in 
resource-constrained environments. Through the ablation study, we also highlighted the crucial 
roles of the Seq2Seq model and attention mechanism in improving fault detection. The combination 
of these components allowed the model to achieve superior performance, especially in detecting 
rare faults and minimizing false negatives, which is critical for ensuring vehicle safety and 
reliability. In conclusion, the proposed vehicle fault diagnosis model not only demonstrates state-
of-the-art performance but also offers practical advantages in terms of efficiency and scalability. 
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Future work will explore further enhancements, such as incorporating additional sensor modalities 
or improving the interpretability of the model, to further enhance its applicability in diverse real-
world scenarios. 
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