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Abstract:The volatility and complexity of stock prices in the financial market make 
precise trend prediction a formidable challenge. Traditional stock prediction approaches 
often rely solely on either time-domain or frequency-domain information, which limits 
their ability to fully capture the multi-scale dynamics of stock prices, resulting in 
suboptimal prediction accuracy. To overcome these limitations, this paper presents an 
end-to-end stock recommendation algorithm grounded in time-frequency consistency. 
First, we introduce a time-frequency consistency analysis method that extracts both time-
domain and frequency-domain features of stock prices concurrently, offering a more 
holistic view of trend fluctuations. Next, by applying prompt learning strategies, the 
model leverages pre-set prompts to identify optimal low-risk buying points within 
targeted time intervals, enhancing the decision-making process for stock 
recommendations. Finally, end-to-end model training facilitates seamless integration and 
automation from data input to stock recommendation output, enabling a fully streamlined 
prediction workflow. Experimental results indicate that this method surpasses traditional 
approaches in prediction accuracy and risk control, providing more dependable support 
for investor decisions. 
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1. Introduction 

In today's highly volatile and complex financial markets, accurately predicting stock price trends 

is crucial for investors. Stock price fluctuations are influenced by various factors, including 

macroeconomic indicators, company performance, market sentiment, and international political 

situations. Due to the complexity of the interactions among these factors, predicting stock prices 

has become one of the most challenging tasks in the financial field [1]. Traditional stock prediction 
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methods, such as those based on time series analysis, moving averages, or regression models, 

provide tools for trend analysis to some extent but are often limited to single-domain time analysis. 

This one-dimensional approach fails to fully capture the multi-scale dynamic characteristics of 

stock prices and shows limitations, especially when dealing with nonlinear and complex market 

signals [2]. 

With advances in computing power and data processing technologies, machine learning 

algorithms have gradually become emerging tools for stock prediction. These methods include 

Support Vector Machines (SVM), Random Forests (RF), and Neural Networks (NN), which can 

make predictions by learning complex patterns from large amounts of historical data [3]. In 

particular, deep learning models, such as Long Short-Term Memory (LSTM) networks and 

Convolutional Neural Networks (CNNs), have shown great potential in handling nonlinear time 

series prediction tasks due to their strong feature extraction and pattern recognition capabilities [4]. 

However, most of these methods still rely on single-domain time analysis, making it difficult to 

comprehensively capture the multi-scale dynamic characteristics of stock prices. Frequency 

domain analysis methods have emerged as a response, revealing cyclical patterns hidden in price 

fluctuations by decomposing time series data into frequency components. For example, Fourier 

Transform can convert time series data into a sum of sine waves of different frequencies, helping 

to identify market behavior at different time scales [5]. Wavelet Transform further extends the 

application scope of frequency domain analysis by decomposing signals into sub-waves of 

different scales, providing joint time and frequency analysis [6]. Although these methods offer 

new tools for capturing hidden periodicity in stock prices, solely relying on frequency domain 

analysis still has limitations, especially when dealing with complex and volatile market 

environments, making it difficult to fully capture dynamic characteristics. Therefore, time-

frequency analysis methods have gained popularity in recent years. These methods can analyze 

signals in both the time and frequency domains simultaneously, providing a more comprehensive 

tool for complex financial markets. 

Despite the potential value of time-frequency analysis methods, their application in stock 

prediction still faces challenges. Firstly, effectively integrating time-domain and frequency-

domain information to comprehensively characterize the dynamic changes in stock prices is a key 

focus of current research. Secondly, existing prediction algorithms often lack effective risk control 

in decision optimization. Merely improving prediction accuracy is not enough to cope with market 

uncertainty. Introducing intelligent decision support mechanisms into the prediction process to 

help investors make more robust investment decisions in complex and volatile markets is equally 

important. Additionally, traditional stock prediction processes often involve multiple independent 

steps (e.g., feature extraction, model training, decision generation). The separation of these steps 

not only reduces efficiency but also introduces errors at various stages [7]. To address these issues, 

this paper proposes an end-to-end stock recommendation algorithm based on time-frequency 

consistency, aiming to improve stock prediction accuracy and practicality by integrating time-

domain and frequency-domain information and incorporating prompt learning strategies. Firstly, 

the theoretical foundation of time-frequency consistency analysis is explored in depth, and specific 

methods for stock price analysis are developed. Secondly, prompt learning strategies are designed 

to enable effective risk assessment and decision optimization by utilizing market features to guide 

the model. Subsequently, an end-to-end stock recommendation model is constructed and trained, 

integrating time-frequency feature extraction and prompt learning processes, ensuring seamless 

integration throughout the prediction and decision-making process. Finally, experimental design 

and empirical analysis are conducted to comprehensively evaluate the performance of the model, 

verifying its effectiveness and stability in different market environments. 
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The structure of this paper is arranged as follows: The first part introduces the background, 

problems, objectives, significance, research methods, and content of the study. The second part 

reviews existing research in the field of stock prediction, particularly the progress in the application 

of time-frequency analysis and prompt learning strategies, and clarifies the research direction of 

this paper. The third part details the proposed end-to-end stock recommendation algorithm based 

on time-frequency consistency, including time-frequency consistency analysis, the design and 

application of prompt learning strategies, and the construction and implementation of the end-to-

end model. The fourth chapter focuses on experimental design and result analysis, validating the 

effectiveness of the proposed algorithm through experiments, covering prediction accuracy tests 

on different datasets, model comparison experiments, and result analysis. The fifth part 

summarizes the main research findings and theoretical contributions of this paper, discusses the 

limitations of the study, and proposes future research directions. The main contributions of this 

paper are as follows: 

1. This paper applies the time-frequency consistency analysis method to stock price prediction, 

successfully integrating time-domain and frequency-domain information to comprehensively 

capture the multi-scale dynamic characteristics of stock prices. Compared with traditional single-

domain time or frequency analysis methods, this algorithm demonstrates higher prediction 

accuracy and robustness in handling complex market signals. 

2. To achieve more robust investment decisions in stock recommendations, this paper designs 

and applies a prompt learning strategy, guiding the model to identify low-risk buying and selling 

points through pre-designed market feature prompts. This strategy not only enhances the decision-

making ability of the model but also shows significant advantages in risk control. 

3. This paper develops an end-to-end stock recommendation model that integrates time-

frequency consistency analysis with prompt learning strategies, simplifying multiple independent 

steps in traditional prediction processes. This model achieves full-process automation from data 

input to stock recommendation, not only improving prediction efficiency but also enhancing the 

model's integration and practicality in real-world applications. 

2. Related Work 

As the global economy continues to develop and financial markets become increasingly complex, 

accurately predicting stock prices has become a growing challenge. This challenge mainly stems 

from the non-stationarity, high volatility, frequent fluctuations, and inherent randomness of stock 

market data. These characteristics often make traditional statistical models and fundamental 

analysis methods inadequate when dealing with complex time series data. An increasing number 

of scholars and practitioners are dedicated to developing more precise and efficient predictive 

models. Traditional stock prediction methods primarily include time series analysis, technical 

analysis, and fundamental analysis. Building on these methods, researchers have proposed 

improved time series analysis approaches. For example, Shakir Khan et al. [9] proposed an 

ARIMA model-based method to accurately predict stock time series. By analyzing five years of 

historical data for Netflix stock, they compared an automated ARIMA model with a custom 

ARIMA(p, D, q) model and found that ARIMA(1,1,33) performed best in terms of accuracy, 

demonstrating the effectiveness of the ARIMA model in stock prediction. Lu Wang et al. [10] 

proposed a GARCH-MIDAS model that combines asymmetry and extreme volatility effects to 

model and predict stock price volatility more accurately. Their research indicates that the 

asymmetric effect has a significantly greater impact on volatility in both the long and short term 

compared to extreme volatility effects. Through a series of robustness tests, their study also 
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confirmed the model's superior performance in predicting short-term volatility. These methods 

assume that market prices follow certain historical patterns that can be captured by statistical 

models. However, as the market environment continues to evolve, especially in the face of 

nonlinear and highly volatile market conditions, the predictive effectiveness of such methods is 

often limited. 

In recent years, with the rise of deep learning technologies, models like Long Short-Term 

Memory (LSTM) networks have shown great potential in handling nonlinear time series prediction 

tasks. However, they mainly rely on time-domain data and struggle to capture more complex 

market dynamics. Hum Nath Bhandari et al. [11] proposed an LSTM-based method for predicting 

the next day's closing price of the S&P 500 index. They developed single-layer and multi-layer 

LSTM models using nine predictive factors, including market data, macroeconomic data, and 

technical indicators. The study results showed that the single-layer LSTM model outperformed the 

multi-layer LSTM model in prediction accuracy and fit. Burak Gülmez et al. [12] proposed a deep 

LSTM network combined with the Artificial Rabbit Optimization (ARO) algorithm (LSTM-ARO) 

for stock price prediction. They applied this model to Dow Jones Industrial Average (DJIA) stock 

data and compared it with traditional Artificial Neural Networks (ANN), three other LSTM models, 

and an LSTM model optimized using Genetic Algorithms (GA). The LSTM-ARO model exhibited 

higher predictive accuracy across various evaluation metrics. In technical analysis, researchers and 

investors widely use indicators like Moving Averages (MA) and the Relative Strength Index (RSI). 

These technical indicators analyze historical price and volume data to predict future market trends. 

While these methods are intuitive and easy to use, they often overlook fundamental market 

information, especially in long-term predictions. Additionally, technical analysis methods 

typically struggle to handle unexpected events or abnormal market fluctuations, limiting their 

application in complex market environments. Frequency domain analysis methods offer a different 

perspective from traditional time-domain analysis by transforming time series data into frequency 

components to reveal cyclical patterns hidden in price fluctuations. Donghwan Song et al. [14] 

proposed a Padding-Fourier Transform Denoising (P-FTD) method to improve the prediction 

accuracy of financial time series data. This method addresses the issue of data divergence at both 

ends when restoring the original time series by eliminating noise waveforms in the frequency 

domain. Applying the denoised data to several time series-based deep learning models 

demonstrated that deep learning models combined with P-FTD technology outperformed basic 

models in prediction performance and effectively mitigated time lag issues. Satya Verma et al. [15] 

proposed a feature engineering method based on Discrete Wavelet Transform (DWT) and Chicken 

Swarm Optimization (CSO) (DWT-CSO) for stock market prediction. Their model decomposed 

data using DWT and used CSO to select the optimal feature subset to address data noise and the 

problem of too many features. However, relying solely on frequency domain analysis has 

limitations, particularly in integrating time-domain and frequency-domain information to fully 

capture the dynamic characteristics of the market. 

Time-frequency analysis methods, such as Short-Time Fourier Transform (STFT) and Wavelet 

Packet Decomposition (WPD), attempt to analyze signals in both the time and frequency domains 

simultaneously, providing more comprehensive market information. Yaqing Luo et al. [16] 

proposed a wavelet neural network model combined with time-frequency analysis, using Gaussian 

wavelets as the activation function and refining stock price data through wavelet decomposition to 

enhance the model's sensitivity to data. This model significantly reduced the mean squared error 

in London stock market data. These methods can better capture market dynamics by jointly 

analyzing time and frequency components. However, in complex and volatile market environments, 

the key challenge in current research lies in how to make models more accurately identify favorable 

investment opportunities and potential risks. Prompt learning strategies, an emerging machine 
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learning optimization method, have also begun to show potential in the financial field. Defu Cao 

et al. [17] proposed a new framework called TEMPO, based on generative pre-trained 

Transformers for time series prediction. This framework leverages two key inductive biases in 

time series tasks: the complex interaction decomposition of trend, seasonality, and residual 

components, and promotes the adaptation of different types of time series distributions by 

designing prompts. Tian Guo et al. [18] proposed a method for predicting stock returns based on 

large language models (LLMs) combined with financial news streams. By fine-tuning LLMs, they 

integrated text representation with the prediction module and compared the impact of differences 

between encoder-only and decoder-only LLMs on prediction performance. Their aggregated 

representation improved the performance of long and long-short portfolios in stock return 

prediction. Prompt learning optimizes the decision-making process by guiding the model to learn 

specific market features through pre-designed prompts. In the field of financial prediction, end-to-

end models integrate feature extraction, model training, and decision generation into a unified 

framework, avoiding errors that may be introduced by multiple independent steps in traditional 

methods. Existing stock prediction methods still have many shortcomings in capturing market 

multi-scale features, achieving effective risk control, and decision support. Building on this 

foundation, this paper proposes an innovative end-to-end stock recommendation algorithm based 

on time-frequency consistency, aiming to enhance stock prediction accuracy and practicality and 

provide more reliable decision support for investors. 

3. Method 

Figure 1 illustrates the overall architecture of the proposed stock recommendation algorithm, 

which is trained in an end-to-end manner to ensure time-frequency consistency. Initially, the input 

stock data is processed through time and frequency encoders to extract temporal and frequency 

features, respectively. These features are then patched and combined with prompt information 

before being embedded into the model. The model further processes and integrates these features, 

and finally, a fully connected neural network is used to make predictions, outputting stock 

recommendations. The entire process leverages time-frequency consistency analysis to 

comprehensively capture the dynamic characteristics of stock prices, achieving a complete end-to-

end workflow from data input to stock recommendation. 

 

Figure 1. Overall algorithm architecture. 
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3.1 Time-Frequency Consistency Model 

The time-frequency consistency model is an innovative method proposed in recent years for time 

series analysis. It aims to represent time series data in both the time domain and frequency domain 

simultaneously, ensuring consistency in a unified time-frequency space. This approach is 

particularly suitable for handling time series data with complex dynamic characteristics. Time 

series data are prevalent across various fields, such as financial markets, medical diagnostics, and 

traffic analysis. In financial markets, stock price fluctuations not only reflect trends over time (time 

domain features) but also contain various periodic and non-periodic components (frequency 

domain features). Traditional time series analysis methods typically focus on either time domain 

or frequency domain analysis, making it challenging to comprehensively capture these complex 

features. The time-frequency consistency model was proposed to overcome this limitation. The 

core idea is to simultaneously learn feature representations in both the time and frequency domains 

and enforce consistency between these representations in a latent time-frequency space. This 

enables the model to better understand and predict the dynamic changes in time series data. The 

algorithm architecture diagram is shown in Figure 2. 

 

Figure 2. Time-frequency consistency model architecture diagram. 

The model comprises a time encoder GT  and a frequency encoder GF . The time encoder 

receives the time series input x(t) and maps it to a latent representation in the time domain zT: 

 ( ( ))T Tz G x t=  (1) 

The frequency encoder GF receives the frequency representation of the time series X(f) and 

maps it to a latent representation in the frequency domain zF: 

 ( ( ))F Fz G X f=  (2) 

Here,  X(f)  is the frequency domain representation of the signal obtained through Fourier 

transform or other spectral analysis methods. To compare the representations in the time and 

frequency domains within the same space, the model introduces two projectors: the time domain 

projector RT  and the frequency domain projector RF . These projectors map the time and 

frequency representations into a unified time-frequency consistency space: 
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( ) ( )( ), ( )p p

T T T F F Fz R z z R z= =  (3) 

where zT
(p)

 and zF
(p)

 represent the projected time domain and frequency domain representations, 

respectively. The model is designed with a loss function that ensures the representations of the 

same time series in the time and frequency domains are as close as possible in the projected time-

frequency space. To achieve this, a time-frequency consistency loss function LC is introduced: 

 ( )( ) ( ) ( ) ( )

Spair

( , ) ( , )p p p p

C T F T FL d z z d z z = − +  (4) 

where d(∙,∙) denotes a distance measure in the projection space, z̃F
(p)

 is the representation after 

frequency domain perturbation, and δ is a constant used to maintain negative sample separation. 

This loss function encourages the model to pull the time domain and frequency domain 

representations of the same time series closer together in the time-frequency space while pushing 

apart the representations of different time series or perturbed representations. This maintains 

consistency in the latent space. The model is trained using a contrastive learning framework by 

constructing positive and negative sample pairs. Positive sample pairs consist of time and 

frequency domain representations of the same time series, while negative sample pairs are 

composed of representations from different time series or the original and perturbed 

representations. The total loss function of the model consists of three parts. The time domain 

contrastive loss LT is used to optimize the time encoder GT to generate representations invariant 

to time perturbations: 

 ( , )T T T

i

L d z z=  (5) 

The frequency domain contrastive loss LF is used to optimize the frequency encoder GF to 

generate representations invariant to spectral perturbations: 

 ( , )F F F

i

L d z z=  (6) 

The time-frequency consistency loss LC  ensures consistency between the time and frequency 

representations in the time-frequency space: 

 ( )( ) ( ) ( ) ( )

Spair

( , ) ( , )p p p p

C T F T FL d z z d z z = − +  (7) 

The total loss function is: 

 ( ) (1 )T F CL L L L = + + −  (8) 

where λ  is a hyperparameter that balances the contrastive loss and the consistency loss. By 

minimizing this total loss function, the model can learn both time domain and frequency domain 

feature representations while maintaining consistency between them in the time-frequency space, 

thereby enhancing the model's ability to capture the complex dynamic characteristics of time series 

data. 
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3.2 Prompt Learning Model 

Prompt learning aims to guide the model in identifying the lowest-risk entry points within a 

specific time frame by using pre-designed prompts. The design of these prompts relies on the 

analysis of historical stock price data, combined with prior market knowledge and specific 

investment strategies. These prompts can be specific patterns in the time series, threshold values 

of indicators, or time windows for certain key events. Subsequently, based on these time-frequency 

consistency features, prompt learning is used to optimize investment decisions. The architecture 

diagram is shown in Figure 3. 

 

Figure 3. Prompt learning model architecture diagram. 

Assume that the time series data X = {x1, x2, … , xT} and the time-frequency consistency 

features generated through time-frequency analysis are represented as follows: 

 
1 2

1 2

{ ( ), ( ), , ( )}

{ ( ), ( ), , ( )}

T T T T T

F F F F F

Z z t z t z t

Z z f z f z f

= 

= 
 (9) 

where zT(ti) represents the time-domain feature, and zF(fj) represents the frequency-domain 

feature. Through the time-frequency consistency model, these features are mapped into a unified 

latent space to obtain the time-frequency consistency feature ZTF: 

 1 2{ ( ), ( ), , ( )}TF TF TF TF TZ z t z t z t=   (10) 

These features represent the consistency information of the time series data in both time and 

frequency dimensions, capturing the multi-scale dynamic characteristics of the data. After 

obtaining the time-frequency consistency feature ZTF, a set of prompt signals is constructed using 

these time-frequency features to guide the model in making buy or sell decisions. To more 

effectively utilize these features, further processing and feature extraction are performed. By 

calculating the moving averages, rate of change, frequency domain energy, etc., of these features, 

different market signals are captured: 

 1 2( ) { ( ), ( ), , ( )}TF TF TF k TFZ Z Z Z   =   (11) 
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where ϕi(ZTF) is the i-th feature extracted from the time-frequency consistency features, and k 

is the number of features. 

Based on the extracted features Φ(ZTF), prompt functions pi are defined, which are used to 

generate buy or sell prompt signals. A prompt function based on time-frequency energy 

aggregation can be defined as follows: 

 

selected

( , ) ( , )i TF TF

f F

p Z t z t f


=   (12) 

where Fselected  represents the selected frequency range, and zTF(t, f)  represents the time-

frequency feature value at time t and frequency f. This prompt function indicates the degree of 

energy aggregation within a specific frequency range, corresponding to a certain market signal 

such as a trend reversal or price breakout. To provide more comprehensive decision-making 

guidance, the outputs of multiple prompt functions are integrated to generate a final prompt signal 

S(t): 

 
1

( ) ( , )
N

i i TF

i

S t w p Z t
=

=   (13) 

where wi is the weight of the prompt function pi, indicating the importance of each prompt in 

the combined signal. These weights are automatically adjusted through the model training process 

to maximize prediction performance. After obtaining the combined prompt signal S(t), decision 

rules can be generated based on this signal value to issue buy or sell instructions. When S(t) 

exceeds a certain threshold θ, it indicates that the current market state is suitable for buying: 

if S(t) > θ, then buy at time t, similarly, if S(t) falls below another threshold θ′, it may suggest 

selling. 

3.3 End-to-End Learning 

In the stock recommendation algorithm proposed in this paper, the end-to-end learning method is 

the core of the entire model, enabling the full automation of the process from raw data input to 

final decision output. Within the end-to-end learning framework, all steps, from time-frequency 

consistency feature extraction and prompt signal generation to decision optimization, are 

integrated into a unified model, where joint training directly optimizes the final investment 

decisions. 

The end-to-end learning model consists of several sub-modules that work collaboratively to 

achieve the overall goal of stock recommendation. The input representation module receives the 

raw time-series data X = {x1, x2, … , xT}  and performs initial feature extraction. The time-

frequency consistency module extracts time-frequency features ZTF from the input representation, 

capturing the dynamic changes in stock prices across both the time and frequency domains. The 

prompt learning module constructs prompt signals S(t) based on the time-frequency features, 

which guide the buy or sell decisions. The decision module generates the final investment decisions 

based on the prompt signals. The architecture of the entire model can be expressed as the following 

function composition: 
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 ( )( )decision prompt TF( ) ( )D X f f f X=  (14) 

where fTF  represents the time-frequency consistency module, fprompt  represents the prompt 

learning module, and fdecision represents the final decision module. The output D(X) is the final 

decision result. The joint loss function in end-to-end learning simultaneously optimizes the 

parameters of all sub-modules, thereby directly enhancing the quality of the final decisions. The 

total loss function Ltotal is composed of the following three parts: 

Time-frequency consistency loss LTF is used to optimize the representation of time-frequency 

features, ensuring consistency across both time and frequency domains. 

 
2

TF time freq

1

( ) ( )
T

t t

t

L f X f X
=

= −  (15) 

where ftime(Xt) and ffreq(Xt) represent the feature representations in the time and frequency 

domains, respectively. Prompt learning loss Lprompt optimizes the generation of prompt signals to 

accurately reflect potential market trends and risks. 

 
2

prompt

1

ˆ( ) ( )
T

t

L S t S t
=

= −  (16) 

where S(t) is the prompt signal generated by the model, and Ŝ(t) is the target signal based on 

historical data. Decision loss Ldecision  directly optimizes the final investment decisions, 

minimizing risk while maximizing returns. 

 
decision ( ) ( )

t B t B

L r t t 
 

= − +   (17) 

where r(t)  represents the expected return at time  t , σ(t)  represents the corresponding risk 

measure, and λ is a balancing coefficient. The joint loss function is defined as: 

 
total TF prompt decisionL L L L  = + +  (18) 

where α, β, and γ are hyperparameters that adjust the weights of each loss component and are 

automatically tuned during model training. By minimizing the joint loss function Ltotal , the 

parameters of all modules are optimized simultaneously. The model is trained using gradient 

descent, gradually updating the parameters to reduce the overall loss: 

 
*

totalargmin ( )L =  (19) 

where θ represents all the model parameters, including those of the time-frequency consistency 

module, prompt learning module, and decision module. During training, the model continuously 

learns from historical data, gradually improving its ability to predict and make decisions for future 

markets. Through end-to-end joint training, the model can automatically capture complex patterns 

in the input data and directly use these patterns to guide decision-making. 
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4. Experiment 

4.1 Experimental Environment 

The experimental environment in this study includes both hardware and software configurations, 

as well as data sources. On the hardware side, the experiments were conducted on a computer 

equipped with an Intel Core i7 processor, 64GB of RAM, and an NVIDIA GTX 3090 graphics 

card. On the software side, Python was primarily used as the programming language, along with 

the TensorFlow deep learning framework for model training and inference. Additionally, data 

processing libraries such as Pandas and NumPy were utilized to efficiently manage and process 

time-series data. 

4.2 Experimental Data 

• S&P 500 Index Constituents Dataset 

The S&P 500 Index Constituents dataset [19] contains the historical trading data of the 500 most 

representative companies in the U.S. stock market. This dataset includes key information for each 

constituent stock, such as daily opening price, closing price, highest price, lowest price, and trading 

volume. Since the S&P 500 index covers leading companies across multiple industries, this dataset 

reflects the overall performance of the U.S. market. By using this dataset, one can test stock 

recommendation models under broad market conditions, making it particularly suitable for large-

cap market analysis, cross-sector comparisons, and diversified investment strategy experiments. 

• Shanghai A-Share Dataset 

The Shanghai Stock Exchange A-Share dataset [20] contains the historical trading data of 

companies listed in mainland China, including key metrics such as opening price, closing price, 

highest price, lowest price, and trading volume. As a representative of emerging markets, China’s 

A-share market is characterized by significant volatility and unique market mechanisms. This 

makes the dataset highly suitable for evaluating stock recommendation models in the context of 

emerging markets. Conducting experiments on this dataset allows for an in-depth study of the 

generalization ability and stability of time-frequency consistency models under different market 

conditions. 

• NASDAQ 100 Index Constituents Dataset 

The NASDAQ 100 Index Constituents dataset [21] gathers the daily trading data of the top 100 

non-financial companies in the U.S. NASDAQ market. These companies primarily operate in 

sectors such as technology, communications, and biotechnology, and their stock prices tend to 

exhibit high volatility. This dataset provides detailed information, including opening price, closing 

price, highest price, lowest price, and trading volume, making it suitable for testing stock 

recommendation models in highly volatile markets. Using this dataset, one can assess the model’s 

prediction accuracy and risk control capabilities in high-risk stock environments. 

• FTSE 100 Index Constituents Dataset 

The FTSE 100 Index Constituents dataset [22] contains the historical trading data of the 100 largest 

companies by market capitalization on the London Stock Exchange. This index represents the 

overall performance of the UK market, and the dataset covers key information such as daily 
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opening price, closing price, highest price, lowest price, and trading volume. FTSE 100 companies 

span multiple industries, and the market is relatively mature and stable. By conducting experiments 

on this dataset, one can test stock recommendation models in mature markets, making it especially 

suitable for studying the model ’ s adaptability to different economic environments and the 

effectiveness of long-term investment strategies. 

4.3 Evaluation Metrics 

• Mean Absolute Error (MAE) 

MAE is used to measure the average absolute error between the model's predicted results and the 

actual stock prices. The lower the MAE value, the more accurate the model's prediction of stock 

prices. Since MAE only considers the absolute value of the errors, it avoids the issue of positive 

and negative errors canceling each other out. Therefore, MAE directly reflects the magnitude of 

the model's prediction bias. The formula for MAE is as follows: 

 
1

1
ˆMAE

n

i i

i

y y
n =

= −  (20) 

where yi is the actual stock price, yî is the model's predicted stock price, and n is the number 

of samples. 

• Mean Squared Error (MSE) 

MSE is used to measure the overall error of the model by taking the average of the squared 

prediction errors. It not only measures the size of the prediction error but also amplifies the effect 

of large errors due to the squaring operation, which makes it particularly sensitive to extreme 

market fluctuations. The lower the MSE value, the better the overall performance of the model's 

predictions. The formula for MSE is as follows: 

 ( )
2

1

1
ˆMSE

n

i i

i

y y
n =

= −  (21) 

• Coefficient of Determination (R²) 

R² measures the model's ability to explain the variability in stock prices, with a value between 0 

and 1. The closer it is to 1, the better the model's fit. In stock recommendation algorithms, R² can 

help us understand the correlation between the predicted stock prices and the actual prices. A high 

R² value indicates that the model captures stock price trends well, whereas a low R² value may 

suggest that the model has not fully utilized the data to make accurate predictions. The formula is 

as follows: 

 

( )

( )

2

2 1

2

1

ˆ

1

n

i i

i

n

i

i

y y

R

y y

=

=

−

= −

−




 (22) 
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where y̅ is the mean of all actual stock prices. 

• Normalized Discounted Cumulative Gain (NDCG) 

NDCG is commonly used as an evaluation metric in recommendation systems, suitable for 

assessing the performance of ranking tasks. NDCG effectively measures whether the positions of 

highly relevant items in the recommendation list are reasonable and whether the model can 

correctly identify and prioritize important stocks or other financial products. A high NDCG value 

indicates that the model can accurately rank the most relevant items at the top, thus improving user 

satisfaction and the success rate of investment decisions. 

 
DCG

NDCG
IDCG

=  (23) 

where DCG is the Discounted Cumulative Gain, which considers the importance of the position 

by calculating the cumulative gain with a discount factor for the ranking position. 

 
1 2

DCG
log ( 1)

n
i

i

rel

i=

=
+

  (24) 

where i is the position of the recommended item in the list, and reli is the relevance score of the 

i-th recommended item. Generally, the top few items in the list are more important, and by 

discounting for position, the quality of the recommendation system can be more accurately 

reflected. IDCG represents the Ideal Discounted Cumulative Gain, which refers to the maximum 

DCG value that can be achieved in the ideal case (where the most relevant items are ranked at the 

top). 

 

| |

1 2

IDCG
log ( 1)
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i

i

rel

i=

=
+

  (25) 

where |REL| represents the total number of recommended items in the ideal ranking. 
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4.4 Experimental Comparison and Analysis 

Table1. Comparison of relevant indicators of this method with other methods on S&P 500 Index 

Constituents Dataset and Shanghai A-Share Dataset. 

Model 
S&P 500 Index Constituents Dataset Shanghai A-Share Dataset 

MAE MSE R² NDCG MAE MSE R² NDCG 

Yang et al. [23] 0.264 0.136 0.862 0.374 0.253 0.124 0.883 0.382 

Liu et al. [24] 0.194 0.112 0.894 0.384 0.186 0.101 0.912 0.391 

Lu et al. [25] 0.284 0.153 0.849 0.362 0.261 0.135 0.857 0.376 

Chaudhari et al. [26] 0.337 0.197 0.837 0.354 0.303 0.142 0.869 0.379 

Wijerathne et al. [27] 0.163 0.073 0.912 0.391 0.158 0.064 0.924 0.412 

Mahmoodi et al. [28] 0.192 0.092 0.896 0.388 0.176 0.087 0.922 0.396 

Ours 0.078 0.036 0.944 0.436 0.064 0.027 0.952 0.447 

 

From the data in Table 1, it is evident that our proposed algorithm outperforms other methods 

on the S&P 500 Index Constituents Dataset and the Shanghai A-Share Dataset. Specifically, in 

terms of MAE and MSE, our method achieved the lowest values of 0.078 and 0.036 on the S&P 

500 dataset, and 0.064 and 0.027 on the Shanghai A-Share dataset, indicating that our method 

significantly outperforms others in error control. Additionally, for the R² and NDCG metrics, our 

method also stands out, reaching 0.944 and 0.436 on the S&P 500 dataset, and 0.952 and 0.447 on 

the Shanghai A-Share dataset, far exceeding other comparative methods. In contrast, while the 

method by Wijerathne et al. also has relatively high R² and NDCG values, it still falls short of our 

method in terms of error metrics. Figure 4 provides a visual comparison of these results. 
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Figure 4. Visual comparison of relevant indicators on S&P 500 Index Constituents Dataset and 

Shanghai A-Share Dataset. 

 

Table2. Comparison of relevant indicators of this method with other methods on NASDAQ 100 

Index Constituents Dataset and FTSE 100 Index Constituents Dataset. 

Model 

NASDAQ 100 Index Constituents 

Dataset 

FTSE 100 Index Constituents 

Dataset 

MAE MSE R² NDCG MAE MSE R² NDCG 

Yang et al. 0.324 0.195 0.842 0.362 0.335 0.194 0.842 0.358 

Liu et al. 0.242 0.117 0.882 0.372 0.257 0.129 0.871 0.374 

Lu et al. 0.276 0.142 0.877 0.368 0.286 0.162 0.841 0.359 

Chaudhari et 

al. 

0.312 0.163 0.853 0.351 0.322 0.185 0.841 0.339 

Wijerathne et 

al. 

0.154 0.071 0.905 0.396 0.169 0.079 0.907 0.388 

Mahmoodi et 

al. 

0.176 0.086 0.893 0.384 0.172 0.081 0.899 0.386 

Ours 0.094 0.063 0.924 0.415 0.069 0.035 0.942 0.436 
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From the data in Table 2, our method significantly outperforms other comparative methods on 

the NASDAQ 100 and FTSE 100 Index Constituents Datasets. Specifically, in terms of MAE and 

MSE, our model achieved the lowest error values on both datasets, demonstrating its significant 

advantage in prediction accuracy. Additionally, the R² metric shows that our method reached 

0.924 and 0.942 on these datasets, reflecting its strong ability to fit the real data. For the NDCG 

metric, our method achieved 0.415 and 0.436 on the NASDAQ 100 and FTSE 100 datasets, 

surpassing all other comparative methods. Overall, our algorithm outperforms existing methods 

across multiple metrics, showcasing superior overall performance. Figure 5 provides a visual 

comparison of these trends. 

 

 

Figure 5. Visual comparison of relevant indicators on NASDAQ 100 Index Constituents Dataset 

and FTSE 100 Index Constituents Dataset. 
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Table3. Comparison of training indicators on four datasets. 

Model 

S&P 500 Index Constituents Dataset  

Paramete

rs(M) 

Inference 

Time(ms) 

Trainning 

Time(s) 

Paramete

rs(M) 

Inference 

Time(ms) 

Trainning 

Time(s) 

Yang et 

al. 
391.04 396.70 184.80 351.70 356.89 285.14 

Liu et al. 377.57 363.19 183.82 374.00 365.12 265.35 

Lu et al. 358.40 392.19 202.62 372.88 331.20 242.99 

Chaudhari 

et al. 
384.77 383.27 207.68 368.49 355.77 263.88 

Wijerathn

e et al. 
390.79 373.21 258.84 359.01 367.47 267.78 

Mahmood

i et al. 
366.53 342.79 214.83 353.25 389.96 208.06 

Ours 336.54 306.46 171.24 338.69 316.73 176.52 

Model 

NASDAQ 100 Index Constituents 

Dataset 
FTSE 100 Index Constituents Dataset 

Paramete

rs(M) 

Inference 

Time(ms) 

Trainning 

Time(s) 

Paramete

rs(M) 

Inference 

Time(ms) 

Trainning 

Time(s) 

Yang et 

al. 
373.22 393.86 253.88 381.06 314.66 235.83 

Liu et al. 382.11 372.26 239.43 372.00 301.52 287.33 

Lu et al. 355.96 382.87 235.64 359.78 295.74 235.82 

Chaudhari 

et al. 
374.27 379.35 284.10 368.58 376.55 291.35 

Wijerathn

e et al. 
361.01 386.80 247.54 357.61 340.72 257.43 

Mahmood

i et al. 
356.60 359.99 284.54 377.29 325.23 229.29 

Ours 342.64 322.59 177.84 342.57 275.74 220.34 
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From the data in Table 3, our method excels in terms of parameter size, inference time, and 

training time. Firstly, for the number of parameters, our method has the smallest parameter scale 

across all four datasets. For example, on the S&P 500 and NASDAQ 100 datasets, our model 

parameters are 336.54M and 342.64M, significantly reduced compared to other models, indicating 

that our model is more lightweight and efficient. Secondly, for inference time, our model showed 

the fastest inference speed across all datasets. On the S&P 500 and FTSE 100 datasets, the 

inference times are 306.46ms and 275.74ms, lower than other methods, indicating that our model 

responds faster in real-time inference. Finally, for training time, our method also demonstrated the 

shortest training time across all datasets. On the NASDAQ 100 dataset, our training time was 

177.84 seconds, and on the FTSE 100 dataset, it was 220.34 seconds, more efficient than other 

models. This proves that while maintaining prediction accuracy, our model can significantly 

reduce computation costs and training time, improving overall efficiency. Figure 6 provides a 

visual comparison of these results. 

 

 

Figure 6. Visual comparison of training indicators. 
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Table4. Ablation experiments on S&P 500 Index Constituents Dataset and Shanghai A-Share 

Dataset. 

Model 
S&P 500 Index Constituents Dataset Shanghai A-Share Dataset 

MAE MSE R² NDCG MAE MSE R² NDCG 

baseline 0.286 0.163 0.784 0.364 0.273 0.151 0.789 0.381 

+TFC 0.185 0.069 0.864 0.396 0.177 0.052 0.873 0.411 

+Prompt 0.124 0.043 0.916 0.419 0.112 0.035 0.927 0.426 

+TFC-Prompt 0.078 0.036 0.944 0.436 0.064 0.027 0.952 0.447 

 

Table5. Ablation experiments on NASDAQ 100 Index Constituents Dataset and FTSE 100 Index 

Constituents Dataset. 

Model 

NASDAQ 100 Index Constituents 

Dataset 

FTSE 100 Index Constituents 

Dataset 

MAE MSE R² NDCG MAE MSE R² NDCG 

baseline 0.316 0.196 0.754 0.352 0.279 0.159 0.776 0.373 

+TFC 0.224 0.069 0.826 0.381 0.182 0.062 0.869 0.399 

+Prompt 0.151 0.064 0.896 0.401 0.121 0.041 0.921 0.420 

+TFC-

Prompt 
0.094 0.063 0.924 0.415 0.069 0.035 0.942 0.436 

 

The data in Tables 4 and 5 shows that the stock recommendation algorithm, which combines 

Time-Frequency Consistency (TFC) and Prompt learning, significantly outperforms the baseline 

model across multiple datasets. On the S&P 500 Index Constituents Dataset, the baseline model’s 

MAE is 0.286, MSE is 0.163, R² is 0.784, and NDCG is 0.364. On the Shanghai A-Share Dataset, 

the baseline model ’s MAE is 0.273, MSE is 0.151, R² is 0.789, and NDCG is 0.381. After 

introducing Time-Frequency Consistency (TFC), the MAE on the S&P 500 dataset dropped to 

0.185, MSE dropped to 0.069, R² increased to 0.864, and NDCG rose to 0.396. Similarly, on the 

Shanghai A-Share dataset, the MAE and MSE dropped to 0.177 and 0.052, R² increased to 0.873, 

and NDCG increased to 0.411. Further introducing Prompt learning improved performance even 

more, with the S&P 500 dataset’s MAE and MSE reaching 0.124 and 0.043, R² rising to 0.916, 

and NDCG to 0.419; and on the Shanghai A-Share dataset, the MAE dropped to 0.112, MSE to 

0.035, and R² and NDCG increased to 0.927 and 0.426, respectively. Ultimately, when using the 

TFC-Prompt strategy, the S&P 500 dataset achieved the lowest MAE of 0.078, MSE of 0.036, R² 
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of 0.944, and NDCG of 0.436. On the Shanghai A-Share dataset, the MAE decreased to 0.064, 

MSE to 0.027, R² reached 0.952, and NDCG increased to 0.447. A similar trend can be seen in 

the NASDAQ 100 and FTSE 100 Index Constituents Datasets in Table 5. When the TFC-Prompt 

strategy was introduced, the MAE on the NASDAQ 100 dataset dropped to 0.094, MSE to 0.063, 

R² reached 0.924, and NDCG rose to 0.415. On the FTSE 100 dataset, the MAE decreased to 

0.069, MSE to 0.035, R² reached 0.942, and NDCG increased to 0.436. This indicates that the 

synergy between Time-Frequency Consistency and Prompt learning can provide more accurate 

and reliable investment strategies for stock recommendations. Figures 7 and 8 visually depict these 

trends. 

 

Figure 7. Visual comparison of ablation experiments on S&P 500 Index Constituents Dataset and 

Shanghai A-Share Dataset. 

 

 

Figure 8. Visual comparison of ablation experiments on NASDAQ 100 Index Constituents 

Dataset and FTSE 100 Index Constituents Dataset. 
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5. Conclusion 

This paper proposes an end-to-end stock recommendation algorithm based on time-frequency 

consistency analysis and prompt learning strategies. It addresses the limitations of traditional stock 

prediction methods that focus only on time-domain or frequency-domain information, enabling the 

model to fully capture the multi-scale dynamic characteristics of stock prices. Experimental results 

show that the algorithm significantly outperforms existing models in terms of prediction accuracy, 

risk control, and computational efficiency across multiple datasets. On the S&P 500 Index 

Constituents Dataset, the proposed algorithm achieved the lowest MAE of 0.078 and MSE of 0.036, 

with an R² value of 0.944 and an NDCG score of 0.436. Additionally, the model continued to 

perform well across multiple datasets, demonstrating its advantage in prediction accuracy. By 

introducing time-frequency consistency analysis, the model simultaneously considers both time-

domain and frequency-domain features, resulting in more accurate stock price predictions. The 

prompt learning strategy further optimizes the decision-making process by identifying low-risk 

entry points, enhancing risk control in stock recommendations. Furthermore, the end-to-end model 

simplifies the entire prediction process, from data input to final recommendation, significantly 

improving prediction efficiency and reducing model complexity. However, this study still has 

some limitations. The model's performance is partially dependent on the quality of input data and 

the design of prompts, which may require further optimization for different market conditions and 

financial instruments. Moreover, the application of the model in real-time trading needs further 

exploration to ensure it can adapt to rapidly changing market environments. Future research will 

focus on improving the model's adaptability by introducing advanced machine learning techniques 

such as reinforcement learning and adversarial training. Expanding the application of the model to 

other financial markets and instruments will also help to further understand its robustness and 

generalizability. 
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