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Abstract: The rapid development of the automotive industry has intensified the
challenges faced by traditional fault diagnosis systems. This study proposes an efficient
vehicle fault diagnosis model based on deep learning to improve fault identification
accuracy and real-time performance, facilitatlnl% deployment in embedded systems. The
model integrates a sequence-to-sequence architecture, an attention mechanism, and
causal learning. The sequence-to-sequence structure captures complex time-series
dependencies, while the attention mechanism enhances focus on critical features,
improving fault pattern recognition. Causal learning further strengthens the model's
understanding of fault relationships, enhancing diagnostic performance. Experimental
evaluation on real-world vehicle datasets, including sensor data and maintenance records,
demonstrates the model's superiority over state-of-the-art methods in accuracy, precision,
recall, and F1 score. The results validate the model's effectiveness in complex fault
scenarios and its potential for embedded system integration. This research provides a
robust foundation for advancing real-time data analysis in in-vehicle diagnostic systems
within the Internet of Things framework.
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1 Introduction

With the rapid development of the automotive industry, the design and manufacturing of modern
vehicles have become increasingly complex. These new vehicles are not only equipped with
numerous sensors, electronic control units, and intelligent driving systems, but also integrate
sophisticated network communication technologies[1]. This transformation has significantly
enhanced vehicle performance and functionality, enabling advanced features such as autonomous
driving, intelligent navigation, and efficient energy management. However, as these technologies
continue to evolve, traditional fault diagnosis systems face growing challenges[2]. Diagnostic
methods that previously relied on fixed rules and human expertise are increasingly inadequate when
dealing with complex, multidimensional data. These traditional approaches lack flexibility and are
unable to quickly adapt to changing driving environments, model updates, and the growing
diversity of potential fault modes[3]. Recent studies have shown that improving domain adaptation
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techniques can significantly enhance model stability across diverse vehicle operating environments,
thereby improving the practical adaptability of fault diagnosis systems[4]. Therefore, there is an
urgent need to develop new diagnostic strategies to address the complexity brought by modern
vehicles and ensure their reliability in terms of safety and performance.

At the same time, the rise of Connected Vehicles (CV) presents unprecedented opportunities for
fault diagnosis. Through Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)
communication, these connected vehicles can collect and transmit large amounts of operational
data in real time, including vehicle speed, location, environmental conditions, and fault logs[5].
This wealth of data can not only be used to improve driving safety, optimize traffic flow, and
enhance overall road efficiency, but also provides an important information foundation for
improving fault diagnosis systems. However, extracting valuable fault information from this
massive, complex data remains a critical problem that needs to be solved. Traditional fault
diagnosis methods often struggle to operate efficiently in such dynamic data environments[6].
Therefore, leveraging advanced data processing technologies, particularly deep learning and
artificial intelligence, to analyze and interpret these data will be key to enhancing fault diagnosis
accuracy and real-time performance.

To address the challenges faced by current automotive fault diagnosis systems, the introduction of
deep learning technology provides new possibilities for optimizing the diagnostic process[7].
Specifically, sequence-to-sequence (Seq2Seq) deep learning models have demonstrated strong
pattern recognition and data processing capabilities[8]. These models can effectively handle large
amounts of time-series data, capturing complex spatiotemporal features, which are crucial for
understanding vehicle performance under various driving conditions[9]. Recent studies have shown
that improving domain adaptation techniques can significantly enhance model stability across
diverse vehicle operating environments, thereby improving the practical adaptability of fault
diagnosis systems[10]. By leveraging the advantages of deep learning, we can build more
intelligent and adaptive fault diagnosis systems that improve accuracy and real-time responsiveness
in practical applications. Therefore, the objective of this paper is to design a deep learning model
integrating attention mechanisms and causal learning to significantly improve the accuracy of
vehicle fault diagnosis and enable real-time monitoring and feedback. Our research will focus on
developing an encoder-decoder model based on the sequence-to-sequence architecture. In this
architecture, the encoder is responsible for transforming the input sequence into a compact
contextual representation, while the decoder generates the corresponding output based on this
representation. During this process, we will employ self-attention mechanisms to effectively learn
the relationships between features in the input sequence, ensuring that the model focuses on the
most relevant information. By introducing causal learning, we will construct causal chains for fault
occurrences, allowing the model not only to recognize potential faults but also to understand their
root causes and impacts. This approach not only enhances fault diagnosis accuracy but also
provides valuable insights, offering a more scientific basis for subsequent fault prediction and
preventive measures. The goal of this research is to apply deep learning techniques to vehicle fault
diagnosis, addressing the shortcomings of traditional systems. Ultimately, we hope that the model
can be effectively deployed in embedded systems to provide real-time support for in-vehicle
diagnostics and contribute to the development of a smarter and more efficient traffic management
system.

The contributions of this paper are as follows:



1. The sequence-to-sequence (Seq2Seq) model plays a key role in vehicle fault diagnosis by
efficiently handling variable-length time-series data and predicting faults in real time. Through the
encoder-decoder structure, the model converts historical sensor data into context vectors, capturing
the main features of the input data. The decoder then uses these features to generate corresponding
fault diagnosis results. The Seq2Seq model is particularly suited for capturing temporal
dependencies and trends in data, allowing it to adapt to complex fault patterns and significantly
improve diagnosis accuracy and flexibility. This innovative approach provides strong support for
real-time fault diagnosis, enhancing vehicle safety and reliability.

2. The attention mechanism significantly improves the performance of the vehicle fault diagnosis
model, enabling it to more effectively handle long sequence data. By assigning different weights
to each element in the input sequence, the attention mechanism allows the model to dynamically
focus on the information most relevant to the current decoding state. This selective attention not
only enhances the model's interpretability but also improves fault diagnosis accuracy. For example,
when the model identifies a specific fault, it can prioritize the sensor data related to that fault,
effectively capturing local features and reducing noise interference. This flexible attention strategy
enables the model to provide more reliable diagnostic results under complex fault conditions.

3. Causal learning can significantly improve the accuracy of fault recognition and prediction in
vehicle fault diagnosis by revealing the causal relationships between variables, helping to
understand the root causes and progression of faults. This approach focuses not only on correlations
but also on identifying factors that directly affect system behavior. By constructing causal chains,
the model can analyze the time-series relationships between sensor data and fault occurrences,
revealing how specific faults are triggered by changes in other variables. This in-depth causal
understanding provides a scientific basis for preventive measures and optimization of maintenance
decisions, making vehicle maintenance more efficient and intelligent.

2 Related Work

In the field of vehicle fault diagnosis, traditional fault detection methods are gradually becoming
insufficient to meet the increasingly complex demands of modern automobiles as automotive
technology advances[11]. The design of modern vehicles increasingly relies on electronic systems,
equipped with dozens to hundreds of sensors and electronic control units, which monitor and
regulate various vehicle functions such as engine performance, braking systems, and safety devices
in real time[12]. Through these sensors, vehicles can generate and collect vast amounts of data,
including operational status, environmental conditions, and fault logs[13]. These real-time data
provide rich information for fault diagnosis but also present new challenges for data processing and
analysis[ 14].

Traditional fault detection methods are often rule-based or rely on expert knowledge, depending on
manually set thresholds and rules. These methods may be effective for simple faults, but as the
complexity of vehicle systems increases, the flexibility and adaptability of traditional methods
become insufficient[15]. Many fault patterns are multidimensional, involving the interaction of
multiple sensors and systems, so relying solely on experience or fixed rules is inadequate to adapt
to the changing driving environment and potential fault modes in real-time[16]. In the field of
vehicle fault diagnosis, traditional methods such as Convolutional Neural Networks (CNN),
Recurrent Neural Networks (RNN), Autoencoders (AE), Variational Autoencoders (VAE),
clustering, and density-based methods have been widely applied in recent years due to their
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effectiveness in handling time-series data[17]. Convolutional Neural Networks (CNN)[18] are
particularly suitable for handling structured data, as they can effectively capture local features by
extracting spatial features from sensor data through convolutional layers. When dealing with time-
series data with translational invariance, CNNs can automatically learn complex patterns in the
data, making them especially effective for processing combinations of image and time-series data
(such as video streams). However, CNNs perform poorly when handling long-term dependencies
in sequential data, as they primarily focus on local features, potentially ignoring global information
in long sequences. Additionally, in vehicle fault diagnosis, faults often involve complex
relationships across multiple sensors and time dimensions, limiting the applicability of CNNs.
Recurrent Neural Networks (RNN)[19] are designed for sequential data and can maintain temporal
dependencies, making them suitable for analyzing temporal features in time-series data. In fault
diagnosis, RNNs can predict based on past sensor data, identifying potential fault patterns.
However, RNNs suffer from issues like vanishing or exploding gradients when dealing with long
time-series data, making training more difficult. Moreover, RNNs may lack the learning capacity
to handle complex fault patterns, especially when multiple sensor data need to be analyzed together.
Autoencoders (AE)[20] and Variational Autoencoders (VAE)[21], which learn low-dimensional
representations of data, can effectively perform dimensionality reduction and feature extraction,
making them suitable for anomaly detection. Autoencoders typically rely on unsupervised learning
but may not capture all the complex relationships in the data, affecting the accuracy of anomaly
detection. VAEs excel in generative models and can generate new samples similar to the input data,
improving the recognition of anomalous conditions. However, these models still require labeled
data to better distinguish between normal and anomalous states in vehicle fault diagnosis.
Clustering and density-based methods are representative of unsupervised learning, capable of
identifying outliers in data without labels, making them suitable for handling large-scale sensor
data. Clustering methods group similar data together, helping to identify anomalous behavior that
differs from the majority of data[22]. However, clustering methods are sensitive to parameter
settings, and results may vary with different parameters, leading to instability. Density-based
methods have higher computational complexity when dealing with high-dimensional data, which
may impact real-time fault diagnosis efficiency[23]. In summary, traditional deep learning methods
have shown good potential for application in vehicle fault diagnosis, effectively processing and
analyzing large amounts of time-series data. However, these methods have certain limitations,
especially as vehicle systems become more complex. Future research may need to combine these
traditional methods with emerging technologies, such as sequence-to-sequence models and
attention mechanisms, to improve the accuracy and real-time performance of fault diagnosis.

To address these challenges, researchers have begun to explore fault diagnosis methods based on
deep learning. In recent years, several advanced methods have been proposed for vehicle fault
diagnosis. Sequence-to-sequence (Seq2Seq)-based methods are widely applied to fault diagnosis,
effectively handling time-series data through the encoder-decoder architecture[24]. Studies have
shown that this method can capture temporal dependencies in the data, achieving accurate
predictions of future faults. However, traditional Seq2Seq models may face context information
loss when handling long sequences, affecting prediction performance. Many researchers have
introduced attention mechanisms into Seq2Seq models to enhance the model’s ability to focus on
key information in the input sequence[25]. This method has shown excellent performance in fault
diagnosis, as it can dynamically adjust the model’s focus on different sensor data, improving
diagnostic accuracy and interpretability. However, excessive reliance on attention mechanisms may
lead to bias in feature selection, affecting overall performance. Causal learning aims to model the
causal relationships between variables, providing a deeper understanding of fault diagnosis[26]. By
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identifying and constructing causal chains, researchers can reveal the direct influence relationships
between faults, offering a scientific basis for fault prediction. The advantage of this method lies in
its causal reasoning ability, but constructing accurate causal models remains a challenge in practical
applications, especially in cases with sparse or noisy data.

Despite the progress made with these methods in fault diagnosis, several shortcomings remain.
First, the issue of context loss in traditional Seq2Seq models when handling long time-series data
has not been effectively resolved. Second, existing attention mechanisms may lead to bias in feature
selection, which affects the model’s generalization ability. Additionally, causal learning faces
challenges in constructing causal relationship models, especially when data is sparse or noisy,
limiting its wide application. In conclusion, combining the strengths of these methods while
addressing their limitations and proposing a new fault diagnosis model will be an important
direction for future research.

3 Method

The overall algorithm diagram of the vehicle fault diagnosis model is shown in Figure 1.
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Figure 1. Overall algorithm architecture.

3.1 Seq2Seq

Seq2Seq (Sequence-to-Sequence) model is a deep learning framework designed to transform an
input sequence into an output sequence. It has been widely applied in tasks such as machine
translation, speech recognition, and text summarization. For fault diagnosis, the Seq2Seq model
can process sequence data to predict fault development trends and complete fault diagnosis
reports[27]. The architecture diagram is shown in Figure 2.
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Figure 2. Structure diagram of Seq2Seq.

The Seq2Seq model typically consists of two main components: an encoder and a decoder. For the
encoder part, the input sequence: X = (Xq,Xy, ..., Xt) is fed into the encoder. The encoder is an
RNN network that generates a hidden state sequence: h = (hy, h,, ..., ht). The final hidden state
ht is used to create the context vector c, summarizing the entire input sequence. For the decoder
part, the context vector c¢ is used as the initial input to generate the output sequence: Y =
(V1,¥2, -, ¥17). The decoder is also an RNN network that produces the output step by step until
the final stop token is generated.

For each time step t, the encoder's hidden state h; is updated via the recurrent neural network as
follows:

h, = RNN(x,,h,_,) (1)

The RNN's update steps are as follows:
i, =c(Wx,+Uh,_, +b)
Si=oWx,+Uh_+b,)

Ot = G(Vl/o‘xt + Uoht—l + bo) (2)
¢, =tanh(W x, +U_h,_, +b.)

¢, =f Oc_ +i O¢h =0, Otanh(c,)

Here, o is the sigmoid activation function. The variables i, f;, and o; represent the input gate,
forget gate, and output gate, respectively.



The decoder initializes with the final hidden state ht of the encoder as the initial state. The output
sequence is Y = (y4,¥2, ..., ¥1). The hidden state is updated as:

Sz :RNN(yt—lﬂst—lacz) (3)

The output prediction is:

v, =softmax(W.s, +b,) 4)

In vehicle fault diagnosis, the input sequence can be sensor data or event logs, while the output
sequence can be fault types or diagnostic reports. The Seq2Seq model learns the mapping
relationship between the input and output, enabling accurate prediction of complex faults.

3.2 Attention Mechanism

The attention mechanism is a technique that improves the performance of Seq2Seq models,
especially when processing long sequences. It allows the model to focus on different parts of the
input sequence when generating each output step[28]. The architecture diagram is shown in Figure
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Figure 3. Structure diagram of attention mechanism.

In the Seq2Seq model, the encoder maps the input sequence into a series of hidden states: h =
(hy, hy, ..., ht). The decoder generates the output step-by-step while attending to relevant parts of
the input sequence through the attention mechanism. For each decoding step t, the alignment score
between the decoder's current hidden state s;_; and each encoder hidden state h; is calculated as:

e,; =score(s,_;,h,) (5)
Common scoring functions include:
Dot Product:
6= il (6)
Bilinear:
€. =s.W,h (7)

MLP (Multi-Layer Perceptron):



e, =v, tanh(W,[s,_; 1))

®)
The attention weights are computed using softmax:
exp(e,;)
ti T
2 exp(e,,)
= ©
The context vector c; is computed as a weighted sum of encoder hidden states:
T
¢ =2 a,h (10)
i=1
The context vector c¢; provides relevant input information for generating the next output.
The decoder uses c;, along with the previous hidden state, to generate the next output:
St :RNN(yt—l’st—17cl‘) (11)
¥, =softmax(Ws, +b,) (12)

The attention mechanism allows the model to dynamically focus on different parts of the input
sequence, which greatly enhances performance, especially for long sequences. By using attention
weights, it is possible to interpret which parts of the input the model focused on when generating a
particular output, which is very useful for identifying key features in fault diagnosis. In vehicle
fault diagnosis, the attention mechanism helps the model more accurately identify fault
characteristics, improving diagnostic accuracy and efficiency.

3.3 Causal Learning

Causal learning is a method for identifying and understanding causal relationships in data. Unlike
correlation analysis, causal learning focuses on understanding the cause-and-effect relationships
between variables. This is particularly important in fault diagnosis and root-cause analysis[29]. The
architecture diagram is shown in Figure 4. Causal learning is deeply integrated with the Seq2Seq
decoder and attention mechanism to construct an efficient and interpretable fault diagnosis
framework. After the input data is processed by the Seq2Seq model to capture temporal features,
the causal learning module builds a causal structure graph to model the relationships between
variables and performs intervention analysis and causal effect estimation to identify key fault
features. Additionally, by combining with the multi-head cross-attention mechanism, causal
learning enhances the focus on critical features, seamlessly integrating causal inference results with
the decoding process, ultimately producing accurate and interpretable diagnostic outcomes.
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Figure 4. Structure diagram of causal learning.

Causal learning often uses structural equations to express the causal relationships between variables.
The causal relationship between variables is expressed as:

X, = f,(Parents(X,), ;) (13)

Here, Parents(X;) represents the direct causal variables of X;, and €; represents random noise.
Through interventions, causal effects can be quantified. The key idea is to intervene on a variable
and predict the resulting changes in other variables:

P(Y5 do(X = x)) (14)

This represents the probability distribution of Y when X is set to x through intervention.

Using domain knowledge and data-driven methods (such as randomized experiments), causal
graphs can be constructed. This method is used to estimate the causal effect of interventions. For
example, to answer the question "What will happen if we do...?", causal learning helps to identify
the root cause of faults.

The Average Causal Effect (ACE) measures the average causal effect of variable X on Y:

ACE =E[Y0 do(X = x,)] - E[Y0 do(X = x,)] (15)

Here, E represents the expected value. Through causal learning, it is possible to identify and
isolate key causal relationships, reduce the complexity of dimensionality, and improve the
effectiveness and efficiency of diagnosis. Causal learning enables a deeper understanding of the
causal relationships between variables and provides a practical tool for explaining faults compared
to traditional correlation analysis.



4 Experiment

4.1 Experimental Environment

This study's experimental environment is based on modern deep learning frameworks and aims to
evaluate the performance of a proposed vehicle fault diagnosis model based on a sequence-to-
sequence (Seq2Seq) model, attention mechanisms, and causal learning. The proposed vehicle fault
diagnosis model focuses on identifying four typical fault types: Normal (no issues), Broke
(mechanical damage), Net (electrical or communication faults), and Rope (overheating or overload).
Input features include sensor data such as engine temperature, RPM, oil pressure, current, and
voltage, as well as time-series features like state change trends and anomalies. The experiment is
conducted on a server equipped with high-performance computing resources, including an NVIDIA
Tesla V100 GPU (16GB VRAM) and an Intel Xeon processor (16 cores). This configuration
supports large-scale parallel processing of data and efficient training of deep neural networks,
making it particularly suitable for handling complex time-series data and the training requirements
of deep learning models. The operating system used is Ubuntu 20.04 LTS, ensuring system stability
and compatibility. To build the deep learning experimental environment, the TensorFlow 2.x
framework is used, along with Keras for model construction and training. Keras provides a simple
API interface, facilitating rapid prototyping of deep learning models. Throughout the experiment,
all data processing and model training are performed on the GPU to accelerate the training process.
Additionally, Python 3.8 and related deep learning libraries are employed for data processing,
model evaluation, and result visualization. To ensure the model's robustness and the stability of the
training process, multiple rounds of training and cross-validation methods are used, along with
hyperparameter tuning. Specific parameters are shown in Tables 1 and 2. Table 1 presents the basic
information of the dataset, including the number of samples, input features, and sequence length,
while Table 2 lists the relevant configurations for model training, including the number of layers
in the encoder and decoder, hidden layer dimensions, learning rates, and other key parameters.

Table 1. Dataset Parameters

Parameter Name Description Value or Range
Total Samples Number of samples in each dataset 10,000 records
Input Features Includes sensor data, usage data, etc. 100 features
Sequence Length Number of time steps in the input sequence 30-60

Table 2. Model Training Parameters

Parameter Name Description Value or Range
Encoder Layers Number of LSTM or GRU layers in the encoder 2-3 layers
Decoder Layers Number of LSTM or GRU layers in the decoder 2-3 layers
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Parameter Name Description Value or Range

Hidden Layer Dimensions of hidden layers in the encoder and 128-256

Dimensions decoder

Learning Rate Learning rate for the optimizer 0.001

Batch Size Number of samples used in each iteration 32-64

Training Epochs Total number of training epochs 50

Optimizer Optimization algorithm used for training Adam

Dropout Rate Dropout probability to prevent overfitting 0.3-0.5

Activation Function Non-linear activation function for hidden layers ReLU

Regularization Method ~ Regularization method to prevent overfitting L2 regularization

Evaluation Metrics Metrics used to assess model performance Accuracy, Precision, Recall, F1
score

4.2 Experimental Data

® UCI Vehicle Data

The UCI Vehicle Data[30] is a public dataset provided by the UCI Machine Learning Repository,
primarily used for vehicle fault diagnosis and prediction. This dataset contains sensor data from
different vehicles, including engine temperature, speed, fuel consumption, battery voltage, and
other information. By using these multi-dimensional sensor data, researchers can train models to
identify and predict potential faults in vehicle systems. The dataset is time-series data, making it
suitable for testing fault diagnosis models based on time-series analysis.

® Ford GoBike

The Ford GoBike dataset[31] comes from the Ford GoBike bike-sharing system and includes user
riding data such as bike rental duration, location, and rental/return station information. While it is
not a traditional vehicle fault dataset, the dataset contains detailed records on the usage of shared
bikes. Researchers can analyze this data to predict fault patterns, usage frequency, and failure trends.
The dataset is suitable for exploring prediction models related to transportation vehicles,
particularly in the analysis of the operation and maintenance of shared transportation systems.

® CACHET

The CACHET (Comprehensive Assessment of the Health Effects of Transport) dataset[32] focuses
on the health effects of vehicle use, particularly health data related to vehicle operation. This dataset
includes a large amount of sensor data related to vehicle performance, driving behavior, and
environmental conditions. The unique feature of the CACHET dataset is that it includes health
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factors, such as the physiological data of drivers, which allows researchers to explore health risks
associated with vehicle use and potential fault warning mechanisms.

® Nissan Vehicle Data

The Nissan Vehicle Data[33] is provided by Nissan Motor Corporation and includes real-time
sensor data and fault records from Nissan vehicles. This dataset contains information on vehicle
acceleration, temperature, voltage, RPM, fault codes, and more. It is suitable for developing
efficient vehicle fault diagnosis systems. The Nissan Vehicle Data set is notable for its large volume
and variety, covering vehicle condition monitoring data from various driving scenarios. By
analyzing this data, researchers can identify different types of vehicle faults and predict
maintenance needs.

4.3 Evaluation Metrics

® Accuracy

Accuracy is a fundamental metric for evaluating the overall classification performance of a model.
It represents the proportion of correctly classified samples out of the total samples. In vehicle fault
diagnosis, accuracy reflects the proportion of correct predictions in all diagnostic results. The
formula is:

TP+1TN
Accuracy = (16)

TP+TN+FP+FN

Where:

TP (True Positive): The number of samples that are truly faulty and correctly diagnosed as faulty.
TN (True Negative): The number of samples that are truly non-faulty and correctly diagnosed as
non-faulty.

FP (False Positive): The number of samples that are truly non-faulty but incorrectly diagnosed as
faulty.

FN (False Negative): The number of samples that are truly faulty but incorrectly diagnosed as non-
faulty.

® Precision

Precision focuses on the proportion of samples predicted as faulty by the model that are actually
faulty. In vehicle fault diagnosis, precision is particularly important because false alarms may lead
to unnecessary repair costs. High precision means the model can accurately predict faults, reducing
the likelihood of false positives and improving the reliability of diagnostics. The formula is:

TP

Precision = — (17)
TP+ FP

Improved precision ensures better accuracy in fault prediction.
® Recall

Recall measures the proportion of actual faults that the model correctly identifies as faulty. In
vehicle fault diagnosis, recall reflects the model's ability to detect faults, especially in early fault
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prediction. A higher recall means the model can identify more potential faults, reducing the risk of
missed diagnoses, which is critical for enhancing vehicle safety and reliability. The formula is:

Recall = _Ir (18)
TP+ FN

In real-time fault monitoring and diagnosis, recall directly affects the timeliness and
comprehensiveness of fault detection.

® F1 Score

The F1 score is the harmonic mean of precision and recall, taking both into account. In fault
diagnosis tasks, the F1 score is particularly important because it finds a balance between tolerance
for false positives and false negatives. The F1 score is especially useful for imbalanced datasets, as
it helps prevent the model from being biased toward one class, providing a more balanced
evaluation. The formula is:

Fleox Precision x Recall

Precision + Recall (19)

A high F1 score indicates that the model excels in both accuracy and completeness, optimizing both
fault identification precision and recall.

4.4 Experimental Comparison and Analysis

In this section, we compare the performance of the proposed method with other state-of-the-art
models across four datasets. The comparison includes several key performance indicators, such as
accuracy, precision, recall, and Fl-score. These metrics are essential for evaluating the
effectiveness of fault diagnosis systems in vehicles.
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Table3. Comparison of relevant indicators of the proposed method with other methods on four

datasets.
UCI Vehicle Data Ford GoBike
Model
Accuracy  Precision Recall F1-Score  Accuracy Precision Recall F1-Score
Min et al. [34] 89.35 89.64 89.84 89.74 89.62 86.69 86.45 86.57
Zhang et al. [35] 90.22 90.89 87.45 89.14 89.67 87.18 90.14 88.64
Guo et al. [36] 87.43 87.38 88.78 88.07 91.14 87.58 87.62 87.60
Surendran et al. [37] 89.83 91.84 90.31 91.07 91.49 88.56 88.70 88.63
Shi et al. [38] 87.15 91.06 88.13 89.57 91.68 87.45 86.28 86.86
Mao et al. [39] 88.65 88.97 89.02 88.99 88.05 90.58 90.89 90.73
Ours 93.54 92.46 93.67 93.06 92.49 93.26 94.24 93.75
CACHET Nissan Vehicle Data
Model
Accuracy  Precision Recall F1-Score  Accuracy Precision Recall F1-Score

Min et al. [34] 87.43 88.97 91.63 90.28 88.36 89.89 88.38 89.13
Zhang et al. [35] 87.32 89.70 88.04 88.86 89.36 91.57 89.74 90.65
Guo et al. [36] 87.55 90.49 90.78 90.63 89.13 86.98 89.96 88.44
Surendran et al. [37] 89.72 88.95 89.10 89.02 87.43 90.42 88.27 89.33
Shi et al. [38] 90.32 89.00 91.68 90.32 88.27 90.92 88.33 89.61
Mao et al. [39] 88.61 90.21 88.26 89.22 89.22 88.19 86.23 87.20
Ours 93.79 94.27 93.26 93.76 92.54 92.48 93.71 93.09

From Table 3, we observe that the proposed method consistently outperforms all other models in
every metric across all four datasets. On the UCI Vehicle Data, the accuracy of the proposed model
(93.54%) exceeds that of the second-best method (Zhang et al., 90.22%) by a significant margin.
The same trend is seen on the Ford GoBike dataset, where the proposed method achieves an
accuracy of 92.49%, surpassing other models by 1-4 percentage points. This consistent superiority
across both datasets highlights the robustness of the proposed method in handling vehicle fault
diagnosis tasks. Notably, the proposed model also leads in precision, recall, and F1-score, which
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indicates its balanced performance in both minimizing false positives and detecting true faults

effectively. Figure 4 provides a visual comparison of these results.
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Figure 4. Visual comparison of relevant indicators on four datasets.
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Next, we examine the comparison of training indicators, as shown in Table 4. The table presents
key training metrics such as the number of parameters, inference time, and training time for the

various models on each dataset. These indicators provide insights into the computational efficiency
and scalability of the methods.
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Table4. Comparison of training indicators on four datasets.

UCI Vehicle Data Ford GoBike
Model Parameters Inference Trainning Inference Trainning
) ) Parameters(M) . .
™) Time(ms) Time(s) Time(ms) Time(s)

Min et al.
[34] 363.35 349.77 275.70 365.73 378.20 236.13
Zhang et al.
[35] 382.90 376.91 207.81 352.67 360.52 300.09
Guo et al.
361 353.83 366.64 213.75 383.75 353.37 223.53
Surendran et

400.11 352.18 205.15 350.51 373.50 225.80
al. [37]
Shi et al.
381 376.79 343.17 208.60 371.96 375.60 277.39
Mao et al.
[39] 360.41 333.23 272.33 398.31 382.76 285.55
Ours 347.62 312.84 168.74 343.47 322.64 187.52

CACHET Nissan Vehicle Data
Model Parameters Inference Trainning Inference Trainning
) . Parameters(M) ) .
™) Time(ms) Time(s) Time(ms) Time(s)

Min et al.

403.24 354.13 285.53 360.72 371.56 257.41
[34]
Zhang et al.
[35] 374.91 343.92 204.23 391.26 313.66 255.18
Guo et al.
[36] 387.27 361.94 200.73 375.87 302.38 239.21
Surendran et

393.40 388.08 295.90 371.69 34991 225.54
al. [37]
Shi et al.
381 366.50 380.12 196.18 390.11 342.29 301.71
Mao et al.
[39] 408.51 366.72 201.00 371.32 362.79 244.44
Ours 341.54 336.74 182.91 353.09 282.76 215.43

Table 4 presents a comparison of training indicators, such as the number of parameters, inference
time, and training time, which provide insights into the efficiency of the models in addition to their
performance. While the proposed method delivers the best performance, it also demonstrates
computational efficiency. For instance, it has fewer parameters compared to other models, such as
those by Min et al. and Zhang et al., while maintaining high performance. This suggests that the
proposed method is more parameter-efficient, making it potentially easier to deploy in resource-
constrained environments. In terms of training time, the proposed method shows significant
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improvement, with training times of 168.74 seconds for UCI Vehicle Data and 187.52 seconds for
Ford GoBike. These values are lower than those of many other models, such as Surendran et al.
and Mao et al., indicating that the proposed model not only achieves superior performance but also
requires less training time. This efficiency is particularly valuable when working with large-scale
datasets and in scenarios requiring real-time fault detection. Figure 5 provides a visual comparison
of these results.
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Figure 5. Visual comparison of training indicators.

Furthermore, the results from the ablation experiments, summarized in Table 5, offer additional
insights into the contributions of different components of the proposed model. The ablation study
includes the baseline model, which is progressively enhanced by adding the Seq2Seq model, the
attention mechanism (Att), and the combination of both (Seq2Seq-Att).
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Table5. Ablation experiments on four datasets.

UCI Vehicle Data Ford GoBike
Model
Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score
baseline 79.24 78.37 78.26 78.31 79.52 81.16 80.29 80.72
+Seq2Seq 85.24 85.42 86.47 85.94 85.53 88.61 87.18 87.89
+Att 89.17 88.06 90.54 89.28 88.24 90.32 90.92 90.62
+Seq2Seq-Att 93.54 92.46 93.67 93.06 92.49 93.26 94.24 93.75
CACHET Nissan Vehicle Data
Model
Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score
baseline 79.41 80.64 79.32 79.97 79.64 78.23 78.37 78.30
+Seq2Seq 83.48 84.67 85.27 84.97 84.54 86.37 85.28 85.82
+Att 89.72 88.32 89.95 89.13 89.84 89.47 90.42 89.94
+Seq2Seq-Att 93.79 94.27 93.26 93.76 92.54 92.48 93.71 93.09

Table 5 further elaborates on the contribution of different model components through an ablation
study. The baseline model shows a lower performance in terms of accuracy, precision, recall, and
F1-score. The addition of the Seq2Seq model provides a significant boost in all metrics, reflecting
the importance of sequence modeling in fault diagnosis. When the attention mechanism (Att) is
incorporated, the model's ability to focus on critical features is further enhanced, leading to
improved performance, especially in recall and Fl-score. The combination of Seq2Seq and
attention mechanisms (Seq2Seq-Att) results in the highest performance across all datasets,
confirming that both components contribute substantially to the model's overall effectiveness. On
the UCI Vehicle Data, for instance, the Seq2Seq-Att model achieves an accuracy of 93.54%, a
marked improvement over the baseline’s 79.24%. The increase in recall also indicates that the
proposed model is better at identifying true faults, which is crucial for safety-critical applications.
Figure 6 visually depict these trends.
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Figure 6. Visual comparison of ablation experiments on four datasets.

5 Conclusion

In this paper, we proposed a novel vehicle fault diagnosis model based on a sequence-to-sequence
(Seq2Seq) architecture with attention mechanisms. The model aims to improve the accuracy and
efficiency of diagnosing potential faults in vehicles by leveraging time-series sensor data. Our
approach was tested on four different datasets: UCI Vehicle Data, Ford GoBike, CACHET, and
Nissan Vehicle Data, and the results demonstrated its superiority over existing state-of-the-art
methods. The experimental results show that our proposed method significantly outperforms other
models across all datasets in key performance metrics, including accuracy, precision, recall, and
Fl-score. The model's ability to accurately diagnose faults and predict maintenance needs was
consistently better, making it a highly effective tool for real-world vehicle monitoring. In addition
to its high performance, our approach is computationally efficient, with lower training times and
fewer parameters compared to other methods, which makes it suitable for real-time applications in
resource-constrained environments. Through the ablation study, we also highlighted the crucial
roles of the Seq2Seq model and attention mechanism in improving fault detection. The combination
of these components allowed the model to achieve superior performance, especially in detecting
rare faults and minimizing false negatives, which is critical for ensuring vehicle safety and
reliability. In conclusion, the proposed vehicle fault diagnosis model not only demonstrates state-
of-the-art performance but also offers practical advantages in terms of efficiency and scalability.
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Future work will explore further enhancements, such as incorporating additional sensor modalities
or improving the interpretability of the model, to further enhance its applicability in diverse real-
world scenarios.
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