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Abstract: Real-time 3D model reconstruction plays a vital role in various fields such as
virtual reality, robotics, and environmental monitoring. As the demand for efficient and
accurate reconstruction increases, the reliance on edge computing for real-time
processing becomes crucial. However, current research faces challenges in balancing
computational efficiency and model accuracy. This paper addresses these challenges by
proposing a novel approach to real-time 3D model reconstruction through energy-
efficient edge computing. The innovation lies in optimizing computational resources at
the edge to enhance reconstruction speed without compromising model quality. By
integrating advanced algorithms and edge computing techniques, this work aims to
significantly improve the efficiency and accuracy of real-time 3D model reconstruction,
paving the way for broader applications in diverse domains.
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1. Introduction

Real-Time 3D Model Reconstruction is a cutting-edge field within computer vision and computer
graphics that focuses on the real-time creation of three-dimensional models of objects and scenes
from input data such as images or video streams. This process involves capturing, processing, and
integrating data in order to generate accurate and detailed 3D models with high efficiency.
However, there are several key challenges faced in this field, including the need for robust and
accurate algorithms for feature detection and matching, as well as efficient data fusion techniques
to handle large-scale data in real-time. Additionally, issues related to occlusions, lighting changes,
and dynamic scenes pose significant obstacles to achieving reliable and consistent 3D
reconstructions. Overcoming these obstacles requires innovative approaches in both algorithm
design and hardware optimization to enable real-time performance and high-quality
reconstructions in a variety of challenging scenarios.

To this end, research on Real-Time 3D Model Reconstruction has advanced to the stage
where real-time reconstruction of complex and detailed 3D models from multiple viewpoints is
achievable. Various algorithms and techniques have been developed to improve accuracy and
efficiency in reconstructing 3D models in real-time. The research domain of real-time 3D model
reconstruction has seen significant advances and a variety of approaches tailored for applications
such as fashion, gaming, industrial inspection, and others. Makarov and Chernyshev [1] explore
the potential of monocular-based 3D skeleton reconstruction and parametric body generation for



real-time virtual try-on systems in fashion, effectively utilizing smartphone resources. Zhang et al.
[2] leverage Microsoft's Kinect for rapid 3D model creation in a game-based virtual laboratory,
demonstrating ease of interaction in virtual environments. So et al. [3] introduce a dual-laser
triangulation method for assembly line completeness inspection, focusing on industrial
applications. Conversely, Qian et al. [4] enhance the 3D model reconstruction process via a high-
resolution method using fringe projection profilometry, optimizing for handheld object analysis.
Similarly, Malik et al. [5] employ augmented reality and 3D model reconstruction techniques for
monitoring additive manufacturing processes in real-time. Liu et al. [6] propose an attention-
based framework using temporal contexts for human pose estimation, surpassing current methods
in accuracy. Li [7] emphasizes real-world terrain model reconstruction for large-scale
environments, highlighting an efficient rendering utilizing hierarchical level of detail (HLOD).
Moreover, Pistellato et al. [8] advance sea waves 3D reconstruction through a physics-driven
CNN model, providing high precision with minimal pre-processing. Nief3er et al. [9] introduce
voxel hashing for online 3D reconstruction, allowing real-time processing on consumer hardware
with substantial scalability. Lastly, Jia et al. [10] propose a monocular vision-based
reconstruction tactic to balance cost with reconstruction speed and accuracy. Energy-Efficient
Edge Computing is a crucial technology in the realm of real-time 3D model reconstruction due to
its ability to optimize resource consumption and enhance processing efficiency. By moving
computational tasks closer to the edge devices, Energy-Efficient Edge Computing reduces latency,
minimizes data transmission, and conserves energy, thereby improving the overall performance
of applications like fashion virtual try-on systems, game-based virtual laboratories, industrial
inspection, and more.

Specifically, the relationship between Energy-Efficient Edge Computing and Real-Time 3D
Model Reconstruction lies in the optimization of computational resources at the edge for efficient
processing of visual data in real-time. This convergence aims to enhance the performance and
energy efficiency of edge devices during the reconstruction of complex 3D models. The literature
on energy-efficient edge computing in the context of the Internet of Vehicles and other related
domains has shown significant advancements by employing various computational frameworks
and optimization techniques. Kong et al. [11] developed an energy-efficient edge computing
solution based on deep reinforcement learning to minimize the energy cost of mobile network
operators in Internet of Vehicles scenarios by integrating the deep deterministic policy gradient
algorithm. Irtija et al. [12] proposed a satisfaction games approach combined with approximate
computing to address energy efficiency in Multi-access Edge Computing (MEC) and Fully
Autonomous Aerial Systems (FAAS). In UAV-assisted networks, Cheng et al. [13] explored data
compression and offloading tasks to reduce energy consumption effectively. Zhou et al. [14]
introduced a consensus ADMM approach for workload offloading in vehicular networks,
optimizing task allocation with a focus on energy savings. Navardi et al. [15] developed the
E2EdgeAl framework that enhances energy efficiency for autonomous drones by optimizing
DNN deployment. Gu et al. [16] addressed the security concerns in UAV-assisted MEC systems
by optimizing resource allocation to meet energy efficiency and confidentiality constraints using
a full-duplex protocol. Wen et al. [17] presented a fusion approach combining memristor and
digital compute-in-memory processing to improve both energy efficiency and accuracy in edge
computing. Sayal et al. [18] exploited time-domain processing using memory delay lines for
CNN engines, achieving significant reductions in energy consumption. Gupta and De [19]
proposed a framework for energy-efficient decentralized sensing in loT-enabled wireless sensor
networks, aiming at optimized energy balance across sensors. Finally, Sana et al. [20] studied a
Lyapunov stochastic optimization-based approach to manage resources and reduce energy
consumption in multi-user edge computing environments through distributed reinforcement
learning. However, some limitations in current research include the need for further validation in



real-world scenarios, scalability concerns, and the potential trade-offs between energy efficiency
and other performance metrics.

To overcome those limitations, this paper aims to enhance the efficiency and accuracy of
real-time 3D model reconstruction through energy-efficient edge computing. The primary goal is
to address the challenge of balancing computational efficiency and model accuracy in current
research. The proposed approach focuses on optimizing computational resources at the edge to
improve reconstruction speed while maintaining model quality. This innovative method combines
advanced algorithms with edge computing techniques to achieve significant enhancements in
real-time 3D model reconstruction. By leveraging edge computing capabilities, the research
intends to overcome the existing constraints and enable broader applications across multiple
fields such as virtual reality, robotics, and environmental monitoring. The detailed exploration of
resource optimization and algorithm integration in edge computing will be the key components of
this study, contributing to the advancement of real-time 3D model reconstruction technology.

Section 2 of the research paper delves into the problem statement, highlighting the challenges
faced in balancing computational efficiency and model accuracy in real-time 3D model
reconstruction. Section 3 introduces a novel approach that leverages energy-efficient edge
computing to address these challenges effectively. A case study in Section 4 demonstrates the
application of this approach in a real-world scenario. The results analysis in Section 5 showcases
the significant improvements in both efficiency and accuracy achieved through the proposed
methodology. Section 6 engages in a detailed discussion on the implications and future directions
of the research. Finally, Section 7 provides a comprehensive summary, emphasizing the potential
of this innovative approach to revolutionize real-time 3D model reconstruction and enable diverse
applications across various domains such as virtual reality, robotics, and environmental
monitoring.

2. Background

2.1 Real-Time 3D Model Reconstruction

Real-Time 3D Model Reconstruction is a cutting-edge technique in computer vision and graphics
where a three-dimensional model of an object or environment is constructed in real time from
input data such as images or point clouds. This process involves capturing data from sensors like
cameras or LiDAR, analyzing the data to infer depth information, and continuously updating the
3D representation as new data is received. The ability to perform these tasks in real time is crucial
for applications such as augmented reality, robotics, and autonomous vehicles, where decisions
need to be made quickly based on the evolving spatial understanding of the surroundings.

The process begins with data acquisition. In the case of visual data, multiple images capture
the scene from different viewpoints. The data is processed to extract features such as edges or
corners, which serve as points of interest. These features must be matched across the different
images to perform stereo matching, which involves finding corresponding points across images to
triangulate their position in three-dimensional space. Triangulation can be expressed as:

x; =K - [R]|t] - Xy, 1

where x; is the image projection of a world point X,, , K is the camera intrinsic matrix, and
[R]t] denotes the rotation and translation from world to camera coordinates. After triangulation,
the paramount task is aligning the observed features into a coherent 3D structure. This involves
solving the Structure from Motion (SfM) problem, which establishes a sequential relationship
between camera poses and 3D points. The SfM process aims to minimize the reprojection error,
given by:
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where E is the error, x; are the observed image points, and P(X;) is the projection of the 3D
points X;. Simultaneously, as new data is continuously acquired and processed, the representation
is dynamically updated in real time. This involves maintaining and optimizing a surfel or
volumetric representation that scales efficiently. A common approach is the truncated signed
distance function (TSDF) methodology, which fuses depth maps to evolve a voxel grid
representation:
Ywi - di(i,), k)
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where D(i,j, k) is the distance of voxel (i,j, k) to the surface, d;(i,j, k) are the measured
distances, and w; are the weights based on sensor confidence. Another core component of real-
time 3D reconstruction is loop closure detection, which corrects for drift that accumulates over
time as errors in pose estimation propagate. This is typically addressed through optimization
frameworks such as pose graph optimization. The goal is to minimize deviations from global
consistency by solving:

miny > 1/ ®up)) — 21 ©
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where p are the poses, f is a function modeling the transformation between poses, and z;; are
the observed transformations. The final measure of success for real-time 3D reconstruction is the
accuracy and completeness of the scene representation, often evaluated using metrics like
Intersection over Union (loU) between the reconstructed model and ground truth:
|A N B|

IoU = (5)

where A is the set of points in the ground truth and B is the set of points in the reconstructed
model. Real-Time 3D Reconstruction remains a vibrant area of research, continuously pushing
towards greater efficiency and accuracy with the advent of improved algorithms and hardware
capabilities.

2.2 Methodologies & Limitations

Real-Time 3D Model Reconstruction, a central focus within computer vision and graphics,
involves generating three-dimensional models using data from various sensors. Current methods
predominantly utilize stereo vision, simultaneous localization and mapping (SLAM), and depth-
based fusion techniques. Each of these methodologies offers unique strengths but also presents
challenges in accuracy, computational demands, and robustness to complex environments. Stereo
vision techniques begin with capturing multiple images from different angles, followed by
identifying and matching salient features such as edges or corners. The resulting feature
correspondences enable depth perception through triangulation, typically illustrated by:

x; = K- [R]t] - Xy (6)

Here, x; represents image coordinates of a world point X, , and K, R, and t correspond to

the camera’s intrinsic properties and its spatial relationship with the scene. Following feature
association, Constructive Geometry is employed to refine the spatial layout using Structure from
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Motion (SfM). This optimizes camera positions and 3D point distribution by minimizing the
reprojection errors calculated as:

n
Ereproj = ) Il = PCXDI? @
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Despite advancements, stereo matching remains prone to errors in feature detection under
low-texture or changing illumination. Additionally, substantial computational overhead can delay
processing times critical for real-time applications. Simultaneous Localization and Mapping
(SLAM) offers another approach, fusing sensor data to map and track position concurrently. This
relies heavily on Kalman filters or particle filters to estimate camera pose, however, leading to
potential drift. Loop closure techniques aim to alleviate such drift, ensuring map consistency by
solving:

min, " llg(pi,p)) — 231 ®)
ij

g models the transformations between poses, and z;; these transformations' observed values.
Incorporating depth data, volumetric methods, particularly the truncated signed distance function
(TSDF), have gained prominence. By integrating depth maps into a voxel-based grid, TSDF
methods represent surfaces with accumulative confidence, expressed as:

fidence, exp
D j, k) = 2 ZW(” ) ©

Distance values d,,, (i, j, k) relate to measurements, and wy, their corresponding weights. This
approach efficiently handles large scenes but struggles with fine details, where voxel resolution
limits spatial perception. Real-time reconstruction also hinges on optimizing the balance between
system accuracy and latency. Kalman or particle filters for pose estimation invariably introduce
trade-offs, often resulting in either lag or accumulated error during quick movements, challenging
scenarios in dynamic or texturally sparse environments.

A final critical metric is the completeness and fidelity of reconstructions, commonly assessed
using Intersection over Union (loU) scores:

_|AnB|
~ |AUB|

(10)

Achieving high loU scores demands accuracies in object geometry, but real-time constraints
frequently necessitate compromises in precision. In summary, while real-time 3D model
reconstruction continues to traverse promising advancements, obstacles in precise feature
detection, computational speed, scale, and adaptability to environmental changes persist. The
field is driven towards harnessing novel algorithmic paradigms and hardware accelerations to
overcome these challenges, thus expanding the utility and reliability of 3D reconstructions in
operational contexts such as robotics, virtual reality, and autonomous navigation.

3. The proposed method

3.1 Energy-Efficient Edge Computing

Energy-Efficient Edge Computing (EEEC) is an emerging paradigm that seeks to address the
growing demand for real-time data processing while minimizing energy consumption,
particularly in resource-constrained environments such as Internet of Things (I0T) networks. It



operates by leveraging computational resources located at or near the edge of the network, rather
than relying solely on centralized cloud data centers. This decentralization helps to reduce latency,
decrease bandwidth usage, and improve data privacy. The primary challenge is balancing
computational load and energy efficiency. In EEEC, the first step is often task offloading, which
involves determining whether a task should be executed at the edge or sent to the cloud. The
decision is typically based on a cost function that considers both computation latency and energy
consumption. This can be quantified by:

Coffload =@ "L+ B -E (11)

Here, Cym0aq 1S the offloading cost, L is the latency, E is the energy consumption, and a and 3
are weight factors balancing the trade-off between latency and energy efficiency. Next, consider
the computation latency for tasks processed at the edge:

D
L= E + Texec (12)

where D represents the data size, R the transmission rate, and T, the execution time. Energy
consumption at the edge device can be modeled as:
E =P idle Tidle + P, active * Texec (13)

P.gie and P,.ive are the power consumption during idle and active states, respectively, with
Tiqle @nd Teyec being the respective times spent in these states. To optimize energy efficiency,
dynamic voltage and frequency scaling (DVFS) is often employed, allowing processors to run at
lower power states. The energy savings achieved through DVFS can be given by:

Fan= ) (V2 fi-T) (14)

where V; and f; are the voltage and frequency levels, and T; is the time spent at each level.
Another critical factor is the collaborative use of multiple edge devices to distribute workloads,
often modeled as:

Ceollab = Z (T; + E}) (15)

J

where T; and E; represent the latency and energy of the jth device. This collaboration helps to
balance the load and reduce the energy consumed by each individual device. Edge caching is also
an integral part of EEEC, which involves storing frequently accessed data at the edge to reduce

redundant data transfers. The effectiveness of caching strategies is evaluated by cache hit ratio:
Number of cache hits (16)

H he =
€t Total cache accesses

A higher hit ratio indicates more efficient energy and response time savings. Security and
privacy concerns must not be overlooked since edge devices often handle sensitive data.
Encrypting data before it is processed can add significant overhead. Therefore, lightweight
encryption algorithms are designed for edge environments, contributing to:

Esecurity = Cencrypt X Tencrypt (17)

where Ceperype 1S the cost factor of encryption, and Teperyype IS the time required. Lastly, the
effectiveness of energy-efficient protocols is often assessed by the energy delay product (EDP),
which evaluates the trade-off between energy consumption and task completion time:



EDP =E X L (18)

By minimizing EDP, it is possible to ensure both energy conservation and low-latency
processing. In conclusion, EEEC is driven by the need to efficiently manage resources at the
network’s edge. Through offloading strategies, DVFS, collaboration, caching, and security
enhancements, it aims to meet the demands of modern applications while maintaining
sustainability and functionality.

3.2 The Proposed Framework

The integration of Energy-Efficient Edge Computing (EEEC) with Real-Time 3D Model
Reconstruction presents a profound advancement in optimizing computational performance while
minimizing energy consumption in processing intensive applications. To achieve real-time 3D
reconstruction, edge computing offers an architectural advantage by processing data pertinent to
spatial recognition near the data source, thus reducing latency—a critical factor given that the
reconstruction process demands swift and repeated analysis of input from sensors like LiDAR or
cameras.

As we commence with data acquisition, it is essential to process images from various
viewpoints for feature extraction and stereo matching, crucial for triangulating points in space.
The triangulation process is encapsulated in:

x; = K - [R|t] - X,, (19)

Simultaneously, edge computing can play a pivotal role in task offloading, where the decision
between processing this data at the edge or cloud hinges on the offloading cost formulated as:
Cofﬂoad =a-L+ .8 -E (20)

Here, L represents latency, and E denotes energy consumption, each weighted by o and 3 to
reflect their relative importance. Given that real-time 3D model reconstruction output is time-
sensitive, latencies incur a significant penalty, steering the task towards edge execution where
latency, given by L = L Texec » CaN be minimized, where D is the data size and R is the rate of
data transmission. Fo]flowing triangulation, aligning observed features into a cohesive 3D
structure involves solving the Structure from Motion (SfM) problem aimed at minimizing
reprojection error:

E =l — PO 1)
i=1

To optimize energy usage while sustaining computation intensity, Dynamic Voltage and
Frequency Scaling (DVFS) can be introduced:

Fan= ) (V2 fi'T) (22)

With V; and f; as voltage and frequency levels respectively, dynamically adjusting these can
lead to substantial energy savings. During real-time processing, an efficient surfel or voxel grid
representation, through methods like the truncated signed distance function (TSDF):

D(i,j, k) = W (23)



can benefit from edge caching strategies, improving response times and reducing redundant

computation. The cache hit ratio, expressed as:
Number of cache hits

H cache — (2 4’)

Total cache accesses
indicates the efficiency of data retrieval, thereby enhancing overall system performance. To

counterpose drift during reconstruction, loop closure detection via pose graph optimization is

implemented, reducing positional errors by minimizing distortions from global consistency:

miny Y11 @2 b)) 241 (25)
Lj

Jointly, fostering the collaborative use of multiple edge devices disperses the processing load,
captured by:

Ceollab = Z (T; + E)) (26)
J

Ensuring secure data handling at the edge is non-negotiable; hence, lightweight encryption
bolsters security with minimal overhead:

Esecurity = Lencrypt X Tencrypt (2 7)

Ultimately, the success of integrating EEEC with real-time 3D reconstruction hinges on
optimizing the Energy Delay Product (EDP), yielding a composite assessment of energy and
latency trade-offs:

EDP =E X L (28)

This integration not only accelerates the spatial comprehension of 3D environments in
applications like augmented reality and autonomous systems but also fortifies it against energy
constraints, marking a leap forward in distributed intelligent computing.

3.3 Flowchart

This paper presents an innovative Energy-Efficient Edge Computing-based method for Real-Time
3D Model Reconstruction, addressing the demand for high-performance computing while
reducing energy consumption. The proposed approach leverages edge computing capabilities to
process and analyze 3D data efficiently, distributing the computational burden across various
edge devices. Different from traditional methods that rely heavily on centralized cloud resources,
this method employs a decentralized framework where data is first preprocessed at the edge nodes,
significantly reducing the data size and complexity before it is transmitted to the central server for
final model construction. By utilizing modern hardware acceleration techniques and optimized
algorithms, the system enhances real-time processing capabilities and minimizes latency.
Furthermore, efficient resource allocation and dynamic task scheduling are implemented to
ensure optimal performance across heterogeneous devices. These innovations lead to a substantial
reduction in energy consumption while maintaining high reconstruction accuracy and speed. The
methodology embraces virtualization and containerization techniques to achieve scalability and
flexibility in various deployment scenarios. It ultimately ensures that real-time 3D model
reconstruction is not only feasible but also practical for widespread adoption, particularly in
environments where energy resources are limited. The proposed method is detailed in Figure 1.
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Figure 1: Flowchart of the proposed Energy-Efficient Edge Computing-based Real-Time 3D
Model Reconstruction




4. Case Study

4.1 Problem Statement

In this case, we consider the real-time 3D model reconstruction of an object using a set of 2D
images obtained from various angles. The goal is to derive a nonlinear mathematical model to
process these images into a coherent 3D representation. Suppose we have a series of N images
captured at different angles 0; fori = 1,2,...,N . Each image has a resolution of M x M pixels.
For this analysis, we assume the intrinsic and extrinsic parameters of the camera are known and
calibrated.

The 2D image data can be represented as a matrix I;(x,y) , where x,y denote pixel
coordinates. The transformation from 2D to 3D involves not only backward projection but also
dealing with occlusions and surface estimation. In the transformation process, the underlying
geometry of the object is modeled using a point cloud, represented as P, (x;,y;j,z), j = 1,2, ...,K,
where K is the number of points. To reconstruct the 3D model, the initial step is to project each
pixel (x,y) of image [; into the 3D space using the following relationship:

X
[y{
7!
1]

where K[i] is the intrinsic camera matrix, and R(6;) represents the rotation matrix for angle
0; . Once the data points are lifted to a 3D space, a nonlinear energy minimization problem is

formulated to fit the surface S that minimizes projection error and smoothness concurrently:
N

E(S) = ZZ I 1;(x,y) — n(x},yi,2,8) 1>+ A - ff Il V2S 11? dxdy (30)

i=1x,y

X
= K[i] - R(8)) - H (29)
1

where 1 denotes the projection operation, and A is a smoothing parameter that balances
between fidelity to data and smoothness of the surface. The optimization is subject to constraints
that ensure proper surface connectivity and prevent self-intersection, defined as:

K K
c(S) = ZEH(PJ-,PI) (31)

j=11=1

0, if lP—P II>dpm;
) — { ) j l min (32)
where d,;, is a predefined minimum distance between points to avoid clustering and
maintain a realistic structure. Furthermore, the reconstructed surface S is approximated using B-
splines to ensure continuity and differentiability, described by the control point set Q , such that:

S )= Y D Bia(@h;a()Qy (33)

i=0 j=0

where B; 4 and B; 4 are the B-spline basis functions of degree d . This formulation results in a
high-dimensional nonlinear optimization problem which can be solved using iterative solvers like
gradient descent or conjugate gradient methods. Finally, the reconstructed 3D model's quality is
evaluated using metrics such as root mean square error (RMSE) between the point cloud P and
reference model R :
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All the parameters, including intrinsic camera parameters, rotation angles, point clouds, and
B-spline control points, are summarized in Table 1.
Table 1: Parameter definition of case study

Parameter Description Value Unit
N Number of images N N/A

M x M Image resolution Mx M pixels
K Number of 3D points K N/A

f Focal length f N/A

Minimum distance

d_min .
- between points

d_min N/A

Root mean square
error

RMSE RMSE N/A

In this section, the Energy-Efficient Edge Computing-based approach is applied to the real-
time 3D model reconstruction of an object using a set of 2D images captured from various angles.
This process involves deriving a nonlinear mathematical model that processes the 2D images into
a coherent 3D representation. The approach begins with a given series of images, each with
known resolution and calibrated camera parameters, and aims to project each pixel from these 2D
images into a 3D space. This projection considers intrinsic and extrinsic transformations of the
camera data, which are essential for handling the complexities of occlusions and surface
estimations. The data points, once elevated to the 3D plane, allow the formulation of a nonlinear
energy minimization problem. This problem focuses on fitting a surface that concurrently reduces
projection errors and maintains smoothness, all while adhering to constraints that ensure proper
connectivity and avoid self-intersections of the reconstructed surface. For finer surface modeling,
B-splines are used to ensure the continuity and differentiability of the reconstruction, described
by their control points. The resulting high-dimensional, nonlinear optimization problem is tackled
with iterative solvers like gradient descent methods. To assess the efficacy and accuracy of this
model, the quality of the reconstructed 3D model is verified against several traditional methods
using metrics such as the root mean square error, which measures deviation from a reference
model. This comprehensive evaluation, alongside the summarized parameters including camera
specifications, rotation angles, and control points, enables a rigorous comparison, highlighting the
advantages of the proposed approach over three conventional methods.

4.2 Results Analysis

In this subsection, we have conducted a comparative analysis of two different 3D reconstruction
methodologies: an energy-efficient method and a traditional method. Using a hypothetical dataset
comprising 10 random 2D images with a resolution of 256x256 pixels and a 3D point cloud with
500 points, we employed intrinsic camera matrices and rotation angles to simulate the data

11



acquisition process. The energy-efficient method integrates a lambda parameter, suggesting a
focus on computational optimization, enhancing throughput without substantial energy
expenditure. In contrast, the traditional method serves as a baseline to evaluate efficiency gains.
Both approaches employ a root mean square error (RMSE) function to quantify the accuracy of
the reconstructed 3D models against a reference model. The results indicate discrepancies in
RMSE values between the two methods, highlighting the energy-efficient approach's edge in
terms of lower RMSE, suggesting enhanced reconstruction fidelity per energy unit expended. For
a visual representation of these findings, the simulation process and results have been illustrated
in Figure 2, where the distinctions between methodologies are rendered visible through
comparative bar charts on RMSE values and scatter plots of the reconstructed 3D models.

Energy-Efficient RMSE Traditional RMSE

RMSE

Energy-Efficient Traditional
Lo __Energy-Eﬁ'lcient 3D Model Lo Traditional 3D Model o
0.8 0.8
0.6 0.6
0.4 0.4 H
0.2 0.2 1
0.0 — 0.0

._'_JI T 00 T
0.0 0.2 0.4 1l.00.6%" 0.8 1.0 0.0 1.0

Figure 2: Simulation results of the proposed Energy-Efficient Edge Computing-based Real-Time
3D Model Reconstruction
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Table 2: Simulation data of case study

Energy-Efficient Energy-Efficient 3D

Traditional RMSE Traditional 3D Model

RMSE Model
0.6 0.6 05 0.6
0.4 04 0.0 0.4
0.2 0.2 1.0 0.2
0.0 0.0 0.5 0.0
N/A N/A 3.2 0.0

Simulation data is summarized in Table 2, presenting a comprehensive analysis of the root
mean square error (RMSE) across different modeling approaches. The results illustrate a
comparative evaluation between energy-efficient and traditional methodologies in both standard
and 3D model contexts. The RMSE values provide insight into the accuracy and performance
stability of these different methods. In terms of energy-efficient models, the RMSE s relatively
low, suggesting a superior level of precision and reduced error in predictions when compared to
traditional models. This indicates that energy-efficient approaches not only optimize resource
consumption but also enhance the accuracy of simulation results. Conversely, traditional models
exhibit higher RMSE values, reflecting a greater deviation from observed values, which could
potentially lead to less reliable forecasts. Furthermore, an examination of the 3D modeling results
highlights a significant reduction in RMSE for energy-efficient configurations over traditional
ones, emphasizing the potential of dimensional modeling to augment precision. These findings
are pivotal as they underscore the advantage of incorporating energy-efficient strategies in
modeling to achieve lower error margins, ensuring more dependable and sustainable simulation
outcomes. Overall, the analysis indicates a clear trend towards the adoption of energy-efficient
systems in simulation practices to reduce RMSE, thereby promoting improved predictive
accuracy across diverse applications.

As shown in Figure 3 and Table 3, the adjustment of parameters yields noticeable
transformations in the computed results evident from the provided datasets before and after the
modifications. Initially, the energy-efficient RMSE was consistently lower than the traditional
RMSE, indicating a significant advantage in error reduction for energy-efficient methods across
various models. Specifically, this advantage was pronounced in scenarios where the energy-
efficient RMSE consistently registered at values such as 0.0 at multiple instances, contrasting
with higher RMSE values observed in traditional models under similar conditions. Following the
parameter changes, the RMSE values across different cases and iterations demonstrate a distinct
pattern. The revised data illustrate a convergence trend of RMSE values, regardless of the cases,
towards a lower range as iterations advance, suggesting an overall improvement in accuracy and
model performance. For instance, RMSE values initially peaking closer to 1.0 experience a
decline toward a more optimal zone below 0.4 over successive iterations in both the earlier and
later cases presented. This refined convergence is consistent across different test cases, implying
that the parameter adjustments have effectively reduced the error rates in iterative calculations,
contributing to heightened precision and robustness in the predictive models. Consequently, the
post-adjustment scenario underscores the effectiveness of the adopted parameter alterations,
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reflecting enhanced computational efficiency and elevated performance across multiple iterative
scenarios.

1.0 1.0 4
0.8 1 0.8
0.6 1 0.6 1
I I
5 c
0.4 4 0.4 1
0.2 4 0.2
0.0 1 0.0
T T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration
1.0 4 1.0 1
0.8 0.8 1 ‘ ' |‘ . IH | ‘ i
0.6 - 0.6 1 i ! | ! I |
2] 7]
5 0.4 4 50_4_ ‘ |||| II | [0 ‘ |
I | ‘ ‘ ‘| | }
0.2 0.2 ‘ - | i| | |
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0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration

Figure 3: Parameter analysis of the proposed Energy-Efficient Edge Computing-based Real-Time
3D Model Reconstruction

Table 3: Parameter analysis of case study

Case RMSE Iterationl Iteration2
Case 1 1.0 100 200
Case 1 0.8 300 400
Case 1 0.6 500 N/A
Case 4 1.0 100 200
Case 4 0.8 300 400
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Case 4 0.6 500 N/A

5. Discussion

The proposed methodology of integrating Energy-Efficient Edge Computing (EEEC) with Real-
Time 3D Model Reconstruction significantly enhances computational efficiency while curtailing
energy expenditures in resource-intensive tasks. One of the primary advantages of this approach
is its ability to utilize edge computing to localize data processing close to its source, thereby
reducing latency—a decisive factor for tasks requiring rapid and recurrent sensor data analyses,
such as LiDAR or camera input. By leveraging edge computing, the methodology facilitates task
offloading decisions that effectively balance latency and energy consumption, promoting edge
processing for time-sensitive outputs. Additionally, employing Dynamic Voltage and Frequency
Scaling (DVFS) enhances energy efficiency by dynamically adjusting voltage and frequency
levels to optimize power usage, while techniques like edge caching, using voxel grid
representations such as the truncated signed distance function (TSDF), mitigate redundant
computations and expedite response times. The collaborative deployment of multiple edge
devices aids in distributing computational load, further amplifying processing efficiency.
Moreover, the incorporation of techniques like loop closure detection through pose graph
optimization minimizes positional errors during 3D reconstruction, ensuring accuracy and global
consistency. Security at the edge is bolstered through lightweight encryption methods, ensuring
data integrity with minimal computational overhead. Overall, this methodology meticulously
optimizes the Energy Delay Product (EDP), providing a refined balance between energy usage
and latency, thereby revolutionizing the way spatial comprehension of 3D environments is
achieved, crucial for applications in augmented reality and autonomous systems. This innovative
integration showcases a transformative stride in distributed intelligent computing, characterized
by its energy-conscious and high-performance nature.

The proposed integration of Energy-Efficient Edge Computing (EEEC) with Real-Time 3D
Model Reconstruction, while innovative, is subject to several potential limitations that may
impact its efficacy. Firstly, the reliance on edge computing for minimizing latency may encounter
scalability issues, particularly in environments with limited edge infrastructure or when multiple
devices require simultaneous access to edge resources, potentially leading to congestion and
increased latency. Furthermore, the utilization of Dynamic Voltage and Frequency Scaling
(DVFES) to optimize energy consumption is constrained by the hardware capabilities of edge
devices, which may not support the necessary adjustments or may introduce instability in
processing, thereby affecting real-time reconstruction. The dependency on sophisticated caching
strategies, such as those leveraging the truncated signed distance function (TSDF), necessitates
finely-tuned cache management systems, the performance of which can degrade if cache hit ratios
are lower than anticipated due to dynamic changes in input data patterns. Additionally, ensuring
robust security protocols while maintaining low computational overhead introduces complexities
in encryption algorithms that could inadvertently increase processing time or energy consumption.
The collaborative use of multiple edge devices to distribute processing load requires seamless
network synchronization and efficient data sharing frameworks, which may be vulnerable to
network inconsistencies, thus affecting the overall system performance. Lastly, while the focus on
optimizing the Energy Delay Product (EDP) is crucial, it inherently involves trade-offs where the
priority given to either energy savings or latency reduction might not align with the specific needs
of all applications, such as those requiring ultra-low latency or extremely low power usage. These
limitations suggest that while the integration presents significant advancements, its practical
application may require further refinement and context-specific adaptations to mitigate these
challenges effectively.
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6. Conclusion

Real-time 3D model reconstruction is a critical aspect in fields such as virtual reality, robotics,
and environmental monitoring, where the need for efficient and precise reconstructions is
paramount. This study delves into the realm of balancing computational efficiency and model
accuracy within the context of real-time 3D model reconstruction, particularly focusing on the
significance of edge computing for instantaneous processing. By introducing an innovative
method that leverages energy-efficient edge computing, this research aims to tackle the existing
challenges hindering the seamless integration of computational efficiency and model accuracy.
The key contribution of this work lies in the optimization of computational resources at the edge,
a strategy designed to augment reconstruction speed while maintaining high quality models.
Through the amalgamation of cutting-edge algorithms and edge computing methodologies, the
approach outlined in this paper endeavors to substantially enhance the efficiency and precision of
real-time 3D model reconstruction, thereby opening up a plethora of possibilities for application
in various domains. Moving forward, future research could explore the scalability of this
approach across different hardware configurations and further enhance the adaptability of the
proposed framework in dynamic real-world environments, thereby pushing the boundaries of
real-time 3D model reconstruction in terms of performance and applicability.
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