OPTIMIZATIONS IN APPLIED MACHINE LEARNING H ﬂ
Research Article | Volume 4 | Issue 4 | Dec 2024

Received: 4 Nov 2024 | Revised: 30 Nov 2024 %K/

Accepted: 3 Dec 2024 | Published Online: 9 December 2024

An End-to-End Stock Recommendation Algorithm
Study Based on Time-Frequency Consistency

Shuguang Xiong, Microsoft Inc., Email: shuxiong@microsoft.com;
Huitao Zhang*, Northen Arizona University, Email: hz345@nau.edu;

Meng Wang, Newmark Group, Email: wang070210@gmail.com;

Ning Zhou, Zhejiang Future Technology LLC, zhouning723@gmail.com

*Corresponding Author

Abstract: The volatility and complexity of stock prices in the financial market make
precise trend prediction a formidable challenge. Traditional stock prediction approaches
often rely solely on either time-domain or frequency-domain information, which limits
their ability to fully capture the multi-scale dynamics of stock prices, resulting in
suboptimal prediction accuracy. To overcome these limitations, this paper presents an
end-to-end stock recommendation algorithm grounded in time-frequency consistency.
First, we introduce a time-frequency consistency analysis method that extracts both time-
domain and frequency-domain features of stock Frlces concurrently, offering a more
holistic view of trend fluctuations. Next, by app yin? Prompt learning strategies, the
model leverages pre-set prompts to identity optimal low-risk buying points within
targeted time intervals, enhancing the decision-making process for stock
recommendations. Finally, end-to-end model training facilitates seamless integration and
automation from data input to stock recommendation outﬁut, enabling a fully streamlined
prediction workflow. Experimental results indicate that this method surpasses traditional
approaches in prediction accuracy and risk control, providing more dependable support
for investor decisions.

Keywords: Time-Frequency Consistency; Stock Recommendation; Multi-Scale Dynamic
Characteristics; Prompt Learning; Risk Control

1. Introduction

In today's highly volatile and complex financial markets, accurately predicting stock price trends
is crucial for investors. Stock price fluctuations are influenced by various factors, including
macroeconomic indicators, company performance, market sentiment, and international political
situations. Due to the complexity of the interactions among these factors, predicting stock prices
has become one of the most challenging tasks in the financial field [1]. Traditional stock prediction
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methods, such as those based on time series analysis, moving averages, or regression models,
provide tools for trend analysis to some extent but are often limited to single-domain time analysis.
This one-dimensional approach fails to fully capture the multi-scale dynamic characteristics of
stock prices and shows limitations, especially when dealing with nonlinear and complex market
signals [2].

With advances in computing power and data processing technologies, machine learning
algorithms have gradually become emerging tools for stock prediction. These methods include
Support Vector Machines (SVM), Random Forests (RF), and Neural Networks (NN), which can
make predictions by learning complex patterns from large amounts of historical data [3]. In
particular, deep learning models, such as Long Short-Term Memory (LSTM) networks and
Convolutional Neural Networks (CNNs), have shown great potential in handling nonlinear time
series prediction tasks due to their strong feature extraction and pattern recognition capabilities [4].
However, most of these methods still rely on single-domain time analysis, making it difficult to
comprehensively capture the multi-scale dynamic characteristics of stock prices. Frequency
domain analysis methods have emerged as a response, revealing cyclical patterns hidden in price
fluctuations by decomposing time series data into frequency components. For example, Fourier
Transform can convert time series data into a sum of sine waves of different frequencies, helping
to identify market behavior at different time scales [5]. Wavelet Transform further extends the
application scope of frequency domain analysis by decomposing signals into sub-waves of
different scales, providing joint time and frequency analysis [6]. Although these methods offer
new tools for capturing hidden periodicity in stock prices, solely relying on frequency domain
analysis still has limitations, especially when dealing with complex and volatile market
environments, making it difficult to fully capture dynamic characteristics. Therefore, time-
frequency analysis methods have gained popularity in recent years. These methods can analyze
signals in both the time and frequency domains simultaneously, providing a more comprehensive
tool for complex financial markets.

Despite the potential value of time-frequency analysis methods, their application in stock
prediction still faces challenges. Firstly, effectively integrating time-domain and frequency-
domain information to comprehensively characterize the dynamic changes in stock prices is a key
focus of current research. Secondly, existing prediction algorithms often lack effective risk control
in decision optimization. Merely improving prediction accuracy is not enough to cope with market
uncertainty. Introducing intelligent decision support mechanisms into the prediction process to
help investors make more robust investment decisions in complex and volatile markets is equally
important. Additionally, traditional stock prediction processes often involve multiple independent
steps (e.g., feature extraction, model training, decision generation). The separation of these steps
not only reduces efficiency but also introduces errors at various stages [7]. To address these issues,
this paper proposes an end-to-end stock recommendation algorithm based on time-frequency
consistency, aiming to improve stock prediction accuracy and practicality by integrating time-
domain and frequency-domain information and incorporating prompt learning strategies. Firstly,
the theoretical foundation of time-frequency consistency analysis is explored in depth, and specific
methods for stock price analysis are developed. Secondly, prompt learning strategies are designed
to enable effective risk assessment and decision optimization by utilizing market features to guide
the model. Subsequently, an end-to-end stock recommendation model is constructed and trained,
integrating time-frequency feature extraction and prompt learning processes, ensuring seamless
integration throughout the prediction and decision-making process. Finally, experimental design
and empirical analysis are conducted to comprehensively evaluate the performance of the model,
verifying its effectiveness and stability in different market environments.



The structure of this paper is arranged as follows: The first part introduces the background,
problems, objectives, significance, research methods, and content of the study. The second part
reviews existing research in the field of stock prediction, particularly the progress in the application
of time-frequency analysis and prompt learning strategies, and clarifies the research direction of
this paper. The third part details the proposed end-to-end stock recommendation algorithm based
on time-frequency consistency, including time-frequency consistency analysis, the design and
application of prompt learning strategies, and the construction and implementation of the end-to-
end model. The fourth chapter focuses on experimental design and result analysis, validating the
effectiveness of the proposed algorithm through experiments, covering prediction accuracy tests
on different datasets, model comparison experiments, and result analysis. The fifth part
summarizes the main research findings and theoretical contributions of this paper, discusses the
limitations of the study, and proposes future research directions. The main contributions of this
paper are as follows:

1. This paper applies the time-frequency consistency analysis method to stock price prediction,
successfully integrating time-domain and frequency-domain information to comprehensively
capture the multi-scale dynamic characteristics of stock prices. Compared with traditional single-
domain time or frequency analysis methods, this algorithm demonstrates higher prediction
accuracy and robustness in handling complex market signals.

2. To achieve more robust investment decisions in stock recommendations, this paper designs
and applies a prompt learning strategy, guiding the model to identify low-risk buying and selling
points through pre-designed market feature prompts. This strategy not only enhances the decision-
making ability of the model but also shows significant advantages in risk control.

3. This paper develops an end-to-end stock recommendation model that integrates time-
frequency consistency analysis with prompt learning strategies, simplifying multiple independent
steps in traditional prediction processes. This model achieves full-process automation from data
input to stock recommendation, not only improving prediction efficiency but also enhancing the
model's integration and practicality in real-world applications.

2. Related Work

As the global economy continues to develop and financial markets become increasingly complex,
accurately predicting stock prices has become a growing challenge. This challenge mainly stems
from the non-stationarity, high volatility, frequent fluctuations, and inherent randomness of stock
market data. These characteristics often make traditional statistical models and fundamental
analysis methods inadequate when dealing with complex time series data. An increasing number
of scholars and practitioners are dedicated to developing more precise and efficient predictive
models. Traditional stock prediction methods primarily include time series analysis, technical
analysis, and fundamental analysis. Building on these methods, researchers have proposed
improved time series analysis approaches. For example, Shakir Khan et al. [9] proposed an
ARIMA model-based method to accurately predict stock time series. By analyzing five years of
historical data for Netflix stock, they compared an automated ARIMA model with a custom
ARIMA(p, D, g) model and found that ARIMA(1,1,33) performed best in terms of accuracy,
demonstrating the effectiveness of the ARIMA model in stock prediction. Lu Wang et al. [10]
proposed a GARCH-MIDAS model that combines asymmetry and extreme volatility effects to
model and predict stock price volatility more accurately. Their research indicates that the
asymmetric effect has a significantly greater impact on volatility in both the long and short term
compared to extreme volatility effects. Through a series of robustness tests, their study also
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confirmed the model's superior performance in predicting short-term volatility. These methods
assume that market prices follow certain historical patterns that can be captured by statistical
models. However, as the market environment continues to evolve, especially in the face of
nonlinear and highly volatile market conditions, the predictive effectiveness of such methods is
often limited.

In recent years, with the rise of deep learning technologies, models like Long Short-Term
Memory (LSTM) networks have shown great potential in handling nonlinear time series prediction
tasks. However, they mainly rely on time-domain data and struggle to capture more complex
market dynamics. Hum Nath Bhandari et al. [11] proposed an LSTM-based method for predicting
the next day's closing price of the S&P 500 index. They developed single-layer and multi-layer
LSTM models using nine predictive factors, including market data, macroeconomic data, and
technical indicators. The study results showed that the single-layer LSTM model outperformed the
multi-layer LSTM model in prediction accuracy and fit. Burak GUmez et al. [12] proposed a deep
LSTM network combined with the Artificial Rabbit Optimization (ARO) algorithm (LSTM-ARO)
for stock price prediction. They applied this model to Dow Jones Industrial Average (DJIA) stock
data and compared it with traditional Artificial Neural Networks (ANN), three other LSTM models,
and an LSTM model optimized using Genetic Algorithms (GA). The LSTM-ARO model exhibited
higher predictive accuracy across various evaluation metrics. In technical analysis, researchers and
investors widely use indicators like Moving Averages (MA) and the Relative Strength Index (RSI).
These technical indicators analyze historical price and volume data to predict future market trends.
While these methods are intuitive and easy to use, they often overlook fundamental market
information, especially in long-term predictions. Additionally, technical analysis methods
typically struggle to handle unexpected events or abnormal market fluctuations, limiting their
application in complex market environments. Frequency domain analysis methods offer a different
perspective from traditional time-domain analysis by transforming time series data into frequency
components to reveal cyclical patterns hidden in price fluctuations. Donghwan Song et al. [14]
proposed a Padding-Fourier Transform Denoising (P-FTD) method to improve the prediction
accuracy of financial time series data. This method addresses the issue of data divergence at both
ends when restoring the original time series by eliminating noise waveforms in the frequency
domain. Applying the denoised data to several time series-based deep learning models
demonstrated that deep learning models combined with P-FTD technology outperformed basic
models in prediction performance and effectively mitigated time lag issues. Satya Verma et al. [15]
proposed a feature engineering method based on Discrete Wavelet Transform (DWT) and Chicken
Swarm Optimization (CSO) (DWT-CSO) for stock market prediction. Their model decomposed
data using DWT and used CSO to select the optimal feature subset to address data noise and the
problem of too many features. However, relying solely on frequency domain analysis has
limitations, particularly in integrating time-domain and frequency-domain information to fully
capture the dynamic characteristics of the market.

Time-frequency analysis methods, such as Short-Time Fourier Transform (STFT) and Wavelet
Packet Decomposition (WPD), attempt to analyze signals in both the time and frequency domains
simultaneously, providing more comprehensive market information. Yaqging Luo et al. [16]
proposed a wavelet neural network model combined with time-frequency analysis, using Gaussian
wavelets as the activation function and refining stock price data through wavelet decomposition to
enhance the model's sensitivity to data. This model significantly reduced the mean squared error
in London stock market data. These methods can better capture market dynamics by jointly
analyzing time and frequency components. However, in complex and volatile market environments,
the key challenge in current research lies in how to make models more accurately identify favorable
investment opportunities and potential risks. Prompt learning strategies, an emerging machine
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learning optimization method, have also begun to show potential in the financial field. Defu Cao
et al. [17] proposed a new framework called TEMPO, based on generative pre-trained
Transformers for time series prediction. This framework leverages two key inductive biases in
time series tasks: the complex interaction decomposition of trend, seasonality, and residual
components, and promotes the adaptation of different types of time series distributions by
designing prompts. Tian Guo et al. [18] proposed a method for predicting stock returns based on
large language models (LLMs) combined with financial news streams. By fine-tuning LLMs, they
integrated text representation with the prediction module and compared the impact of differences
between encoder-only and decoder-only LLMs on prediction performance. Their aggregated
representation improved the performance of long and long-short portfolios in stock return
prediction. Prompt learning optimizes the decision-making process by guiding the model to learn
specific market features through pre-designed prompts. In the field of financial prediction, end-to-
end models integrate feature extraction, model training, and decision generation into a unified
framework, avoiding errors that may be introduced by multiple independent steps in traditional
methods. Existing stock prediction methods still have many shortcomings in capturing market
multi-scale features, achieving effective risk control, and decision support. Building on this
foundation, this paper proposes an innovative end-to-end stock recommendation algorithm based
on time-frequency consistency, aiming to enhance stock prediction accuracy and practicality and
provide more reliable decision support for investors.

3. Method

Figure 1 illustrates the overall architecture of the proposed stock recommendation algorithm,
which is trained in an end-to-end manner to ensure time-frequency consistency. Initially, the input
stock data is processed through time and frequency encoders to extract temporal and frequency
features, respectively. These features are then patched and combined with prompt information
before being embedded into the model. The model further processes and integrates these features,
and finally, a fully connected neural network is used to make predictions, outputting stock
recommendations. The entire process leverages time-frequency consistency analysis to
comprehensively capture the dynamic characteristics of stock prices, achieving a complete end-to-
end workflow from data input to stock recommendation.
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Figure 1. Overall algorithm architecture.



3.1 Time-Frequency Consistency Model

The time-frequency consistency model is an innovative method proposed in recent years for time
series analysis. It aims to represent time series data in both the time domain and frequency domain
simultaneously, ensuring consistency in a unified time-frequency space. This approach is
particularly suitable for handling time series data with complex dynamic characteristics. Time
series data are prevalent across various fields, such as financial markets, medical diagnostics, and
traffic analysis. In financial markets, stock price fluctuations not only reflect trends over time (time
domain features) but also contain various periodic and non-periodic components (frequency
domain features). Traditional time series analysis methods typically focus on either time domain
or frequency domain analysis, making it challenging to comprehensively capture these complex
features. The time-frequency consistency model was proposed to overcome this limitation. The
core idea is to simultaneously learn feature representations in both the time and frequency domains
and enforce consistency between these representations in a latent time-frequency space. This
enables the model to better understand and predict the dynamic changes in time series data. The
algorithm architecture diagram is shown in Figure 2.
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Figure 2. Time-frequency consistency model architecture diagram.

The model comprises a time encoder Gy and a frequency encoder Gg. The time encoder
receives the time series input x(t) and maps it to a latent representation in the time domain zr:

z, =G, (X(t)) (1

The frequency encoder Gg receives the frequency representation of the time series X(f) and
maps it to a latent representation in the frequency domain zg:

Ze =G (X(1)) @)

Here, X(f) is the frequency domain representation of the signal obtained through Fourier
transform or other spectral analysis methods. To compare the representations in the time and
frequency domains within the same space, the model introduces two projectors: the time domain
projector Rt and the frequency domain projector Rg. These projectors map the time and
frequency representations into a unified time-frequency consistency space:
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2P =R (z,), z” =R.(z.) A3)

where z%p) and zy~ represent the projected time domain and frequency domain representations,

respectively. The model is designed with a loss function that ensures the representations of the
same time series in the time and frequency domains are as close as possible in the projected time-
frequency space. To achieve this, a time-frequency consistency loss function L¢ is introduced:

Le = > (4@, ") -d(z?,2") +5) (4)

Spair

(p)
F

where d(-,) denotes a distance measure in the projection space, iff’) is the representation after

frequency domain perturbation, and & is a constant used to maintain negative sample separation.

This loss function encourages the model to pull the time domain and frequency domain
representations of the same time series closer together in the time-frequency space while pushing
apart the representations of different time series or perturbed representations. This maintains
consistency in the latent space. The model is trained using a contrastive learning framework by
constructing positive and negative sample pairs. Positive sample pairs consist of time and
frequency domain representations of the same time series, while negative sample pairs are
composed of representations from different time series or the original and perturbed
representations. The total loss function of the model consists of three parts. The time domain
contrastive loss Ly is used to optimize the time encoder Gy to generate representations invariant
to time perturbations:

L =2 d(z.%) ()

The frequency domain contrastive loss Lg is used to optimize the frequency encoder Gy to
generate representations invariant to spectral perturbations:

Le =2.d(2. %) (6)

The time-frequency consistency loss L ensures consistency between the time and frequency
representations in the time-frequency space:

Le = > (d@",2)-d(z”,2") +) (7
Spair
The total loss function is:
L= AL +Le)+ (- 2L (8)

where A is a hyperparameter that balances the contrastive loss and the consistency loss. By
minimizing this total loss function, the model can learn both time domain and frequency domain
feature representations while maintaining consistency between them in the time-frequency space,
thereby enhancing the model's ability to capture the complex dynamic characteristics of time series
data.



3.2 Prompt Learning Model

Prompt learning aims to guide the model in identifying the lowest-risk entry points within a
specific time frame by using pre-designed prompts. The design of these prompts relies on the
analysis of historical stock price data, combined with prior market knowledge and specific
investment strategies. These prompts can be specific patterns in the time series, threshold values
of indicators, or time windows for certain key events. Subsequently, based on these time-frequency
consistency features, prompt learning is used to optimize investment decisions. The architecture
diagram is shown in Figure 3.
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Figure 3. Prompt learning model architecture diagram.

Assume that the time series data X = {x4,X,, ..., Xt} and the time-frequency consistency
features generated through time-frequency analysis are represented as follows:

Z. ={z;(t),z; (t,),..., Z; (t;)}

©)
Z. ={z: (1)), 2 (f,),.... 2 (fe)}
where zp(t;) represents the time-domain feature, and zF(fj) represents the frequency-domain
feature. Through the time-frequency consistency model, these features are mapped into a unified
latent space to obtain the time-frequency consistency feature Zrg:

Zre ={z; (), Zre (), 2 (8 (10)

These features represent the consistency information of the time series data in both time and
frequency dimensions, capturing the multi-scale dynamic characteristics of the data. After
obtaining the time-frequency consistency feature Zrg, a set of prompt signals is constructed using
these time-frequency features to guide the model in making buy or sell decisions. To more
effectively utilize these features, further processing and feature extraction are performed. By
calculating the moving averages, rate of change, frequency domain energy, etc., of these features,
different market signals are captured:

CD(ZTF)={¢1(ZTF)’¢2(ZTF)’---'@(ZTF)} (11)
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where ¢;(Zrp) is the i-th feature extracted from the time-frequency consistency features, and k
is the number of features.

Based on the extracted features ®(Ztg), prompt functions p; are defined, which are used to
generate buy or sell prompt signals. A prompt function based on time-frequency energy
aggregation can be defined as follows:

pi(ZTF't): Z ZTF(t'f) (12)

feF,

selected

where Fgecica represents the selected frequency range, and zrg(t f) represents the time-
frequency feature value at time t and frequency f. This prompt function indicates the degree of
energy aggregation within a specific frequency range, corresponding to a certain market signal
such as a trend reversal or price breakout. To provide more comprehensive decision-making
guidance, the outputs of multiple prompt functions are integrated to generate a final prompt signal

S(b):
S() =2 Wi p(Ze 1) (13)

where w; is the weight of the prompt function p;, indicating the importance of each prompt in
the combined signal. These weights are automatically adjusted through the model training process
to maximize prediction performance. After obtaining the combined prompt signal S(t), decision
rules can be generated based on this signal value to issue buy or sell instructions. When S(t)
exceeds a certain threshold 0, it indicates that the current market state is suitable for buying:
if S(t) > 6, then buy at time t, similarly, if S(t) falls below another threshold 6, it may suggest
selling.

3.3 End-to-End Learning

In the stock recommendation algorithm proposed in this paper, the end-to-end learning method is
the core of the entire model, enabling the full automation of the process from raw data input to
final decision output. Within the end-to-end learning framework, all steps, from time-frequency
consistency feature extraction and prompt signal generation to decision optimization, are
integrated into a unified model, where joint training directly optimizes the final investment
decisions.

The end-to-end learning model consists of several sub-modules that work collaboratively to
achieve the overall goal of stock recommendation. The input representation module receives the
raw time-series data X = {x4,Xy,..,Xp} and performs initial feature extraction. The time-
frequency consistency module extracts time-frequency features Zpr from the input representation,
capturing the dynamic changes in stock prices across both the time and frequency domains. The
prompt learning module constructs prompt signals S(t) based on the time-frequency features,
which guide the buy or sell decisions. The decision module generates the final investment decisions
based on the prompt signals. The architecture of the entire model can be expressed as the following
function composition:



D(X) = fdecision ( fprompt ( fTF (X ))) (14)

where frp represents the time-frequency consistency module, f,.ny, represents the prompt
learning module, and fy..ision represents the final decision module. The output D(X) is the final
decision result. The joint loss function in end-to-end learning simultaneously optimizes the
parameters of all sub-modules, thereby directly enhancing the quality of the final decisions. The
total loss function Ly, is composed of the following three parts:

Time-frequency consistency loss Lyp is used to optimize the representation of time-frequency
features, ensuring consistency across both time and frequency domains.

H ftime(xt)_ ffreq(xt)u2 (15)

M—{

LTF =

t

I
UN

where fiin.(Xy) and fgeq(X() represent the feature representations in the time and frequency
domains, respectively. Prompt learning loss Ly,mpe Optimizes the generation of prompt signals to
accurately reflect potential market trends and risks.

Lo = 2[5 O-S (16)

where S(t) is the prompt signal generated by the model, and S(t) is the target signal based on
historical data. Decision 10SS Lgesion directly optimizes the final investment decisions,
minimizing risk while maximizing returns.

Ldecision = _Z r(t) + ﬂ“z G(t) (1 7)

teB teB

where r(t) represents the expected return at time t, o(t) represents the corresponding risk
measure, and A is a balancing coefficient. The joint loss function is defined as:

L[otal = aLTF + ﬂ Lprompt + 4 Ldecision (1 8)

where «, B, and y are hyperparameters that adjust the weights of each loss component and are
automatically tuned during model training. By minimizing the joint loss function L.y, the
parameters of all modules are optimized simultaneously. The model is trained using gradient
descent, gradually updating the parameters to reduce the overall loss:

¢ =argmin, L, (0) (19)

where 6 represents all the model parameters, including those of the time-frequency consistency
module, prompt learning module, and decision module. During training, the model continuously
learns from historical data, gradually improving its ability to predict and make decisions for future
markets. Through end-to-end joint training, the model can automatically capture complex patterns
in the input data and directly use these patterns to guide decision-making.
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4. Experiment

4.1 Experimental Environment

The experimental environment in this study includes both hardware and software configurations,
as well as data sources. On the hardware side, the experiments were conducted on a computer
equipped with an Intel Core i7 processor, 64GB of RAM, and an NVIDIA GTX 3090 graphics
card. On the software side, Python was primarily used as the programming language, along with
the TensorFlow deep learning framework for model training and inference. Additionally, data
processing libraries such as Pandas and NumPy were utilized to efficiently manage and process
time-series data.

4.2 Experimental Data
«  S&P 500 Index Constituents Dataset

The S&P 500 Index Constituents dataset [19] contains the historical trading data of the 500 most
representative companies in the U.S. stock market. This dataset includes key information for each
constituent stock, such as daily opening price, closing price, highest price, lowest price, and trading
volume. Since the S&P 500 index covers leading companies across multiple industries, this dataset
reflects the overall performance of the U.S. market. By using this dataset, one can test stock
recommendation models under broad market conditions, making it particularly suitable for large-
cap market analysis, cross-sector comparisons, and diversified investment strategy experiments.

»  Shanghai A-Share Dataset

The Shanghai Stock Exchange A-Share dataset [20] contains the historical trading data of
companies listed in mainland China, including key metrics such as opening price, closing price,
highest price, lowest price, and trading volume. As a representative of emerging markets, China’s
A-share market is characterized by significant volatility and unique market mechanisms. This
makes the dataset highly suitable for evaluating stock recommendation models in the context of
emerging markets. Conducting experiments on this dataset allows for an in-depth study of the
generalization ability and stability of time-frequency consistency models under different market
conditions.

*  NASDAQ 100 Index Constituents Dataset

The NASDAQ 100 Index Constituents dataset [21] gathers the daily trading data of the top 100
non-financial companies in the U.S. NASDAQ market. These companies primarily operate in
sectors such as technology, communications, and biotechnology, and their stock prices tend to
exhibit high volatility. This dataset provides detailed information, including opening price, closing
price, highest price, lowest price, and trading volume, making it suitable for testing stock
recommendation models in highly volatile markets. Using this dataset, one can assess the model’s
prediction accuracy and risk control capabilities in high-risk stock environments.

»  FTSE 100 Index Constituents Dataset
The FTSE 100 Index Constituents dataset [22] contains the historical trading data of the 100 largest

companies by market capitalization on the London Stock Exchange. This index represents the
overall performance of the UK market, and the dataset covers key information such as daily
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opening price, closing price, highest price, lowest price, and trading volume. FTSE 100 companies
span multiple industries, and the market is relatively mature and stable. By conducting experiments
on this dataset, one can test stock recommendation models in mature markets, making it especially
suitable for studying the model’s adaptability to different economic environments and the
effectiveness of long-term investment strategies.

4.3 Evaluation Metrics
»  Mean Absolute Error (MAE)

MAE is used to measure the average absolute error between the model's predicted results and the
actual stock prices. The lower the MAE value, the more accurate the model's prediction of stock
prices. Since MAE only considers the absolute value of the errors, it avoids the issue of positive
and negative errors canceling each other out. Therefore, MAE directly reflects the magnitude of
the model's prediction bias. The formula for MAE is as follows:

n

MAE=%Z|yi =4 (20)

i=1

where y; is the actual stock price, ¥, is the model's predicted stock price, and n is the number
of samples.

*  Mean Squared Error (MSE)

MSE is used to measure the overall error of the model by taking the average of the squared
prediction errors. It not only measures the size of the prediction error but also amplifies the effect
of large errors due to the squaring operation, which makes it particularly sensitive to extreme
market fluctuations. The lower the MSE value, the better the overall performance of the model's
predictions. The formula for MSE is as follows:

MSE=%Z(yi -9, @21

i=1
»  Coefficient of Determination (R¥F

R=measures the model's ability to explain the variability in stock prices, with a value between 0
and 1. The closer it is to 1, the better the model's fit. In stock recommendation algorithms, R=can
help us understand the correlation between the predicted stock prices and the actual prices. A high
R=value indicates that the model captures stock price trends well, whereas a low R=2value may
suggest that the model has not fully utilized the data to make accurate predictions. The formula is
as follows:

(22)



where ¥ is the mean of all actual stock prices.

*  Normalized Discounted Cumulative Gain (NDCG)

NDCG is commonly used as an evaluation metric in recommendation systems, suitable for
assessing the performance of ranking tasks. NDCG effectively measures whether the positions of
highly relevant items in the recommendation list are reasonable and whether the model can
correctly identify and prioritize important stocks or other financial products. A high NDCG value
indicates that the model can accurately rank the most relevant items at the top, thus improving user
satisfaction and the success rate of investment decisions.

NDCG = 2¢¢ (23)
IDCG

where DCG is the Discounted Cumulative Gain, which considers the importance of the position
by calculating the cumulative gain with a discount factor for the ranking position.

5 rel,
DCG=> —1— (24)
i1 log, (i+1)

where 1 is the position of the recommended item in the list, and rel; is the relevance score of the
i-th recommended item. Generally, the top few items in the list are more important, and by
discounting for position, the quality of the recommendation system can be more accurately
reflected. IDCG represents the Ideal Discounted Cumulative Gain, which refers to the maximum
DCG value that can be achieved in the ideal case (where the most relevant items are ranked at the

top).

& rel,
1

IDCG= ) ——
= log, (i+1)

(25)

where |REL| represents the total number of recommended items in the ideal ranking.
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4.4 Experimental Comparison and Analysis

Tablel. Comparison of relevant indicators of this method with other methods on S&P 500 Index
Constituents Dataset and Shanghai A-Share Dataset.

S&P 500 Index Constituents Dataset Shanghai A-Share Dataset
MAE MSE R2 NDCG MAE MSE R? NDCG

Model

Yang et al. [23] 0.264 0.136 0862 0374 0253 0.124 0.883 0.382
Liu et al. [24] 0.194 0.112 0894 0384 0.186 0.101 0912 0.391

Lu etal. [25] 0.284 0.153 0849 0362 0.261 0.135 0.857 0.376
Chaudharietal. [26] 0.337 0.197 0.837 0354 0.303 0.142 0.869 0.379
Wijerathne etal. [27] 0.163 0.073 0912 0.391 0.158 0.064 0.924 0.412
Mahmoodi etal. [28] 0.192 0.092 0.896 0.388 0.176 0.087 0.922 0.396
Ours 0.078 0.036 0944 0436 0.064 0.027 0.952 0.447

From the data in Table 1, it is evident that our proposed algorithm outperforms other methods
on the S&P 500 Index Constituents Dataset and the Shanghai A-Share Dataset. Specifically, in
terms of MAE and MSE, our method achieved the lowest values of 0.078 and 0.036 on the S&P
500 dataset, and 0.064 and 0.027 on the Shanghai A-Share dataset, indicating that our method
significantly outperforms others in error control. Additionally, for the R2 and NDCG metrics, our
method also stands out, reaching 0.944 and 0.436 on the S&P 500 dataset, and 0.952 and 0.447 on
the Shanghai A-Share dataset, far exceeding other comparative methods. In contrast, while the
method by Wijerathne et al. also has relatively high R2 and NDCG values, it still falls short of our
method in terms of error metrics. Figure 4 provides a visual comparison of these results.
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Figure 4. Visual comparison of relevant indicators on S&P 500 Index Constituents Dataset and
Shanghai A-Share Dataset.

Table2. Comparison of relevant indicators of this method with other methods on NASDAQ 100
Index Constituents Dataset and FTSE 100 Index Constituents Dataset.

NASDAQ 100 Index Constituents

FTSE 100 Index Constituents

Model Dataset Dataset
MAE MSE R2 NDCG MAE MSE R2 NDCG
Yang et al. 0324 0195 0.842 0.362 0.335 0.194 0.842 0.358
Liu et al. 0.242 0.117 0.882 0.372 0.257 0.129 0.871 0.374
Luetal. 0.276 0.142 0.877 0.368 0.286 0.162 0.841 0.359
Chaudhariet 0312  0.163  0.853 0351 0322 0.185 0.841 0.339
al.
Wijerathneet  0.154 0.071 0.905 0.396 0.169 0.079 0.907 0.388
al.
Mahmoodiet  0.176  0.086  0.893 0.384 0.172 0.081 0.899 0.386
al.
Ours 0.094 0.063 0.924 0415 0.069 0.035 0.942 0.436
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From the data in Table 2, our method significantly outperforms other comparative methods on
the NASDAQ 100 and FTSE 100 Index Constituents Datasets. Specifically, in terms of MAE and
MSE, our model achieved the lowest error values on both datasets, demonstrating its significant
advantage in prediction accuracy. Additionally, the R2 metric shows that our method reached
0.924 and 0.942 on these datasets, reflecting its strong ability to fit the real data. For the NDCG
metric, our method achieved 0.415 and 0.436 on the NASDAQ 100 and FTSE 100 datasets,
surpassing all other comparative methods. Overall, our algorithm outperforms existing methods
across multiple metrics, showcasing superior overall performance. Figure 5 provides a visual
comparison of these trends.
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Figure 5. Visual comparison of relevant indicators on NASDAQ 100 Index Constituents Dataset
and FTSE 100 Index Constituents Dataset.
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Table3. Comparison of training indicators on four datasets.

S&P 500 Index Constituents Dataset

Model Paramete Inference Trainning  Paramete Inference Trainning
rs(M) Time(ms) Time(s) rs(M) Time(ms) Time(s)

Yang et
| 391.04 396.70 184.80 351.70 356.89 285.14
al.
Liu et al. 377.57 363.19 183.82 374.00 365.12 265.35
Luetal. 358.40 392.19 202.62 372.88 331.20 242.99
Chaudhari
ral 384.77 383.27 207.68 368.49 355.77 263.88
etal.
Wijerathn
390.79 373.21 258.84 359.01 367.47 267.78
eetal.
Mahmood
ot al 366.53 342.79 214.83 353.25 389.96 208.06
i etal
Ours 336.54 306.46 171.24 338.69 316.73 176.52
NASDAQ 100 Index Constituents .
FTSE 100 Index Constituents Dataset
Dataset
Model
Paramete Inference Trainning  Paramete Inference Trainning
rs(M) Time(ms) Time(s) rs(M) Time(ms) Time(s)
Yang et
| 373.22 393.86 253.88 381.06 314.66 235.83
al.
Liu et al. 382.11 372.26 239.43 372.00 301.52 287.33
Luetal. 355.96 382.87 235.64 359.78 295.74 235.82
Chaudhari
Cal 374.27 379.35 284.10 368.58 376.55 291.35
etal.
Wijerathn
361.01 386.80 247.54 357.61 340.72 257.43
eetal
Mahmood
ot al 356.60 359.99 284.54 377.29 325.23 229.29
i etal.

Ours 342.64 322.59 177.84 342.57 275.74 220.34
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From the data in Table 3, our method excels in terms of parameter size, inference time, and
training time. Firstly, for the number of parameters, our method has the smallest parameter scale
across all four datasets. For example, on the S&P 500 and NASDAQ 100 datasets, our model
parameters are 336.54M and 342.64M, significantly reduced compared to other models, indicating
that our model is more lightweight and efficient. Secondly, for inference time, our model showed
the fastest inference speed across all datasets. On the S&P 500 and FTSE 100 datasets, the
inference times are 306.46ms and 275.74ms, lower than other methods, indicating that our model
responds faster in real-time inference. Finally, for training time, our method also demonstrated the
shortest training time across all datasets. On the NASDAQ 100 dataset, our training time was
177.84 seconds, and on the FTSE 100 dataset, it was 220.34 seconds, more efficient than other
models. This proves that while maintaining prediction accuracy, our model can significantly
reduce computation costs and training time, improving overall efficiency. Figure 6 provides a
visual comparison of these results.
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Figure 6. Visual comparison of training indicators.
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Table4. Ablation experiments on S&P 500 Index Constituents Dataset and Shanghai A-Share
Dataset.

S&P 500 Index Constituents Dataset Shanghai A-Share Dataset
Model
MAE  MSE R2 NDCG MAE MSE R2 NDCG

baseline 0.286 0.163 0.784 0.364 0.273 0.151 0.789 0.381
+TFC 0.185 0.069 0.864 0.396 0.177  0.052 0.873 0.411
+Prompt 0.124  0.043 0.916 0.419 0.112 0.035 0.927 0.426
+TFC-Prompt  0.078  0.036  0.944 0.436 0.064 0.027 0.952 0.447

Table5. Ablation experiments on NASDAQ 100 Index Constituents Dataset and FTSE 100 Index
Constituents Dataset.

NASDAQ 100 Index Constituents FTSE 100 Index Constituents
Model Dataset Dataset

MAE MSE R2 NDCG MAE MSE R? NDCG

baseline 0.316 0.196 0.754 0.352 0279 0159 0.776  0.373
+TFC 0.224 0.069 0.826 0.381 0.182 0.062 0.869  0.399
+Prompt 0.151 0.064 0.896 0.401 0.121 0.041 0921 0.420

+TFC-
Prompt

0.094 0.063 0.924 0.415 0.069 0.035 0942 0.436

The data in Tables 4 and 5 shows that the stock recommendation algorithm, which combines
Time-Frequency Consistency (TFC) and Prompt learning, significantly outperforms the baseline
model across multiple datasets. On the S&P 500 Index Constituents Dataset, the baseline model’s
MAE is 0.286, MSE is 0.163, R2 is 0.784, and NDCG is 0.364. On the Shanghai A-Share Dataset,
the baseline model’'s MAE is 0.273, MSE is 0.151, R2 is 0.789, and NDCG is 0.381. After
introducing Time-Frequency Consistency (TFC), the MAE on the S&P 500 dataset dropped to
0.185, MSE dropped to 0.069, R2 increased to 0.864, and NDCG rose to 0.396. Similarly, on the
Shanghai A-Share dataset, the MAE and MSE dropped to 0.177 and 0.052, R2 increased to 0.873,
and NDCG increased to 0.411. Further introducing Prompt learning improved performance even
more, with the S&P 500 dataset's MAE and MSE reaching 0.124 and 0.043, R2 rising to 0.916,
and NDCG to 0.419; and on the Shanghai A-Share dataset, the MAE dropped to 0.112, MSE to
0.035, and Rz and NDCG increased to 0.927 and 0.426, respectively. Ultimately, when using the
TFC-Prompt strategy, the S&P 500 dataset achieved the lowest MAE of 0.078, MSE of 0.036, R2
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of 0.944, and NDCG of 0.436. On the Shanghai A-Share dataset, the MAE decreased to 0.064,
MSE to 0.027, R2 reached 0.952, and NDCG increased to 0.447. A similar trend can be seen in
the NASDAQ 100 and FTSE 100 Index Constituents Datasets in Table 5. When the TFC-Prompt
strategy was introduced, the MAE on the NASDAQ 100 dataset dropped to 0.094, MSE to 0.063,
R2 reached 0.924, and NDCG rose to 0.415. On the FTSE 100 dataset, the MAE decreased to
0.069, MSE to 0.035, R2 reached 0.942, and NDCG increased to 0.436. This indicates that the
synergy between Time-Frequency Consistency and Prompt learning can provide more accurate
and reliable investment strategies for stock recommendations. Figures 7 and 8 visually depict these
trends.

S&P 500 Index Constituents Dataset Shanghai A-Share Dataset
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Figure 7. Visual comparison of ablation experiments on S&P 500 Index Constituents Dataset and
Shanghai A-Share Dataset.
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Figure 8. Visual comparison of ablation experiments on NASDAQ 100 Index Constituents
Dataset and FTSE 100 Index Constituents Dataset.
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5. Conclusion

This paper proposes an end-to-end stock recommendation algorithm based on time-frequency
consistency analysis and prompt learning strategies. It addresses the limitations of traditional stock
prediction methods that focus only on time-domain or frequency-domain information, enabling the
model to fully capture the multi-scale dynamic characteristics of stock prices. Experimental results
show that the algorithm significantly outperforms existing models in terms of prediction accuracy,
risk control, and computational efficiency across multiple datasets. On the S&P 500 Index
Constituents Dataset, the proposed algorithm achieved the lowest MAE of 0.078 and MSE of 0.036,
with an R=2value of 0.944 and an NDCG score of 0.436. Additionally, the model continued to
perform well across multiple datasets, demonstrating its advantage in prediction accuracy. By
introducing time-frequency consistency analysis, the model simultaneously considers both time-
domain and frequency-domain features, resulting in more accurate stock price predictions. The
prompt learning strategy further optimizes the decision-making process by identifying low-risk
entry points, enhancing risk control in stock recommendations. Furthermore, the end-to-end model
simplifies the entire prediction process, from data input to final recommendation, significantly
improving prediction efficiency and reducing model complexity. However, this study still has
some limitations. The model's performance is partially dependent on the quality of input data and
the design of prompts, which may require further optimization for different market conditions and
financial instruments. Moreover, the application of the model in real-time trading needs further
exploration to ensure it can adapt to rapidly changing market environments. Future research will
focus on improving the model's adaptability by introducing advanced machine learning techniques
such as reinforcement learning and adversarial training. Expanding the application of the model to
other financial markets and instruments will also help to further understand its robustness and
generalizability.
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