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Abstract: Due to the complexity and variability of automotive bearing fault vibration 
signals, as well as the challenges in feature extraction, a novel automotive bearing fault 
diagnosis method based on an improved SSA-VMD algorithm is proposed in this paper. 
Firstly, the number of modes (K) and the penalty factor (α) in the variational mode 
decomposition (VMD) algorithm are optimized by the Sparrow Search Algorithm 
(SSA). Secondly, the VMD using optimized parameters is used to decompose the 
automotive bearing fault vibration signal into a series of modal components. Modal 
components with larger kurtosis values are selected for reconstruction and feature 
extraction. Lastly, the feature vectors are input into a kernel extreme learning machine 
(KELM) model for fault recognition. A comparative analysis is conducted between the 
improved SSA-VMD method and the original SSA-VMD method in automotive 
bearing fault diagnosis. Experimental results demonstrate that the improved SSA-VMD 
method is satisfactory in extracting characteristic information from automotive bearing 
fault vibration signals and achieves higher fault diagnosis accuracy. 
 
Keywords: Automotive Bearing; Improved SSA-VMD Algorithm; Refined Composite 
Multi-Scale Sample Entropy; Fault Diagnosis. 

1. Introduction 

With the rapid development of the modern automotive industry, the safety and reliability of 
automobiles have attracted increasingly concerns. As a key component in the automotive 
drivetrain system [1], automotive bearings significantly influence the safety and performance of 
the vehicle. However, due to the long-term operation of automotive bearings under high speed, 
heavy load, and complex working conditions, their failure rate is relatively high [2]. Therefore, 
timely and accurate diagnosis of automotive bearing faults is crucial. To effectively extract fault 
characteristic information from automotive bearings and improve fault diagnosis accuracy, this 
paper focuses on the decomposition of automotive bearing vibration signals and fault diagnosis. 
Automotive bearing fault vibration signals are often accompanied by significant noise, 
necessitating signal decomposition and denoising treatment. In 2014, a novel signal 
decomposition method, Variational Mode Decomposition (VMD), was proposed by 
Dragomiretskiy et al. to address the signal denoising problem [3]. The VMD algorithm 
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effectively resolves two major issues in Empirical Mode Decomposition (EMD) and Local Mean 
Decomposition (LMD), namely endpoint effects and mode overlapping. As a result, VMD has 
been widely applied in various signal decomposition tasks. However, the number of modes (K) 
and the penalty parameter (α) in the VMD algorithm significantly impact the decomposition 
results, and both parameters are uncertain. Therefore, optimizing the combination of these 
parameters is of great importance. General methods for determining the optimal combination of 
K and α typically involve heuristic algorithms. For example, Li Hong et al. [4] used the Grey 
Wolf Optimizer (GWO) to search for the optimal decomposition parameters for VMD, which 
significantly improved decomposition performance using a central frequency observation method. 
However, this algorithm is prone to local optima and suffers from low computational efficiency. 
In 2023, G Huazhan [5] proposed the Sparrow Search Algorithm (SSA) to optimize the VMD 
parameters K and α, and combined it with Extreme Learning Machine (ELM) for bearing fault 
diagnosis on data from Case Western Reserve University. This method offers high solution 
accuracy and novelty, but still faces issues such as falling into local optima. To address the 
problem of heuristic algorithms being prone to local optima in optimizing VMD, this paper 
proposes an improved SSA-VMD algorithm for parameter optimization. 
 
Since the original SSA-VMD algorithm suffers from a reduction in population diversity during 
the later stages of iteration [6], which reduces the global search ability and affects computational 
efficiency, potentially leading to local optima, this paper introduces a t-distribution mutation 
strategy into the target position update process. The t-distribution operator enhances the 
disturbance ability, generating new mutated individuals to update the target positions. This 
improvement enhances both the global and local search performance of the algorithm, thereby 
increasing the solution accuracy and obtaining the optimal parameter combination [K, α] for 
VMD. 
 
Specifically, the optimized VMD method is used to decompose the automotive bearing fault 
vibration signals into multiple modal components. The kurtosis values of each component are 
calculated, and those with higher kurtosis are selected for signal reconstruction. The 
reconstructed signal is then analyzed using the refined composite multi-scale sample entropy 
(RCMSE) method to extract feature vectors [7]. These feature vectors are subsequently input into 
a Kernel Extreme Learning Machine (KELM) for fault classification[8]. Finally, a comparison is 
made between the improved SSA-VMD method and the original SSA-VMD method to assess the 
performance of the proposed approach. 

2. Theoretical background  

2.1 Variational Mode Decomposition 

The VMD algorithm decomposes time series within a fixed variational framework and generates 
several intrinsic mode functions (IMFs) as signal components. Each component is an 
amplitude-frequency modulation function, which satisfies the definition of an intrinsic mode 
function (IMF) [9]. 
 
The model expression of the Variational Mode Decomposition (VMD) algorithm is as follows: 
Where	u!	represents the modal components obtained after decomposition; ω! represents the 
central frequency of each IMF component. 
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To solve the VMD model, the Lagrangian function is introduced to simplify the constrained 
problem and convert it into an unconstrained problem. The Lagrangian function is shown in 
equation (2): 
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Where α is a quadratic penalty parameter that ensures signal reconstruction accuracy even in 
the presence of Gaussian noise; λ(t) is the multiplier operator. 
 
The alternating operator method is used to solve for the extrema of equation (2). By iteratively 
updating u!n+1, ω!n+1, and	λn+1, the extremum points of the function are obtained. The 
update for u!n+1 is given by equation (3): 
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Fourier transform is applied to equation (3) to calculate the optimal solution for the quadratic 
optimization problem, as shown in equation (4): 

𝑢S'+,-(𝜔) =
𝑓U(𝜔) − ∑ 𝑢S0(𝜔) + 12(%)

*05'
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(4)	

The center frequency of each IMF component is computed as follows: 
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(5)	

Whereω!
8,- represents the central frequency spectrum of each component. The Fourier inverse 

transform is applied to {uS!(ω)} to solve for the corresponding time-domain signal components 
{u!(t)}. 
 
The steps of the VMD algorithm are as follows: 
Step 1: Initialize	\uS!-], \ω!-], \λ_-] and n; 
Step 2: Iteratively update u! and	ω! using equations (1) and (2) 
Step 3: Update λ using equation (6) 

𝜆U+(𝜔) + 𝜏[𝑓U(𝜔) −,𝑢S'+,-(𝜔)]
'

→ 𝜆U+,-(𝜔) (6) 

Where τ	represents the noise tolerance level. 
Step 4: Define the convergence criterion ε > 0 if 

,
‖𝑢S'+,- −𝑢S'+‖**

‖𝑢S'+‖**
< 𝜀

'
(7) 

Then the iteration stops. Otherwise, return to step 2 and continue iterating. 
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2.2 Improved SSA Optimization for VMD 

As mentioned in the introduction, the mode K and the penalty factor α are key factors affecting 
the decomposition performance of the VMD algorithm. Since the choice of these two parameters 
is uncertain, determine optimal values for them is crucial. To address the issue of traditional 
heuristic algorithms for optimizing VMD often falling into local optima, this paper proposes 
using an improved SSA-VMD algorithm to optimize the parameters [K, α] of VMD. 
 
(1) Issues with the original SSA-VMD algorithm  
The original SSA-VMD algorithm suffers from reduced population diversity in the later stages of 
iterations, leading to higher individual repetition rates. This reduces the global search capability 
of the algorithm, affecting its computational efficiency and causing it to fall into local optima. To 
overcome this issue, this paper introduces a t-distribution mutation strategy into the target 
position update mechanism [10]. The t-distribution operator helps generate mutated new 
individuals, which are used to update the target positions. This enhances the global and local 
search capabilities of the SSA-VMD algorithm and improves its solution accuracy, leading to the 
optimal combination of VMD parameters [K, α]. 
 
(2) Details of the algorithm improvements 
To address the problem of reduced population size in the later stages of the algorithm, a 
t-distribution mutation strategy is introduced into the target position update process to generate 
new individuals. These new individuals help maintain population diversity, enhancing the 
algorithm's global search ability. By using the current population to mutate the original 
individuals, the algorithm avoids getting trapped in local optima and improves its overall 
optimization ability. 
 
The improved SSA-VMD algorithm uses the iteration count as a degree of freedom parameter. In 
the early stages of the algorithm, the smaller value of t acts similarly to a Cauchy mutation 
operator, enabling the generation of new individuals with strong local search capabilities. In the 
later stages, the larger value of t acts like a Gaussian mutation operator, allowing the generation 
of new individuals with strong global search capabilities. This ensures the algorithm has both 
global search ability and improved local search performance, which helps to update the target 
position and improve the overall solution accuracy. 
 
Therefore, in this paper, the improved SSA-VMD algorithm is used to optimize parameters, with 
the minimal value of the ratio of envelope entropy to kurtosis as the fitness function for 
optimizing the VMD parameters [K, α]. The algorithm steps are as follows: 
 
Step 1: Initialize the algorithm's population, iteration count, ratio of predators to joiners, and the 
sparrow group position vector [K0, α0]. 
Step 2: Calculate the current fitness value of the algorithm (the minimal value of the VMD 
envelope entropy to kurtosis ratio) and sort the fitness values in ascending order. 
Step 3: Select the sparrow with the maximum fitness value as the discoverer. Use equation (8) to 
update its position: 

𝑋0,)&,- = +
𝑋0,) . 𝑒𝑥𝑝 p−
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:.0&<="#$
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Where t represents the current iteration number; j = 1, 2,3, . . . ,d; iter>?@ is the maximum 
number of iterations; XA,B is the position of sparrow i in dimension j; R* and st represent the 
alert and safety threshold values, respectively. 
Step 4: Select the remaining sparrows as joiners. Update their positions using equation (9): 

𝑋0,)&,- = K
𝑄. 𝑒𝑥𝑝 0

/%&'()(/*,,
)

:.0&<="#$
8 , 𝑖𝑓	𝑖 > 𝑛/2							

𝑋C&,- 	+ |𝑋0,) − 𝑋C&,-|. 𝐴,. 𝐿, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	
(9)	

where: XD is the optimal position corresponding to the discoverer sparrow; XEFGHI is the worst 
position corresponding to the discoverer sparrow. 
Step 5: The scout sparrow is randomly selected. Its position is updated using equation (10): 

𝑋0,)&,- = �
𝑋J<K&& + 𝛽. |𝑋0,)& − 𝑋J<K&& 	|, 𝑖𝑓			𝑓0 > 𝑓L	

𝑋0,)& 	+ 𝐾. �
|𝑋0,)& − 𝑋MN=K& |
(𝑓0 − 𝑓%) + 𝜀

� , 𝑖𝑓		𝑓0 = 𝑓L		
(10)	

Where XOPHI is the best position corresponding to the scout sparrow; β is the step size control 
parameter for the algorithm. 
Step 6: Check if the condition rand < p is satisfied. If it is, apply the adaptive t-distribution 
mutation strategy to generate mutated individuals and replace the original individuals. If not, 
retain the original individuals. 
Step 7: Calculate the current fitness value (the minimal value of the VMD envelope entropy to 
kurtosis ratio) and update the sparrow positions. 
Step 8: Check if the algorithm has reached the optimal condition. If satisfied, terminate and 
output the optimal VMD parameter combination [K, α]. Otherwise, return to Step 2 and repeat 
Steps 2-7. 
 
The flowchart of the procedure is shown in Figure 1. 
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Fig 1 Flow chart of the improved SSA-VMD algorithm 

3. Experimental verification of the proposed method  

3.1 Data Source for Fault Diagnosis 

This study focuses on automotive bearing faults, with experimental data sourced from vibration 
signals of automotive bearings collected in the authors’ laboratory. The data was obtained 
through fault simulation experiments conducted on the bearings of a famous automobile, 
provided by the laboratory's research team [11-12]. The bearing fault simulation was performed 
using worn-out bearings from the No. 1 unit, and faults were simulated under various bearing 
clearance conditions. These faults included large clearance in the first and second-stage 
connecting rod big-end bearings, as well as large clearance in the first and second-stage 
connecting rod small-end bearings. A total of four different bearing clearance fault conditions 
were simulated. In addition to these fault conditions, vibration data for a normally functioning 
bearing was also collected for comparison. The vibration signals corresponding to the following 
operating conditions were obtained: 1. Normal condition (Normal); 2. First class connecting rod 
big-end bearing clearance is large (FCB); 3. Second class connecting rod big-end bearing 
clearance is large (SCB); 4. First class connecting rod small-end bearing clearance is large (FCS); 
5. Second class connecting rod small-end bearing clearance is large (SCS). The example 
time-domain vibration signals for each operating condition are shown in Figure 3. 
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Fig 2. Experiment condition of the study 

 

Fig 3 Time domain diagram corresponding to five working conditions 

3.2 Optimal parameters 

The optimal parameter combination [K0,α0] for the five different bearing vibration states of the 
automotive bearings is determined using the improved SSA-VMD algorithm. In this study, the 
number of iterations is set to 80. Due to the inherent randomness of the algorithm’s optimization 
process [13], the best parameter combination [K0,α0] is obtained by averaging the results over 20 
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runs. The number of modes K is set in the range of [3,10], with integer values, and the penalty 
factor α is set in the range of [500,6500]. The resulting optimal parameters are shown in Table 1. 
 

Table 1 Optimal parameter combination [K0,α0] 

Type of data [K0,α0] 

Normal [6,3691] 

FCB [7,4537] 

SCB [6,5200] 

FCS [6,6372] 

SCS [3,2690] 

3.3 Feature extraction from Vibration Signals 

In this section, the analysis results of a first-stage connecting rod big-end bearing clearance 
condition is set as a visual example. The vibration signals of the corresponding status are 
processed using both the original SSA-VMD and improved SSA-VMD algorithms, and the 
results are shown in Figures 4 and 5. 

  

Fig 4 The decomposition results using original SSA-VMD  
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Fig 5 The decomposition results using improved SSA-VMD  

From Figures 4 and 5, it can be observed that the SSA-VMD algorithm decomposes the vibration 
signal into six IMF components, whereas the improved SSA-VMD algorithm produces seven 
IMF components. This highlights a clear difference in the results of the two methods. However, 
Figures 4 and 5 alone do not provide enough evidence to conclusively determine which method 
performs better. 
 
To further evaluate the two approaches, the IMF components obtained from both the SSA-VMD 
and improved SSA-VMD algorithms are continuing being processed. These IMF components 
with higher kurtosis values are selected for reconstruction. The fine composite multi-scale 
sample entropy (RCMSE) values of the reconstructed signals are then computed. The parameters 
for the RCMSE algorithm, as referenced in [14-15], are set with an embedding dimension m=2 
and a threshold r=0.20. The computed results are shown in Figures 6 and 7. 
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Fig 6 RCMSE curves of five working conditions calculated by SSA-VMD 

 

Fig 7 RCMSE curves of five working conditions calculated by improved SSA-VMD 

As shown in Figures 6 and 7, the RCMSE entropy values for the five bearing conditions of the 
vehicle decrease as the scale factor τ increases. The entropy distribution curves for the five 
bearing conditions obtained using the SSA-VMD method exhibit significant overlap across some 
intervals, which may affect the recognition of different fault states. In contrast, the entropy 
distribution curves for the five bearing conditions obtained using the improved SSA-VMD 
method show almost no overlap, allowing for a clearer and more intuitive distinction between the 
different fault states. Therefore, by reconstructing the signal and calculating the multi-scale 
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entropy curves, it is further demonstrated that the improved SSA-VMD method provides superior 
feature extraction compared to the original SSA-VMD method. 

3.4 Fault Recognition Results  

A total of 120 sample sets were collected from the vibration signals of the five different bearing 
conditions, with 70 random samples selected from each condition for the training set and the 
remaining 50 samples used for testing [16-18]. The initial parameter of the improved SSA-VMD 
algorithm was n=6,	ıter� max=10, p=0.3. As can be seen in Table 2, the improved SSA-VMD 
method achieves a higher fault recognition accuracy. Experimental validation was performed 
using the vibration signals of the automotive bearings. The original SSA-VMD method and the 
improved SSA-VMD method were applied to decompose the vibration signals for the five 
different operating conditions of the bearings. Then, to denoise the original signal, the IMF 
components obtained from the decomposition were reconstructed, and the reconstructed signals 
were analyzed using RCMSE to extract feature vectors. Finally, a kernel extreme learning 
machine (KELM) was used to classify and recognize the extracted feature vectors, thereby 
diagnosing the fault types of the automotive bearings. 

 
Table 2 The automotive bearings fault recognition accuracy 

Type of 
data 

SSA-VMD Improved SSA-VMD 

Accuracy rate (%) 
Average accuracy 

(%) 
Accuracy rate 

(%) 
Average accuracy 

(%) 

Normal 96.0 

96.4 

100.0 

98.8 

FCB 98.0 98.0 

FCS 96.0 100.0 

SCB 94.0 98.0 

SCS 98.0 98.0 

4. Conclusion  

Automotive bearing fault diagnosis is a complex and critical task, as the safety of the vehicle 
directly impacts the driver's life. To improve the accuracy of automotive bearing fault diagnosis, 
this study proposes an enhanced SSA-VMD method, aimed at achieving higher fault recognition 
accuracy. A t-distribution mutation strategy is incorporated into the target position update 
process of the algorithm. The t-distribution operator strengthens the mutation ability, generating 
new mutated individuals to update the target position. This, in turn, improves the optimization 
capability of the SSA-VMD algorithm and enhances the precision of the optimization process. 
The proposed method was validated using vibration data from vehicle bearings. The results 
demonstrated that the average fault recognition accuracy of the improved SSA-VMD method is 
nearly 2% higher than that of the original SSA-VMD method, suggesting a significant 
improvement in diagnostic performance. 
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