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Abstract: Facial recognition technology has become a crucial biometric tool in various 
applications, from security systems to personalized user experiences. However, its 
susceptibility to adversarial attacks, such as FGSM-based white-box attacks, raises 
significant concerns about its reliability and robustness. This paper proposes a novel 
framework that leverages a convolutional autoencoder to mitigate the effects of 
adversarial perturbations. The FGSM method generates imperceptible perturbations to 
input images, which, while invisible to the human eye, significantly degrade model 
performance. The autoencoder reconstructs perturbed images to reduce the impact of 
adversarial noise, improving the system's resilience. MobileNetV2 serves as the 
backbone model for facial recognition, with cosine similarity used for face matching. 
Experimental results demonstrate that the equal error rate (EER) increases under FGSM 
attacks but improves after reconstruction, reducing EER from 0.36 to 0.32 (FGSM-0.1) 
and from 0.37 to 0.31 (FGSM-1). While the proposed approach enhances robustness, 
further work is needed to address stronger adversarial attacks and evaluate performance 
on larger datasets. 
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1. Introduction 
Facial recognition technology has emerged as one of the most prominent and widely adopted tools 
in the field of biometrics [1] [2] [3] . It refers to the automated process of identifying or verifying 
individuals by analyzing their facial features from images or video streams. This technology plays 
a critical role in numerous applications, including security systems, access control, surveillance, 
personalized user experiences, and financial transactions [4] [5] [6] [7] . For instance, facial 
recognition has been widely deployed in smartphones, border control systems, and payment 
platforms, revolutionizing how individuals interact with digital systems. Its ability to provide fast, 
contactless, and accurate identification has positioned it as a fundamental component in the modern 
digital landscape. However, alongside its increasing importance, concerns regarding the robustness 
and security of facial recognition models have gained significant attention. 
 
Traditional methods [8] [9] [10]  for facial recognition were primarily based on handcrafted 
features such as Local Binary Patterns (LBP) [11] , Principal Component Analysis (PCA) [12] , 
and Histogram of Oriented Gradients (HOG) [13] . These methods rely heavily on feature 
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extraction and are sensitive to variations in lighting, pose, and occlusions, limiting their 
effectiveness in real-world scenarios. With the advent of Artificial Intelligence (AI) [14] [15] [16] , 
particularly Deep Learning [17] [18] , facial recognition has undergone a paradigm shift. Deep 
neural networks, such as Convolutional Neural Networks (CNNs) [19] [20] [21] , have 
demonstrated remarkable performance in extracting high-level features from facial images, 
significantly improving recognition accuracy. Models like VGGFace, FaceNet, and ArcFace have 
set new benchmarks for performance, enabling robust and scalable face recognition systems. 
 
While AI has significantly enhanced the capabilities of facial recognition, it has also introduced 
new challenges, particularly concerning security and adversarial robustness [22] [23] [24] . For 
instance, Xiong et al. highlighted this issue in their study on a distributed data parallel acceleration-
based generative adversarial network for fingerprint generation  [22] . One of the most pressing 
issues is the vulnerability of AI models to adversarial attacks, which involve adding imperceptible 
perturbations to input images to deceive the model. Among these, white-box attacks, such as the 
Fast Gradient Sign Method (FGSM) [25] [26] , pose a severe threat. In a white-box scenario, the 
attacker has full access to the model architecture, parameters, and gradients, allowing them to 
generate highly effective adversarial examples. For facial recognition systems, this can result in 
catastrophic consequences, including identity impersonation, unauthorized access, and reduced 
model reliability. 
 
The FGSM-based white-box attack works by perturbing the input image in the direction of the 
gradient of the loss function, forcing the model to misclassify the input. Although these 
perturbations are often imperceptible to the human eye, they are sufficient to manipulate the output 
of the AI model. This highlights a critical security flaw in AI-based facial recognition systems: 
their susceptibility to adversarial attacks. Traditional defenses, such as input preprocessing, 
adversarial training, or model regularization, have shown limited success in mitigating such attacks, 
particularly for real-world applications that require high levels of accuracy and robustness. 
 
To address this challenge, this paper proposes a novel framework shown in Figure 1. As illustrated 
in the figure, the framework leverages a Convolutional Autoencoder to reduce the effect of 
adversarial perturbations on input images. The autoencoder acts as a defense mechanism by 
reconstructing adversarial inputs into clean, noise-free images, thereby improving the robustness 
of the facial recognition system. The process begins with an original image that undergoes a white-
box FGSM-based attack, resulting in an adversarial image. This adversarial image is passed 
through a convolutional autoencoder, which extracts latent variables and reconstructs a clean 
version of the image, effectively reducing the effect of the attack. The reconstructed image is then 
fed into a pre-trained backbone model (e.g., a deep convolutional neural network) to extract feature 
vectors. The similarity between the reconstructed image and the image stored in the database is 
computed using cosine similarity. If the similarity exceeds a certain threshold, the images are 
classified as belonging to the same identity; otherwise, they are deemed different. 
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Figure 1. The architecture of the proposed framework. 

2. Literature Review 

2.1 Face recognition 

Facial recognition has been an active research area for several decades [27] [28] [29] , evolving 
from traditional approaches to modern deep learning-based techniques due to the advancements of 
these technologies in many domains [30] [31] [32] [33] . Early methods focused on handcrafted 
feature extraction, which, despite their simplicity, laid the foundation for subsequent advancements. 
Turk and Pentland pioneered the use of Principal Component Analysis (PCA) for facial recognition, 
introducing the concept of Eigenfaces to reduce dimensionality and extract discriminative features 
[34] . However, PCA-based methods were highly sensitive to variations in lighting, pose, and facial 
expressions. To address these challenges, researchers introduced Linear Discriminant Analysis 
(LDA) [35]  and Local Binary Patterns (LBP) [36] , which improved robustness to certain 
variations but were still limited by their reliance on manually designed features. 
 
The advent of deep learning revolutionized facial recognition systems, enabling automatic feature 
extraction from raw images. Taigman et al. introduced DeepFace [37] , one of the first deep 
learning models for face recognition, which leveraged a deep neural network to achieve near-
human performance. Schroff et al. further improved upon this with FaceNet [38] , a model that 
utilized a triplet loss function to learn a compact embedding space, enabling both recognition and 
clustering. The use of deep embeddings significantly enhanced the scalability and accuracy of 
facial recognition systems. To address the challenge of intra-class variations and inter-class 
similarities, subsequent studies introduced margin-based loss functions. Liu et al. [39]  proposed 
the SphereFace model, which incorporated an angular softmax loss to increase the discriminative 
power of deep embeddings. Building on this, Deng et al. presented ArcFace [40] , which introduced 
an additive angular margin loss, further improving face verification accuracy by enforcing a clearer 
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decision boundary in the embedding space. These models set new benchmarks for performance on 
public datasets such as Labeled Faces in the Wild (LFW) and MegaFace. 

3. Method 

3.1 Dataset preparation 

The dataset used in this study is sourced from Kaggle and consists of a total of 1,105 images 
representing 248 individuals, including both male and female subjects. The images are in RGB 
format with varying numbers of impressions per individual, but no individual has more than 10 
impressions. The original resolution of each image is 128x128 pixels. For the purpose of training 
and evaluation, 70% of the dataset is used as the training set, while the remaining 30% is reserved 
for testing. Figure 2 illustrates a subset of sample images from the dataset.  

 
Figure 2. The samples of original datasets. 

3.2 FGSM-based white-box attack 

The FGSM-based white-box attack [41] [42]  is a well-known adversarial attack method designed 
to deceive deep learning models by introducing subtle perturbations to input images. In a white-
box scenario, the attacker has complete access to the model’s architecture, parameters, and 
gradients, which allows for the generation of adversarial examples that can significantly alter the 
model’s predictions. FGSM works by perturbing the input image in a way that maximizes the 
model’s loss, pushing the model to misclassify the image while keeping the perturbations nearly 
imperceptible to the human eye. 
 
In this study, FGSM was employed to generate adversarial images with two levels of perturbation 
strength, 0.1 and 1. Despite the perturbations, it is visually difficult to distinguish these adversarial 
images from the original ones. This is because the FGSM attack introduces changes at a pixel level, 
often too subtle for the human visual system to detect, especially at lower perturbation strengths. 
However, these small changes are sufficient to mislead deep learning models, exposing their 
vulnerability to adversarial attacks. Figure 3 presents examples of images after applying FGSM. 

 
Figure 3. The samples of datasets preprocessed by FGSM. 
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3.3 Convolutional autoencoders for mitigating FGSM-based white-box attacks 

Convolutional Autoencoders (CAEs) [43] [44] [45]  are a type of neural network designed to 
reconstruct input images by compressing and restoring them through an encoder-decoder 
architecture. They are particularly effective in tasks like image denoising and reconstruction, 
which makes them well-suited for mitigating adversarial perturbations introduced by FGSM-based 
white-box attacks. In this study, the CAE architecture is carefully designed to process perturbed 
images and restore them to a clean version, allowing the facial recognition system to perform 
accurately despite adversarial interference. 
 
The architecture of the convolutional autoencoder used in this work is composed of an encoder-
decoder structure designed to process RGB images of size 128x128. The encoder begins with a 
3x3 convolutional layer with 32 filters, applied using a ReLU activation function and same padding, 
to extract low-level spatial features from the input image. To reduce spatial dimensions while 
retaining critical features, a 2x2 max pooling layer with stride 2 is employed. The process is 
repeated with another 3x3 convolutional layer, this time with 64 filters, followed by another max 
pooling operation. By successively reducing the spatial resolution, the encoder compresses the 
input image into a compact latent representation, which contains the most salient features 
necessary for reconstruction. The decoder mirrors the encoding process and restores the image to 
its original dimensions by gradually increasing the spatial resolution. It begins with a 3x3 
convolutional layer with 64 filters, followed by an upsampling layer that doubles the spatial size 
of the latent representation. A subsequent 3x3 convolutional layer with 32 filters refines the 
reconstruction, and another upsampling operation brings the image closer to its original dimensions. 
Finally, a 3x3 convolutional layer with a sigmoid activation function outputs the reconstructed 
image, ensuring that pixel values remain within the range of 0 to 1. Through this process, the 
decoder effectively removes the adversarial noise while preserving the visual integrity of the input. 

3.4 MobileNet-based model for face recognition 

MobileNet is a lightweight Convolutional Neural Network (CNN) designed to deliver efficient 
performance on resource-constrained devices [46] [47] . Unlike traditional deep networks, 
MobileNet reduces computational complexity by using depthwise separable convolutions, which 
decompose standard convolutions into depthwise and pointwise operations. This approach 
significantly reduces the number of parameters and computations while maintaining high accuracy, 
making it ideal for real-time facial recognition tasks. 
 
In this study, we utilize MobileNetV2 as the backbone of our CNN model for face recognition. 
MobileNetV2 is an improved version of MobileNet, which introduces inverted residual blocks and 
linear bottlenecks to enhance the network’s efficiency and accuracy. The model is initialized with 
pre-trained weights from the ImageNet dataset, allowing it to leverage features learned on large-
scale image data. The base model excludes the fully connected top layers, and its weights are 
frozen during training to prevent updates and retain the pre-trained features. On top of the 
MobileNetV2 backbone, a new classification head is built. The structure begins with the output of 
MobileNetV2 being passed through a global average pooling layer to reduce feature maps to a 
lower-dimensional vector. A dropout layer with a rate of 0.2 is added to prevent overfitting, 
followed by a dense layer that outputs a 128-dimensional feature vector. This vector serves as a 
compact and discriminative representation of the input face image. Finally, a softmax classification 
layer maps these features to the corresponding class labels during the training phase. 
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During training, the entire network is treated as a classification model, where each individual face 
is assigned a unique class label. After training is complete, the model can be used for face matching 
by extracting the 128-dimensional feature vector from the dense layer. To evaluate the similarity 
between two input face images, their corresponding feature vectors are compared using cosine 
similarity. This metric measures the angular distance between the two vectors, where higher 
similarity scores indicate that the images belong to the same identity, while lower scores suggest 
different identities. 

3.5 Implementation details 

In this study, the models were implemented using TensorFlow. The convolutional autoencoder and 
the MobileNet-based CNN model were trained separately for 20 epochs and 30 epochs, 
respectively. Both models were optimized using the Adam optimizer to ensure efficient 
convergence. For the autoencoder, mean absolute error (MAE) was used as the loss function to 
minimize the reconstruction error and effectively remove adversarial perturbations. For the 
MobileNet-based model, categorical cross-entropy was employed as the loss function during 
training, treating the task as a classification problem. During the evaluation stage, equal error rate 
(EER) was used as the performance metric for face matching, providing a reliable measure of the 
system's accuracy and robustness. 

4. Experimental results and discussion 

4.1 The performance of the model 

Figure 4 illustrates the training curves of the MobileNet model used for face recognition. The left 
graph shows the training accuracy over 30 epochs, where the accuracy increases steadily as training 
progresses. Initially, the model starts with a low accuracy, but it improves consistently, reaching 
over 90% by the final epoch, indicating that the model is learning effectively.  The right graph 
depicts the training loss, which decreases significantly as the number of epochs increases. At the 
beginning of training, the loss is relatively high, but it drops sharply within the first few epochs. 
As training continues, the loss decreases gradually, approaching convergence near the final epochs. 
This demonstrates that the MobileNet model is optimizing its weights effectively and minimizing 
the classification error during training. 

 

Figure 4. The training curves of the MobileNet model. 

The results of the model’s performance under different conditions are shown in Figure 5 and Table 
1. The equal error rate (EER) is evaluated on the test set under three scenarios: without FGSM 
perturbation, with FGSM perturbation of strength 0.1, and with FGSM perturbation of strength 1. 
Without FGSM, the model achieves an EER of 0.29, indicating strong recognition performance in 
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clean conditions. When FGSM perturbations with strengths of 0.1 and 1 are applied, the EER 
increases to 0.36 and 0.37, respectively. These results clearly demonstrate that even subtle 
perturbations generated by FGSM can significantly impact the model’s ability to distinguish 
between identities. While the perturbed images appear visually identical to the original images to 
the human eye, the model perceives these adversarial perturbations, leading to a decline in 
recognition accuracy. 

 

Figure 5. The EER performance based on different conditions. 

Table 1. The numerical EER comparison under different conditions. 

 

Figure 6 illustrates the impact of FGSM-based perturbations on the cosine similarity scores 
between pairs of images belonging to the same or different identities. In the same identity row, 
where both images belong to the same person, the similarity score without FGSM is 0.94, 
indicating a high degree of matching. When FGSM perturbations with strengths of 0.1 and 1 are 
applied, the similarity scores slightly decrease to 0.92 and 0.91, respectively. In the different 
identities row, where the images belong to two different individuals, the similarity score without 
FGSM is 0.77, showing that the model can effectively distinguish between different identities. 
However, when FGSM perturbations with strengths of 0.1 and 1 are applied, the similarity scores 
increase to 0.79 and 0.81, respectively. These results indicates that the perturbations make it harder 
for the model to distinguish between different identities. 

 
Figure 6. The prediction samples based on different conditions. 

 

Model name EER 

Without FGSM 0.29 
FGSM-0.1 0.36 
FGSM-1 0.37 
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Figure 7 shows a visualization comparison using Grad-CAM under different conditions. Grad-
CAM highlights the regions where the model focuses most when making predictions. In the 
original image, the model’s attention is concentrated on key facial features, such as the eyes, nose, 
and mouth, which are crucial for identity recognition. When FGSM perturbations are applied, 
although the images appear visually identical to the human eye, the model's attention shifts. For 
the image perturbed with FGSM-0.1, the attention becomes more dispersed, with less focus on 
critical facial regions. In the FGSM-1 case, the attention further deteriorates, shifting its focus 
primarily to the mouth and weakening the emphasis on other key facial features, such as the eyes 
and nose. This demonstrates that adversarial noise, even if imperceptible to humans, disrupts the 
model's focus, leading to potential misclassifications. The comparison highlights the vulnerability 
of the model to adversarial attacks, where subtle pixel-level perturbations can significantly alter 
the model's perception of the input image. 

 
Figure 7. The visualization comparison using Grad-CAM [48] [49]  based on different 

conditions. 

Figure 8 shows the training loss curve of the autoencoder. The loss decreases sharply during the 
initial epochs, indicating that the model quickly learns to minimize reconstruction errors. As the 
training progresses, the loss gradually stabilizes, converging to a low value after 20 epochs, which 
demonstrates that the autoencoder successfully reconstructs the input images while mitigating 
adversarial noise. Figure 9 presents a visual comparison between FGSM-based images and their 
reconstructed counterparts using the trained autoencoder. The top row shows images perturbed by 
FGSM, where the adversarial noise is imperceptible to the human eye. The bottom row shows the 
corresponding reconstructed images produced by the autoencoder.  

 
Figure 8. The training curves of the autoencoder. 
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Figure 9. The comparison between FGSM-based and reconstructed images. 

Figure 10 and Table 2 present the comparison of EER before and after autoencoder reconstruction 
under FGSM perturbations with strengths of 0.1 and 1. Before reconstruction, the EER values for 
FGSM-0.1 and FGSM-1 are 0.36 and 0.37, respectively, showing that the model's performance 
degrades under adversarial attacks. After applying the autoencoder to reconstruct the images, the 
EER values decrease to 0.32 for FGSM-0.1 and 0.31 for FGSM-1. This reduction indicates that 
the autoencoder mitigates the effect of FGSM perturbations and improves the recognition 
performance. Although the EER values do not completely return to their original state, the results 
demonstrate that the autoencoder enhances the model’s robustness against adversarial noise. The 
ROC curves in Figure 10 visually confirm the improvement, where the reconstructed images yield 
better performance compared to the FGSM-perturbed inputs. Figure 11 provides samples for 
further observation of similarity scores. After reconstruction, most samples of the same identity 
show an increase in facial similarity, while the similarity for faces belonging to different identities 
decreases. These results highlight the effectiveness of the autoencoder in reducing the impact of 
adversarial attacks and improving face recognition accuracy. 
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Figure 10. The comparison of EER before and after autoencoder reconstruction.  

Table 2. The numerical EER comparison before and after autoencoder reconstruction.  

 

Model name EER 
FGSM-0.1 0.36 
FGSM-1 0.37 

Reconstructed FGSM-0.1 0.32 
Reconstructed FGSM-1 0.31 
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Figure 11. Impact of FGSM reconstruction on facial similarity across identities. 

4.2 Discussion 

Despite the promising results achieved in mitigating FGSM-based attacks using the convolutional 
autoencoder, there are still several limitations in this study that warrant further investigation. First, 
while the autoencoder effectively reduces the equal error rate (EER) under adversarial 
perturbations, the reconstructed images do not fully restore the model’s performance to the clean 
condition. This suggests that the current autoencoder may not completely eliminate adversarial 
noise, especially for stronger perturbations like FGSM-1. Further improvements in the network 
architecture or the inclusion of adversarial training techniques could enhance the reconstruction 
quality and overall robustness. Second, the experiments in this study were limited to FGSM-based 
white-box attacks with fixed perturbation strengths of 0.1 and 1. Although FGSM is a widely 
studied adversarial attack, more advanced and complex attacks, such as Projected Gradient 
Descent (PGD) or Carlini & Wagner (C&W) attacks, should be considered in future work to 
comprehensively evaluate the proposed framework. Additionally, the study did not account for 
black-box attack scenarios, where the attacker lacks direct access to the target model’s parameters. 
Addressing these limitations would provide a more holistic understanding of the model’s 
robustness. Another limitation lies in the dataset size and diversity. The experiments were 
conducted on a relatively small dataset containing 1,105 images with 248 identities, which may 
not generalize well to larger or more complex datasets. Future work will focus on evaluating the 
proposed framework on larger, more diverse datasets to validate its effectiveness across varying 
conditions. 
 
Moving forward, we plan to explore the integration of adversarial defense methods such as 
adversarial training and denoising networks. We will also investigate hybrid approaches that 
combine autoencoders with ensemble methods or advanced deep learning architectures to further 
improve model resilience. Additionally, attention-based mechanisms could be incorporated to 
enhance the focus on critical facial regions, potentially improving recognition accuracy under 
adversarial conditions. 

5. Conclusion 
This study optimizes the vulnerability of facial recognition models to FGSM-based white-box 
attacks by introducing a convolutional autoencoder framework. The results show that the 
autoencoder effectively reconstructs perturbed images, reducing the EER and improving model 
robustness. However, the reconstructed images do not entirely restore the model’s performance to 
clean conditions, especially for stronger perturbations. Future work will focus on enhancing the 
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reconstruction process, integrating advanced adversarial defense strategies, and evaluating the 
framework against black-box attacks and more complex adversarial methods. Larger and more 
diverse datasets will also be explored to ensure scalability and generalization. The proposed 
approach represents a significant step toward building resilient facial recognition systems in 
adversarial environments. 
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