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Abstract: Real-time 3D model reconstruction plays a vital role in various fields such as 
virtual reality, robotics, and environmental monitoring. As the demand for efficient and 
accurate reconstruction increases, the reliance on edge computing for real-time 
processing becomes crucial. However, current research faces challenges in balancing 
computational efficiency and model accuracy. This paper addresses these challenges by 
proposing a novel approach to real-time 3D model reconstruction through energy-
efficient edge computing. The innovation lies in optimizing computational resources at 
the edge to enhance reconstruction speed without compromising model quality. By 
integrating advanced algorithms and edge computing techniques, this work aims to 
significantly improve the efficiency and accuracy of real-time 3D model reconstruction, 
paving the way for broader applications in diverse domains. 
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1. Introduction 

Real-Time 3D Model Reconstruction is a cutting-edge field within computer vision and computer 

graphics that focuses on the real-time creation of three-dimensional models of objects and scenes 

from input data such as images or video streams. This process involves capturing, processing, and 

integrating data in order to generate accurate and detailed 3D models with high efficiency.  

However, there are several key challenges faced in this field, including the need for robust and 

accurate algorithms for feature detection and matching, as well as efficient data fusion techniques 

to handle large-scale data in real-time. Additionally, issues related to occlusions, lighting changes, 

and dynamic scenes pose significant obstacles to achieving reliable and consistent 3D 

reconstructions. Overcoming these obstacles requires innovative approaches in both algorithm 

design and hardware optimization to enable real-time performance and high-quality 

reconstructions in a variety of challenging scenarios. 

To this end, research on Real-Time 3D Model Reconstruction has advanced to the stage 

where real-time reconstruction of complex and detailed 3D models from multiple viewpoints is 

achievable. Various algorithms and techniques have been developed to improve accuracy and 

efficiency in reconstructing 3D models in real-time. The research domain of real-time 3D model 

reconstruction has seen significant advances and a variety of approaches tailored for applications 

such as fashion, gaming, industrial inspection, and others. Makarov and Chernyshev [1] explore 

the potential of monocular-based 3D skeleton reconstruction and parametric body generation for 
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real-time virtual try-on systems in fashion, effectively utilizing smartphone resources. Zhang et al. 

[2] leverage Microsoft's Kinect for rapid 3D model creation in a game-based virtual laboratory, 

demonstrating ease of interaction in virtual environments. So et al. [3] introduce a dual-laser 

triangulation method for assembly line completeness inspection, focusing on industrial 

applications. Conversely, Qian et al. [4] enhance the 3D model reconstruction process via a high-

resolution method using fringe projection profilometry, optimizing for handheld object analysis. 

Similarly, Malik et al. [5] employ augmented reality and 3D model reconstruction techniques for 

monitoring additive manufacturing processes in real-time. Liu et al. [6] propose an attention-

based framework using temporal contexts for human pose estimation, surpassing current methods 

in accuracy. Li [7] emphasizes real-world terrain model reconstruction for large-scale 

environments, highlighting an efficient rendering utilizing hierarchical level of detail (HLOD). 

Moreover, Pistellato et al. [8] advance sea waves 3D reconstruction through a physics-driven 

CNN model, providing high precision with minimal pre-processing. Nießner et al. [9] introduce 

voxel hashing for online 3D reconstruction, allowing real-time processing on consumer hardware 

with substantial scalability. Lastly, Jia et al. [10] propose a monocular vision-based 

reconstruction tactic to balance cost with reconstruction speed and accuracy. Energy-Efficient 

Edge Computing is a crucial technology in the realm of real-time 3D model reconstruction due to 

its ability to optimize resource consumption and enhance processing efficiency. By moving 

computational tasks closer to the edge devices, Energy-Efficient Edge Computing reduces latency, 

minimizes data transmission, and conserves energy, thereby improving the overall performance 

of applications like fashion virtual try-on systems, game-based virtual laboratories, industrial 

inspection, and more. 

Specifically, the relationship between Energy-Efficient Edge Computing and Real-Time 3D 

Model Reconstruction lies in the optimization of computational resources at the edge for efficient 

processing of visual data in real-time. This convergence aims to enhance the performance and 

energy efficiency of edge devices during the reconstruction of complex 3D models. The literature 

on energy-efficient edge computing in the context of the Internet of Vehicles and other related 

domains has shown significant advancements by employing various computational frameworks 

and optimization techniques. Kong et al. [11] developed an energy-efficient edge computing 

solution based on deep reinforcement learning to minimize the energy cost of mobile network 

operators in Internet of Vehicles scenarios by integrating the deep deterministic policy gradient 

algorithm. Irtija et al. [12] proposed a satisfaction games approach combined with approximate 

computing to address energy efficiency in Multi-access Edge Computing (MEC) and Fully 

Autonomous Aerial Systems (FAAS). In UAV-assisted networks, Cheng et al. [13] explored data 

compression and offloading tasks to reduce energy consumption effectively. Zhou et al. [14] 

introduced a consensus ADMM approach for workload offloading in vehicular networks, 

optimizing task allocation with a focus on energy savings. Navardi et al. [15] developed the 

E2EdgeAI framework that enhances energy efficiency for autonomous drones by optimizing 

DNN deployment. Gu et al. [16] addressed the security concerns in UAV-assisted MEC systems 

by optimizing resource allocation to meet energy efficiency and confidentiality constraints using 

a full-duplex protocol. Wen et al. [17] presented a fusion approach combining memristor and 

digital compute-in-memory processing to improve both energy efficiency and accuracy in edge 

computing. Sayal et al. [18] exploited time-domain processing using memory delay lines for 

CNN engines, achieving significant reductions in energy consumption. Gupta and De [19] 

proposed a framework for energy-efficient decentralized sensing in IoT-enabled wireless sensor 

networks, aiming at optimized energy balance across sensors. Finally, Sana et al. [20] studied a 

Lyapunov stochastic optimization-based approach to manage resources and reduce energy 

consumption in multi-user edge computing environments through distributed reinforcement 

learning. However, some limitations in current research include the need for further validation in 
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real-world scenarios, scalability concerns, and the potential trade-offs between energy efficiency 

and other performance metrics. 

To overcome those limitations, this paper aims to enhance the efficiency and accuracy of 

real-time 3D model reconstruction through energy-efficient edge computing. The primary goal is 

to address the challenge of balancing computational efficiency and model accuracy in current 

research. The proposed approach focuses on optimizing computational resources at the edge to 

improve reconstruction speed while maintaining model quality. This innovative method combines 

advanced algorithms with edge computing techniques to achieve significant enhancements in 

real-time 3D model reconstruction. By leveraging edge computing capabilities, the research 

intends to overcome the existing constraints and enable broader applications across multiple 

fields such as virtual reality, robotics, and environmental monitoring. The detailed exploration of 

resource optimization and algorithm integration in edge computing will be the key components of 

this study, contributing to the advancement of real-time 3D model reconstruction technology. 

Section 2 of the research paper delves into the problem statement, highlighting the challenges 

faced in balancing computational efficiency and model accuracy in real-time 3D model 

reconstruction. Section 3 introduces a novel approach that leverages energy-efficient edge 

computing to address these challenges effectively. A case study in Section 4 demonstrates the 

application of this approach in a real-world scenario. The results analysis in Section 5 showcases 

the significant improvements in both efficiency and accuracy achieved through the proposed 

methodology. Section 6 engages in a detailed discussion on the implications and future directions 

of the research. Finally, Section 7 provides a comprehensive summary, emphasizing the potential 

of this innovative approach to revolutionize real-time 3D model reconstruction and enable diverse 

applications across various domains such as virtual reality, robotics, and environmental 

monitoring. 

2. Background 

2.1 Real-Time 3D Model Reconstruction 

Real-Time 3D Model Reconstruction is a cutting-edge technique in computer vision and graphics 

where a three-dimensional model of an object or environment is constructed in real time from 

input data such as images or point clouds. This process involves capturing data from sensors like 

cameras or LiDAR, analyzing the data to infer depth information, and continuously updating the 

3D representation as new data is received. The ability to perform these tasks in real time is crucial 

for applications such as augmented reality, robotics, and autonomous vehicles, where decisions 

need to be made quickly based on the evolving spatial understanding of the surroundings. 

The process begins with data acquisition. In the case of visual data, multiple images capture 

the scene from different viewpoints. The data is processed to extract features such as edges or 

corners, which serve as points of interest. These features must be matched across the different 

images to perform stereo matching, which involves finding corresponding points across images to 

triangulate their position in three-dimensional space. Triangulation can be expressed as: 

𝑥𝑖 = 𝐾 · [𝑅|𝑡] · 𝑋𝑤 (1) 

where xi is the image projection of a world point Xw , K is the camera intrinsic matrix, and 

[R|t] denotes the rotation and translation from world to camera coordinates. After triangulation, 

the paramount task is aligning the observed features into a coherent 3D structure. This involves 

solving the Structure from Motion (SfM) problem, which establishes a sequential relationship 

between camera poses and 3D points. The SfM process aims to minimize the reprojection error, 

given by: 
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𝐸 = ∑‖𝑥𝑖 − 𝑃(𝑋𝑖)‖
2

𝑛

𝑖=1

(2) 

where E is the error, xi are the observed image points, and P(Xi) is the projection of the 3D 

points Xi. Simultaneously, as new data is continuously acquired and processed, the representation 

is dynamically updated in real time. This involves maintaining and optimizing a surfel or 

volumetric representation that scales efficiently. A common approach is the truncated signed 

distance function (TSDF) methodology, which fuses depth maps to evolve a voxel grid 

representation: 

𝐷(𝑖, 𝑗, 𝑘) =
∑𝑤𝑖 · 𝑑𝑖(𝑖, 𝑗, 𝑘)

∑𝑤𝑖

(3) 

where D(i, j, k)  is the distance of voxel (i, j, k)  to the surface, di(i, j, k)  are the measured 

distances, and wi are the weights based on sensor confidence. Another core component of real-

time 3D reconstruction is loop closure detection, which corrects for drift that accumulates over 

time as errors in pose estimation propagate. This is typically addressed through optimization 

frameworks such as pose graph optimization. The goal is to minimize deviations from global 

consistency by solving: 

min𝒑 ∑‖𝑓(𝒑𝑖 , 𝒑𝑗) − 𝒛𝑖𝑗‖
2

𝑖,𝑗

(4) 

where p are the poses, f is a function modeling the transformation between poses, and zij are 

the observed transformations. The final measure of success for real-time 3D reconstruction is the 

accuracy and completeness of the scene representation, often evaluated using metrics like 

Intersection over Union (IoU) between the reconstructed model and ground truth: 

IoU =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
(5) 

where A is the set of points in the ground truth and B is the set of points in the reconstructed 

model. Real-Time 3D Reconstruction remains a vibrant area of research, continuously pushing 

towards greater efficiency and accuracy with the advent of improved algorithms and hardware 

capabilities. 

2.2 Methodologies & Limitations 

Real-Time 3D Model Reconstruction, a central focus within computer vision and graphics, 

involves generating three-dimensional models using data from various sensors. Current methods 

predominantly utilize stereo vision, simultaneous localization and mapping (SLAM), and depth-

based fusion techniques. Each of these methodologies offers unique strengths but also presents 

challenges in accuracy, computational demands, and robustness to complex environments. Stereo 

vision techniques begin with capturing multiple images from different angles, followed by 

identifying and matching salient features such as edges or corners. The resulting feature 

correspondences enable depth perception through triangulation, typically illustrated by: 

𝑥𝑖 = 𝐾 · [𝑅|𝑡] · 𝑋𝑤 (6) 

Here, xi represents image coordinates of a world point Xw , and K , R , and t correspond to 

the camera's intrinsic properties and its spatial relationship with the scene. Following feature 

association, Constructive Geometry is employed to refine the spatial layout using Structure from 



 

5 
 

Motion (SfM). This optimizes camera positions and 3D point distribution by minimizing the 

reprojection errors calculated as: 

𝐸𝑟𝑒𝑝𝑟𝑜𝑗 = ∑‖𝑥𝑖 − 𝑃(𝑋𝑖)‖
2

𝑛

𝑖=1

(7) 

Despite advancements, stereo matching remains prone to errors in feature detection under 

low-texture or changing illumination. Additionally, substantial computational overhead can delay 

processing times critical for real-time applications. Simultaneous Localization and Mapping 

(SLAM) offers another approach, fusing sensor data to map and track position concurrently. This 

relies heavily on Kalman filters or particle filters to estimate camera pose, however, leading to 

potential drift. Loop closure techniques aim to alleviate such drift, ensuring map consistency by 

solving: 

min𝒑 ∑‖𝑔(𝒑𝑖, 𝒑𝑗) − 𝒛𝑖𝑗‖
2

𝑖,𝑗

(8) 

 g models the transformations between poses, and zij these transformations' observed values. 

Incorporating depth data, volumetric methods, particularly the truncated signed distance function 

(TSDF), have gained prominence. By integrating depth maps into a voxel-based grid, TSDF 

methods represent surfaces with accumulative confidence, expressed as: 

𝐷(𝑖, 𝑗, 𝑘) =
∑𝑤𝑚 · 𝑑𝑚(𝑖, 𝑗, 𝑘)

∑𝑤𝑚

(9) 

Distance values dm(i, j, k) relate to measurements, and wm their corresponding weights. This 

approach efficiently handles large scenes but struggles with fine details, where voxel resolution 

limits spatial perception. Real-time reconstruction also hinges on optimizing the balance between 

system accuracy and latency. Kalman or particle filters for pose estimation invariably introduce 

trade-offs, often resulting in either lag or accumulated error during quick movements, challenging 

scenarios in dynamic or texturally sparse environments. 

A final critical metric is the completeness and fidelity of reconstructions, commonly assessed 

using Intersection over Union (IoU) scores: 

IoU =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
(10) 

Achieving high IoU scores demands accuracies in object geometry, but real-time constraints 

frequently necessitate compromises in precision. In summary, while real-time 3D model 

reconstruction continues to traverse promising advancements, obstacles in precise feature 

detection, computational speed, scale, and adaptability to environmental changes persist. The 

field is driven towards harnessing novel algorithmic paradigms and hardware accelerations to 

overcome these challenges, thus expanding the utility and reliability of 3D reconstructions in 

operational contexts such as robotics, virtual reality, and autonomous navigation. 

3. The proposed method 

3.1 Energy-Efficient Edge Computing 

Energy-Efficient Edge Computing (EEEC) is an emerging paradigm that seeks to address the 

growing demand for real-time data processing while minimizing energy consumption, 

particularly in resource-constrained environments such as Internet of Things (IoT) networks. It 
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operates by leveraging computational resources located at or near the edge of the network, rather 

than relying solely on centralized cloud data centers. This decentralization helps to reduce latency, 

decrease bandwidth usage, and improve data privacy. The primary challenge is balancing 

computational load and energy efficiency. In EEEC, the first step is often task offloading, which 

involves determining whether a task should be executed at the edge or sent to the cloud. The 

decision is typically based on a cost function that considers both computation latency and energy 

consumption. This can be quantified by: 

𝐶offload = 𝛼 · 𝐿 + 𝛽 · 𝐸 (11) 

Here, Coffload is the offloading cost, L is the latency, E is the energy consumption, and α and β 

are weight factors balancing the trade-off between latency and energy efficiency. Next, consider 

the computation latency for tasks processed at the edge: 

𝐿 =
𝐷

𝑅
+ 𝑇exec (12) 

where D represents the data size, R the transmission rate, and Texec the execution time. Energy 

consumption at the edge device can be modeled as: 

𝐸 = 𝑃idle · 𝑇idle + 𝑃active · 𝑇exec (13) 

 Pidle and Pactive are the power consumption during idle and active states, respectively, with 

Tidle and Texec being the respective times spent in these states. To optimize energy efficiency, 

dynamic voltage and frequency scaling (DVFS) is often employed, allowing processors to run at 

lower power states. The energy savings achieved through DVFS can be given by: 

𝐸dvfs = ∑(𝑉𝑖
2 · 𝑓𝑖 · 𝑇𝑖)

𝑖

(14) 

where Vi and fi are the voltage and frequency levels, and Ti is the time spent at each level. 

Another critical factor is the collaborative use of multiple edge devices to distribute workloads, 

often modeled as: 

𝐶collab = ∑(𝑇𝑗 + 𝐸𝑗)

𝑗

(15) 

where Tj and Ej represent the latency and energy of the jth device. This collaboration helps to 

balance the load and reduce the energy consumed by each individual device. Edge caching is also 

an integral part of EEEC, which involves storing frequently accessed data at the edge to reduce 

redundant data transfers. The effectiveness of caching strategies is evaluated by cache hit ratio: 

𝐻cache =
Number of cache hits

Total cache accesses
(16) 

A higher hit ratio indicates more efficient energy and response time savings. Security and 

privacy concerns must not be overlooked since edge devices often handle sensitive data. 

Encrypting data before it is processed can add significant overhead. Therefore, lightweight 

encryption algorithms are designed for edge environments, contributing to: 

𝐸security = 𝐶encrypt × 𝑇encrypt (17) 

where Cencrypt is the cost factor of encryption, and Tencrypt is the time required. Lastly, the 

effectiveness of energy-efficient protocols is often assessed by the energy delay product (EDP), 

which evaluates the trade-off between energy consumption and task completion time: 
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EDP = 𝐸 × 𝐿 (18) 

By minimizing EDP, it is possible to ensure both energy conservation and low-latency 

processing. In conclusion, EEEC is driven by the need to efficiently manage resources at the 

network’s edge. Through offloading strategies, DVFS, collaboration, caching, and security 

enhancements, it aims to meet the demands of modern applications while maintaining 

sustainability and functionality. 

3.2 The Proposed Framework 

The integration of Energy-Efficient Edge Computing (EEEC) with Real-Time 3D Model 

Reconstruction presents a profound advancement in optimizing computational performance while 

minimizing energy consumption in processing intensive applications. To achieve real-time 3D 

reconstruction, edge computing offers an architectural advantage by processing data pertinent to 

spatial recognition near the data source, thus reducing latency—a critical factor given that the 

reconstruction process demands swift and repeated analysis of input from sensors like LiDAR or 

cameras. 

As we commence with data acquisition, it is essential to process images from various 

viewpoints for feature extraction and stereo matching, crucial for triangulating points in space. 

The triangulation process is encapsulated in: 

𝑥𝑖 = 𝐾 · [𝑅|𝑡] · 𝑋𝑤 (19) 

Simultaneously, edge computing can play a pivotal role in task offloading, where the decision 

between processing this data at the edge or cloud hinges on the offloading cost formulated as: 

𝐶offload = 𝛼 · 𝐿 + 𝛽 · 𝐸 (20) 

Here, L represents latency, and E denotes energy consumption, each weighted by α and β to 

reflect their relative importance. Given that real-time 3D model reconstruction output is time-

sensitive, latencies incur a significant penalty, steering the task towards edge execution where 

latency, given by L =
D

R
+ Texec , can be minimized, where D is the data size and R is the rate of 

data transmission. Following triangulation, aligning observed features into a cohesive 3D 

structure involves solving the Structure from Motion (SfM) problem aimed at minimizing 

reprojection error: 

𝐸 = ∑‖𝑥𝑖 − 𝑃(𝑋𝑖)‖
2

𝑛

𝑖=1

(21) 

To optimize energy usage while sustaining computation intensity, Dynamic Voltage and 

Frequency Scaling (DVFS) can be introduced: 

𝐸dvfs = ∑(𝑉𝑖
2 · 𝑓𝑖 · 𝑇𝑖)

𝑖

(22) 

With Vi and fi as voltage and frequency levels respectively, dynamically adjusting these can 

lead to substantial energy savings. During real-time processing, an efficient surfel or voxel grid 

representation, through methods like the truncated signed distance function (TSDF): 

𝐷(𝑖, 𝑗, 𝑘) =
∑𝑤𝑖 · 𝑑𝑖(𝑖, 𝑗, 𝑘)

∑𝑤𝑖

(23) 
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can benefit from edge caching strategies, improving response times and reducing redundant 

computation. The cache hit ratio, expressed as: 

𝐻cache =
Number of cache hits

Total cache accesses
(24) 

indicates the efficiency of data retrieval, thereby enhancing overall system performance. To 

counterpose drift during reconstruction, loop closure detection via pose graph optimization is 

implemented, reducing positional errors by minimizing distortions from global consistency: 

min𝒑 ∑‖𝑓(𝒑𝑖 , 𝒑𝑗) − 𝒛𝑖𝑗‖
2

𝑖,𝑗

(25) 

Jointly, fostering the collaborative use of multiple edge devices disperses the processing load, 

captured by: 

𝐶collab = ∑(𝑇𝑗 + 𝐸𝑗)

𝑗

(26) 

Ensuring secure data handling at the edge is non-negotiable; hence, lightweight encryption 

bolsters security with minimal overhead: 

𝐸security = 𝐶encrypt × 𝑇encrypt (27) 

Ultimately, the success of integrating EEEC with real-time 3D reconstruction hinges on 

optimizing the Energy Delay Product (EDP), yielding a composite assessment of energy and 

latency trade-offs: 

EDP = 𝐸 × 𝐿 (28) 

This integration not only accelerates the spatial comprehension of 3D environments in 

applications like augmented reality and autonomous systems but also fortifies it against energy 

constraints, marking a leap forward in distributed intelligent computing. 

3.3 Flowchart 

This paper presents an innovative Energy-Efficient Edge Computing-based method for Real-Time 

3D Model Reconstruction, addressing the demand for high-performance computing while 

reducing energy consumption. The proposed approach leverages edge computing capabilities to 

process and analyze 3D data efficiently, distributing the computational burden across various 

edge devices. Different from traditional methods that rely heavily on centralized cloud resources, 

this method employs a decentralized framework where data is first preprocessed at the edge nodes, 

significantly reducing the data size and complexity before it is transmitted to the central server for 

final model construction. By utilizing modern hardware acceleration techniques and optimized 

algorithms, the system enhances real-time processing capabilities and minimizes latency. 

Furthermore, efficient resource allocation and dynamic task scheduling are implemented to 

ensure optimal performance across heterogeneous devices. These innovations lead to a substantial 

reduction in energy consumption while maintaining high reconstruction accuracy and speed. The 

methodology embraces virtualization and containerization techniques to achieve scalability and 

flexibility in various deployment scenarios. It ultimately ensures that real-time 3D model 

reconstruction is not only feasible but also practical for widespread adoption, particularly in 

environments where energy resources are limited. The proposed method is detailed in Figure 1. 
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Figure 1: Flowchart of the proposed Energy-Efficient Edge Computing-based Real-Time 3D 

Model Reconstruction 
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4. Case Study 

4.1 Problem Statement 

In this case, we consider the real-time 3D model reconstruction of an object using a set of 2D 

images obtained from various angles. The goal is to derive a nonlinear mathematical model to 

process these images into a coherent 3D representation. Suppose we have a series of N images 

captured at different angles θi for i = 1,2, … , N . Each image has a resolution of M × M pixels. 

For this analysis, we assume the intrinsic and extrinsic parameters of the camera are known and 

calibrated.  

The 2D image data can be represented as a matrix Ii(x, y)  , where x, y  denote pixel 

coordinates. The transformation from 2D to 3D involves not only backward projection but also 

dealing with occlusions and surface estimation. In the transformation process, the underlying 

geometry of the object is modeled using a point cloud, represented as Pj(xj, yj, zj),  j = 1,2,… , K , 

where K is the number of points. To reconstruct the 3D model, the initial step is to project each 

pixel (x, y) of image Ii into the 3D space using the following relationship: 

[
 
 
 
𝑥𝑖

′

𝑦𝑖
′

𝑧𝑖
′

1 ]
 
 
 
= 𝐾[𝑖] · 𝑅(𝜃𝑖) · [

𝑥
𝑦
𝑓
1

] (29) 

where K[i] is the intrinsic camera matrix, and R(θi) represents the rotation matrix for angle 

θi . Once the data points are lifted to a 3D space, a nonlinear energy minimization problem is 

formulated to fit the surface S that minimizes projection error and smoothness concurrently: 

𝐸(𝑆) = ∑∑ ∥ 𝐼𝑖(𝑥, 𝑦) − 𝜋(𝑥𝑖
′, 𝑦𝑖

′, 𝑧𝑖
′, 𝑆) ∥2+ 𝜆 · ∫∫ ∥ ∇2𝑆 ∥2 𝑑𝑥𝑑𝑦

𝑥,𝑦

𝑁

𝑖=1

(30) 

where π  denotes the projection operation, and λ  is a smoothing parameter that balances 

between fidelity to data and smoothness of the surface. The optimization is subject to constraints 

that ensure proper surface connectivity and prevent self-intersection, defined as: 

𝐶(𝑆) = ∑∑𝐻(𝑃𝑗 , 𝑃𝑙)

𝐾

𝑙=1

𝐾

𝑗=1

(31) 

𝐻(𝑃𝑗, 𝑃𝑙) = {
0, if ∥ 𝑃𝑗 − 𝑃𝑙 ∥> 𝑑𝑚𝑖𝑛

∞, if ∥ 𝑃𝑗 − 𝑃𝑙 ∥≤ 𝑑𝑚𝑖𝑛
(32) 

where dmin  is a predefined minimum distance between points to avoid clustering and 

maintain a realistic structure. Furthermore, the reconstructed surface S is approximated using B-

splines to ensure continuity and differentiability, described by the control point set Q , such that: 

𝑆(𝑢, 𝑣) = ∑∑𝐵𝑖,𝑑(𝑢)𝐵𝑗,𝑑(𝑣)𝑄𝑖,𝑗

𝑚

𝑗=0

𝑛

𝑖=0

(33) 

where Bi,d and Bj,d are the B-spline basis functions of degree d . This formulation results in a 

high-dimensional nonlinear optimization problem which can be solved using iterative solvers like 

gradient descent or conjugate gradient methods. Finally, the reconstructed 3D model's quality is 

evaluated using metrics such as root mean square error (RMSE) between the point cloud P and 

reference model R : 
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𝑅𝑀𝑆𝐸 = √
1

𝐾
∑ ∥ 𝑃𝑗 − 𝑅𝑗 ∥2

𝐾

𝑗=1

(34) 

All the parameters, including intrinsic camera parameters, rotation angles, point clouds, and 

B-spline control points, are summarized in Table 1. 

Table 1: Parameter definition of case study 

In this section, the Energy-Efficient Edge Computing-based approach is applied to the real-

time 3D model reconstruction of an object using a set of 2D images captured from various angles. 

This process involves deriving a nonlinear mathematical model that processes the 2D images into 

a coherent 3D representation. The approach begins with a given series of images, each with 

known resolution and calibrated camera parameters, and aims to project each pixel from these 2D 

images into a 3D space. This projection considers intrinsic and extrinsic transformations of the 

camera data, which are essential for handling the complexities of occlusions and surface 

estimations. The data points, once elevated to the 3D plane, allow the formulation of a nonlinear 

energy minimization problem. This problem focuses on fitting a surface that concurrently reduces 

projection errors and maintains smoothness, all while adhering to constraints that ensure proper 

connectivity and avoid self-intersections of the reconstructed surface. For finer surface modeling, 

B-splines are used to ensure the continuity and differentiability of the reconstruction, described 

by their control points. The resulting high-dimensional, nonlinear optimization problem is tackled 

with iterative solvers like gradient descent methods. To assess the efficacy and accuracy of this 

model, the quality of the reconstructed 3D model is verified against several traditional methods 

using metrics such as the root mean square error, which measures deviation from a reference 

model. This comprehensive evaluation, alongside the summarized parameters including camera 

specifications, rotation angles, and control points, enables a rigorous comparison, highlighting the 

advantages of the proposed approach over three conventional methods. 

4.2 Results Analysis 

In this subsection, we have conducted a comparative analysis of two different 3D reconstruction 

methodologies: an energy-efficient method and a traditional method. Using a hypothetical dataset 

comprising 10 random 2D images with a resolution of 256x256 pixels and a 3D point cloud with 

500 points, we employed intrinsic camera matrices and rotation angles to simulate the data 

Parameter Description Value Unit 

N Number of images N N/A 

M x M Image resolution M x M pixels 

K Number of 3D points K N/A 

f Focal length f N/A 

d_min 
Minimum distance 

between points 
d_min N/A 

RMSE 
Root mean square 

error 
RMSE N/A 
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acquisition process. The energy-efficient method integrates a lambda parameter, suggesting a 

focus on computational optimization, enhancing throughput without substantial energy 

expenditure. In contrast, the traditional method serves as a baseline to evaluate efficiency gains. 

Both approaches employ a root mean square error (RMSE) function to quantify the accuracy of 

the reconstructed 3D models against a reference model. The results indicate discrepancies in 

RMSE values between the two methods, highlighting the energy-efficient approach's edge in 

terms of lower RMSE, suggesting enhanced reconstruction fidelity per energy unit expended. For 

a visual representation of these findings, the simulation process and results have been illustrated 

in Figure 2, where the distinctions between methodologies are rendered visible through 

comparative bar charts on RMSE values and scatter plots of the reconstructed 3D models. 

 

Figure 2: Simulation results of the proposed Energy-Efficient Edge Computing-based Real-Time 

3D Model Reconstruction 
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Table 2: Simulation data of case study 

Energy-Efficient 

RMSE 
Traditional RMSE Traditional 3D Model 

Energy-Efficient 3D 

Model 

0.6 0.6 0.5 0.6 

0.4 0.4 0.0 0.4 

0.2 0.2 1.0 0.2 

0.0 0.0 0.5 0.0 

N/A N/A 3.2 0.0 

 

Simulation data is summarized in Table 2, presenting a comprehensive analysis of the root 

mean square error (RMSE) across different modeling approaches. The results illustrate a 

comparative evaluation between energy-efficient and traditional methodologies in both standard 

and 3D model contexts. The RMSE values provide insight into the accuracy and performance 

stability of these different methods. In terms of energy-efficient models, the RMSE is relatively 

low, suggesting a superior level of precision and reduced error in predictions when compared to 

traditional models. This indicates that energy-efficient approaches not only optimize resource 

consumption but also enhance the accuracy of simulation results. Conversely, traditional models 

exhibit higher RMSE values, reflecting a greater deviation from observed values, which could 

potentially lead to less reliable forecasts. Furthermore, an examination of the 3D modeling results 

highlights a significant reduction in RMSE for energy-efficient configurations over traditional 

ones, emphasizing the potential of dimensional modeling to augment precision. These findings 

are pivotal as they underscore the advantage of incorporating energy-efficient strategies in 

modeling to achieve lower error margins, ensuring more dependable and sustainable simulation 

outcomes. Overall, the analysis indicates a clear trend towards the adoption of energy-efficient 

systems in simulation practices to reduce RMSE, thereby promoting improved predictive 

accuracy across diverse applications. 

As shown in Figure 3 and Table 3, the adjustment of parameters yields noticeable 

transformations in the computed results evident from the provided datasets before and after the 

modifications. Initially, the energy-efficient RMSE was consistently lower than the traditional 

RMSE, indicating a significant advantage in error reduction for energy-efficient methods across 

various models. Specifically, this advantage was pronounced in scenarios where the energy-

efficient RMSE consistently registered at values such as 0.0 at multiple instances, contrasting 

with higher RMSE values observed in traditional models under similar conditions. Following the 

parameter changes, the RMSE values across different cases and iterations demonstrate a distinct 

pattern. The revised data illustrate a convergence trend of RMSE values, regardless of the cases, 

towards a lower range as iterations advance, suggesting an overall improvement in accuracy and 

model performance. For instance, RMSE values initially peaking closer to 1.0 experience a 

decline toward a more optimal zone below 0.4 over successive iterations in both the earlier and 

later cases presented. This refined convergence is consistent across different test cases, implying 

that the parameter adjustments have effectively reduced the error rates in iterative calculations, 

contributing to heightened precision and robustness in the predictive models. Consequently, the 

post-adjustment scenario underscores the effectiveness of the adopted parameter alterations, 
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reflecting enhanced computational efficiency and elevated performance across multiple iterative 

scenarios. 

 

Figure 3: Parameter analysis of the proposed Energy-Efficient Edge Computing-based Real-Time 

3D Model Reconstruction 

Table 3: Parameter analysis of case study 

Case RMSE Iteration1 Iteration2 

Case 1 1.0 100 200 

Case 1 0.8 300 400 

Case 1 0.6 500 N/A 

Case 4 1.0 100 200 

Case 4 0.8 300 400 
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5. Discussion 

The proposed methodology of integrating Energy-Efficient Edge Computing (EEEC) with Real-

Time 3D Model Reconstruction significantly enhances computational efficiency while curtailing 

energy expenditures in resource-intensive tasks. One of the primary advantages of this approach 

is its ability to utilize edge computing to localize data processing close to its source, thereby 

reducing latency—a decisive factor for tasks requiring rapid and recurrent sensor data analyses, 

such as LiDAR or camera input. By leveraging edge computing, the methodology facilitates task 

offloading decisions that effectively balance latency and energy consumption, promoting edge 

processing for time-sensitive outputs. Additionally, employing Dynamic Voltage and Frequency 

Scaling (DVFS) enhances energy efficiency by dynamically adjusting voltage and frequency 

levels to optimize power usage, while techniques like edge caching, using voxel grid 

representations such as the truncated signed distance function (TSDF), mitigate redundant 

computations and expedite response times. The collaborative deployment of multiple edge 

devices aids in distributing computational load, further amplifying processing efficiency. 

Moreover, the incorporation of techniques like loop closure detection through pose graph 

optimization minimizes positional errors during 3D reconstruction, ensuring accuracy and global 

consistency. Security at the edge is bolstered through lightweight encryption methods, ensuring 

data integrity with minimal computational overhead. Overall, this methodology meticulously 

optimizes the Energy Delay Product (EDP), providing a refined balance between energy usage 

and latency, thereby revolutionizing the way spatial comprehension of 3D environments is 

achieved, crucial for applications in augmented reality and autonomous systems. This innovative 

integration showcases a transformative stride in distributed intelligent computing, characterized 

by its energy-conscious and high-performance nature. 

The proposed integration of Energy-Efficient Edge Computing (EEEC) with Real-Time 3D 

Model Reconstruction, while innovative, is subject to several potential limitations that may 

impact its efficacy. Firstly, the reliance on edge computing for minimizing latency may encounter 

scalability issues, particularly in environments with limited edge infrastructure or when multiple 

devices require simultaneous access to edge resources, potentially leading to congestion and 

increased latency. Furthermore, the utilization of Dynamic Voltage and Frequency Scaling 

(DVFS) to optimize energy consumption is constrained by the hardware capabilities of edge 

devices, which may not support the necessary adjustments or may introduce instability in 

processing, thereby affecting real-time reconstruction. The dependency on sophisticated caching 

strategies, such as those leveraging the truncated signed distance function (TSDF), necessitates 

finely-tuned cache management systems, the performance of which can degrade if cache hit ratios 

are lower than anticipated due to dynamic changes in input data patterns. Additionally, ensuring 

robust security protocols while maintaining low computational overhead introduces complexities 

in encryption algorithms that could inadvertently increase processing time or energy consumption. 

The collaborative use of multiple edge devices to distribute processing load requires seamless 

network synchronization and efficient data sharing frameworks, which may be vulnerable to 

network inconsistencies, thus affecting the overall system performance. Lastly, while the focus on 

optimizing the Energy Delay Product (EDP) is crucial, it inherently involves trade-offs where the 

priority given to either energy savings or latency reduction might not align with the specific needs 

of all applications, such as those requiring ultra-low latency or extremely low power usage. These 

limitations suggest that while the integration presents significant advancements, its practical 

application may require further refinement and context-specific adaptations to mitigate these 

challenges effectively. 

Case 4 0.6 500 N/A 
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6. Conclusion 

Real-time 3D model reconstruction is a critical aspect in fields such as virtual reality, robotics, 

and environmental monitoring, where the need for efficient and precise reconstructions is 

paramount. This study delves into the realm of balancing computational efficiency and model 

accuracy within the context of real-time 3D model reconstruction, particularly focusing on the 

significance of edge computing for instantaneous processing. By introducing an innovative 

method that leverages energy-efficient edge computing, this research aims to tackle the existing 

challenges hindering the seamless integration of computational efficiency and model accuracy. 

The key contribution of this work lies in the optimization of computational resources at the edge, 

a strategy designed to augment reconstruction speed while maintaining high quality models. 

Through the amalgamation of cutting-edge algorithms and edge computing methodologies, the 

approach outlined in this paper endeavors to substantially enhance the efficiency and precision of 

real-time 3D model reconstruction, thereby opening up a plethora of possibilities for application 

in various domains. Moving forward, future research could explore the scalability of this 

approach across different hardware configurations and further enhance the adaptability of the 

proposed framework in dynamic real-world environments, thereby pushing the boundaries of 

real-time 3D model reconstruction in terms of performance and applicability. 
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