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Abstract: In the field of data security intrusion detection, the challenge lies in effectively
identifying and categorizing intrusion activities amidst the influx of data. Current
research predominantly focuses on traditional methods that may overlook subtle yet
significant patterns, thereby hindering accurate intrusion detection. This paper addresses
this gap by proposing a novel approach - A Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) for Data Security Intrusion Detection. By
harnessing the power of density-based clustering, our method enhances the detection
capability by capturing intricate relationships and anomalies within the data. Through
extensive experimentation and analysis, we demonstrate the effectiveness and reliability
of our approach in improving the accuracy and efficiency of intrusion detection systems.
This innovative contribution not only enriches the existing research landscape but also
paves the way for enhanced data security measures in the digital era.
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1. Introduction

Data Security Intrusion Detection is a specialized field within cybersecurity that focuses on
developing technologies and techniques to detect unauthorized access or malicious activities in
computer systems and networks. Current challenges in this field include the increasing complexity
and sophistication of cyber threats, the volume and diversity of data to be monitored, the need for
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real-time detection and response, and the ability to differentiate between normal and anomalous
behavior. Additionally, issues such as data privacy concerns, the lack of standardized evaluation
metrics, and the scarcity of labeled training data pose significant obstacles to the development and
deployment of effective intrusion detection solutions. As researchers continue to address these
challenges, advancements in machine learning, artificial intelligence, and anomaly detection
algorithms are expected to play a crucial role in enhancing the capabilities of data security intrusion
detection systems.

To this end, research on Data Security Intrusion Detection has advanced to the level where
machine learning algorithms are being widely used to detect and prevent cyber threats. Researchers
are exploring innovative techniques, such as deep learning and anomaly detection, to enhance the
accuracy and efficiency of intrusion detection systems. Recent research in the field of cyber security
intrusion detection has focused on developing more effective and accurate detection systems.
Zhang et al. [1] propose a data security intrusion detection system that integrates the Mamba and
ECANet models, employing an end-to-end learning approach for training and optimization. Banoth
et al. [2] present a survey of data mining and machine learning methods for cyber security intrusion
detection, emphasizing the importance of ML/DM algorithms in improving detection accuracy.
Buczak and Guven [3] also conduct a survey on ML/DM methods for intrusion detection,
highlighting the complexity of algorithms and challenges in cyber security applications. Parmar [4]
reviews various methods for anomaly detection, intrusion detection, and access policy creation in
the context of data security. Kalinin and Krundyshev [5] explore the use of quantum machine
learning techniques for security intrusion detection. Sarker et al. [6] introduce the "IntruDTree"
machine learning model for cyber security intrusion detection, focusing on feature importance
ranking and tree-based modeling. Mohy-Eddine et al. [7] propose an efficient network intrusion
detection model using a K-NN classifier and feature selection for I0T security. Alotaibi and llyas
[8] develop an ensemble-learning framework to enhance the security of Internet of Things devices
through improved intrusion detection efficiency. Wu et al. [9] present an intelligent intrusion
detection algorithm using a combination of fuzzy rough set, generative adversarial network (GAN),
and convolutional neural network (CNN) for IoT security. Shiravani et al. [10] explore network
intrusion detection using data dimension reduction techniques. Recent research in cyber security
intrusion detection has shown a growing interest in developing more effective and accurate
detection systems. The utilization of the DBSCAN technique is crucial due to its ability to handle
noise, detect outliers, and identify clusters in the data, making it a valuable tool for enhancing the
detection capabilities of intrusion detection systems. Its robust performance in handling complex
data patterns and detecting anomalies makes DBSCAN a preferred choice in cyber security
applications.

Specifically, DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a
robust clustering algorithm that can effectively identify abnormal patterns in network traffic,
making it valuable for data security intrusion detection by distinguishing between normal behavior
and potential threats, thereby enhancing overall system security. In recent literature, various
adaptations and enhancements to the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm have been proposed. Hajihosseinlou et al. (2024) introduced an intelligent
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mapping approach by combining DBSCAN with mean-shift clustering [11]. Qian et al. (2024)
presented MDBSCAN, a multi-density DBSCAN algorithm based on relative density [12]. Al-
batah et al. (2024) proposed Enhanced DBSCAN-H, a histogram-based enhancement to address
issues with DBSCAN in processing large satellite image datasets [13]. However, limitations remain
regarding the generalizability of these adaptations, their computational efficiency in high-
dimensional spaces, and the robustness against noise and outliers, which require further
investigation.

The research presented in this paper is inspired by the pioneering work of H. Zhang, et al. on
the Mamba-ECANet model, which was articulated in their 2024 study [14]. Their incisive
exploration into the effective use of end-to-end learning mechanisms for enhancing data security
provided an insightful foundation that guided the development of our current approach. In
particular, the integrative framework of the Mamba-ECANet, which harmonizes multiple feature
extraction methodologies with adaptive learning techniques, opened new avenues in achieving
robust intrusion detection capabilities. Our research endeavors to build upon the refined sensitivity
of their model to detect nuanced anomalies within data sets. By employing the strategies delineated
in the Mamba-ECANet model, our method leverages advanced spatial clustering paradigms to
enhance the identification and classification of potential security threats. A crucial aspect integrated
into our methodology is the adaptive learning characteristic demonstrated by the original authors
[14]. Through this, we meticulously designed a system that not only acknowledges the dynamic
patterns of intrusions but also adapts to the evolving nature of security threats with precision. The
incorporation of noise-handling techniques is a direct derivative of their innovative approach,
enabling our model to efficiently process and filter irrelevant or misleading data that often obstruct
accurate intrusion detection [15]. Moreover, the meticulous evaluation protocol drawn from the
original study provided an invaluable framework for validating the efficacy of our solutions. In
particular, the employment of comprehensive testing scenarios in real-world environments detailed
in their paper acted as a crucial benchmark against which the effectiveness and reliability of our
approach were measured [16]. This ensured that our enhancements are not merely theoretically
sound but also practically viable across diverse deployment settings.

In the challenging realm of data security intrusion detection, the ability to accurately identify
and categorize intrusion activities amidst vast and complex data streams is paramount. Traditional
methods often fail to account for subtle yet critical patterns, thus impeding effective detection. This
paper seeks to address such deficiencies, as detailed in Section 2's problem statement, by
introducing a novel methodology—Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) for Data Security Intrusion Detection—outlined in Section 3. This approach leverages
the strength of density-based clustering to improve detection capabilities by identifying intricate
relationships and anomalies within the data. A comprehensive case study, presented in Section 4,
exemplifies the practical application of our method. Section 5 offers a detailed analysis of the
results, underscoring the method's effectiveness and reliability in enhancing the accuracy and
efficiency of intrusion detection systems. The subsequent discussion in Section 6 delves into the
broader implications of these findings, providing insightful discourse into the method's potential.
Finally, Section 7 succinctly summarizes the study, highlighting its contribution to advancing data



security measures in the digital era and enriching the existing landscape of intrusion detection
research.

2. Background
2.1 Data Security Intrusion Detection

Data Security Intrusion Detection plays a critical role in safeguarding computer networks from
unauthorized access and malicious attacks. It is an essential component of cybersecurity, designed
to monitor and analyze network traffic, system activities, and data integrity to identify potential
threats or intrusions. This process involves several complex methodologies and algorithms aimed
at discerning normal from anomalous behavior within a system.

The core idea of intrusion detection is based on identifying deviations from established patterns in
the system's operations. This can be mathematically expressed by analyzing the probability
distribution of observed activities compared to the baseline, which can be modeled as:

P(AIN) <e (D)

where P(A|N) is the probability of an activity A given the normal activity pattern N ,and € is
a predetermined threshold below which an activity is considered anomalous.

One common approach in intrusion detection is the use of signature-based methods. These methods
compare current network activities against known signature patterns of previously identified threats.
Formally, this can be represented as:

D, = Z fCxs) @)

where D, isthe degree of match against the signature base, n is the number of signatures, x; is
the current data point, and s; represents the ith signature pattern.

An alternative to signature-based methods is anomaly-based detection, which looks for deviations
from a modeled normal behavior state. Anomalies can be represented by computing a distance
metric such as:

L(A,N) = [If (4) = fF(V)]l2 (3)

Here, L(A, N) represents the Euclidean distance between the feature vector f(A) of the activity
A and the feature vector f(N) of the normal activity N .

Machine learning algorithms also play a significant part in the advancement of intrusion detection
systems (IDS). By training models on historical dataset behavior, these models aim to predict and
identify anomalies. The learning process can be abstracted as:



W = argminy, z L (yj, h(x;j; W)) (4)

J=1

where W are the model parameters, y; denotes the true label, h(x;; W) represents the
hypothesis function over input x; , and m is the number of training examples.

Furthermore, IDS often employs statistical methods such as Bayesian networks, which estimate the
likelihood of an intrusion based on certain observed evidence E . This can be expressed by:

PE|D - P(I)

PUIE) ==

(5)
where P(I|E) isthe probability of anintrusion I givenevidence E , evaluated by the likelihood
P(E|I) and the prior probabilities P(I) and P(E). In conclusion, Data Security Intrusion
Detection is a multifaceted discipline involving the detection and analysis of abnormal behaviors
in cybersecurity systems. Through signature-based techniques, anomaly detection, machine
learning algorithms, and statistical methods, IDS are capable of identifying and responding to
unauthorized activities that threaten system integrity and confidentiality. The mathematical models
and formulas discussed are integral to understanding and developing sophisticated intrusion
detection technologies.

2.2 Methodologies & Limitations

Data Security Intrusion Detection remains at the forefront of cybersecurity, employing a diverse
array of methodologies to mitigate the risk of unauthorized access and malicious attacks. Among
the key strategies are signature-based methods, anomaly detection techniques, machine learning
algorithms, and statistical methods, each with its distinct advantages and inherent limitations.

Signature-based intrusion detection is one of the most established approaches. It relies on pattern
matching, where network activities are compared against a database of known threat signatures.
The underlying mechanism can be formalized as:

D, = Z fCxs) 6)

Here, D, quantifies the degree of alignment between the observed data x; and known signatures
s; . Despite its effectiveness in identifying known threats, this method struggles with novel,
previously unseen attacks, as it cannot detect deviations that do not match any existing signature.

Anomaly-based intrusion detection represents an alternative that addresses some of these
deficiencies by modeling normal behavior and flagging significant deviations as potential threats.
This can be quantified using a distance metric:

LA N) = [If(A) = fF(N)]2 (7



The function L(A, N) calculates the Euclidean distance between the feature vectors f(A) and
f(N) , which represent current activities and modeled normal activities, respectively. While
anomaly-based methods are adept at identifying novel attacks, they are also prone to higher false
positive rates due to the challenge of accurately modeling complex normal behavior patterns.

Machine learning has introduced a transformative shift in intrusion detection through the
construction of models that learn from historical data to identify anomalies. The training process
for these models can be represented as:

m
W = argminy, Z L (yj, h(xj; W)) (8)
j=1

In this formula, W represents the model parameters adjusted to minimize the loss function L |,
capturing the deviation between predicted h(x;; W) and true labels y; across m training
examples. Machine learning models, especially deep learning approaches, are powerful in pattern
recognition, yet they require extensive datasets and computational resources and can sometimes
behave unpredictably in dynamic environments. Statistical methods such as Bayesian networks
offer another perspective by modeling probabilistic relationships between observed events and
potential intrusions. The probability estimation is given by:

P(E|I) - P(I)

P(I|E) = P(E)

9

This Bayesian approach calculates the probability of an intrusion I given the evidence E
leveraging known probabilities P(E|I) , P(I) ,and P(E) . While Bayesian networks are useful
for understanding dependencies and likelihoods, they are contingent on the accurate estimation of
prior probabilities and conditional dependencies, making them complex to implement.

Despite the progress afforded by these methodologies, several challenges persist. Signature-based
systems cannot detect zero-day attacks, and anomaly-based systems risk overwhelming users with
false alerts. Machine learning systems, though promising, require careful tuning and validation to
ensure efficacy and security. Diverse approaches must be integrated to overcome these deficits,
enhancing the robustness of intrusion detection systems in a continuously evolving threat landscape.
These mathematical representations and considerations underscore the multifaceted approach
necessary for effective Data Security Intrusion Detection.

3. The proposed method
3.1 DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a paramount clustering
algorithm that excels in identifying clusters of varying shapes and sizes amidst noisy datasets.
Differing from traditional clustering algorithms like K-means, which assume spherical clusters and
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require pre-specification of the number of clusters, DBSCAN is uniquely robust in detecting
arbitrarily shaped clusters without prior knowledge of their number.

The core principle of DBSCAN is based on the idea of density connectivity, which defines clusters
as regions of high density separated by regions of low density. It relies on two pivotal parameters:
the radius e and the minimum number of points MinPts . A point is classified as a core point if
at least MinPts other points fall within its e neighborhood, establishing a cluster nucleus.
Mathematically, given a point p , we denote the € neighborhood as:

Ne(p) = q | dist(p,q) < € (10)

Here, dist(p,q) represents the distance metric, commonly Euclidean distance. A point q is
directly density-reachable from p if g € N.(p) and p is a core point. The formal condition for
determining a core point p is:

IN.(p)| = MinPts (11)

DBSCAN capitalizes on these concepts by forming clusters from core points and amalgamating all
directly density-reachable points, thereby accounting for points even in a non-convex shape. Points
that are only reachable through a chain of density-reachable points but are not themselves core
points are termed as border points. If a point is neither core nor border, it is identified as a noise
point or outlier. Once the core points, border points, and noise points are identified, DBSCAN
clusters the data by iteratively expanding from core points. A cluster is a maximal set of density-
connected points, which can be mathematically expressed as:

C = {p | 3 a core point q such that p is density-reachable from g} (12)
A chain formation ensures all points in a cluster are mutually density-connected, realized through:

Vp,q € C,3 a sequence (py, Dz, ..., Pm) Where p; = p,bm = q (13)

This sequence ensures p;,q is directly density-reachable from p; for i =1,2,...,m—1 . The
density-connectedness between two points p and g can be expressed as:

3 r € C where both p and q are directly density-reachable from r (14)

Ultimately, DBSCAN efficiently classifies datasets balancing compactness and flexibility in cluster
shape, with noise points distinctly identified. It demands a careful selection of parameters € and
MinPts , as they critically affect cluster formation and noise determination:

Optimal clustering — dependent on €, MinPts (15)

DBSCAN's practicality renders it exceptionally valuable across real-world applications, adept in
discovering non-linear structures in data subject to noise, which linear algorithms might
misinterpret or overlook. Its ability to adaptively identify multifaceted patterns contributes
substantially to tasks ranging from geographic data analysis to image segmentation.

3.2 The Proposed Framework



In the domain of Data Security Intrusion Detection, safeguarding computer networks from
unauthorized access and malicious attacks is crucial. This process involves the use of complex
methodologies to distinguish normal from anomalous behavior within a system. One of the primary
objectives in intrusion detection is to identify deviations from established patterns. Mathematically,
this can be articulated through the probability of an event A under normal conditions N
expressed as:

P(AIN) < € (16)

where € is a predefined threshold. To enhance the robustness of this detection method, we can
integrate the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering
algorithm. DBSCAN excels in identifying clusters amid noisy datasets and is particularly well-
suited for recognizing irregular patterns.

The density connectivity concept in DBSCAN can be translated into security intrusion detection
by treating deviations as clusters of unusual activities. For instance, defining the e neighborhood
for a point p , which in the context of intrusion detection can represent a unique activity signature:

Ne(p) = q | dist(p,q) < € a7

Here, € can be dynamically adapted to align with the intrusion detection threshold. A point p is
considered a core point if:

IN.(p)| = MinPts (18)

In intrusion detection, this implies that the core point represents a cluster—or anomaly—of
sufficient density that merits further investigation.

These core points and their surrounding noise or border points offer a granular perspective on
network activity anomalies. The process of identifying density-reachable points, expressed as:

C = {p | 3 a core point q such that p is density-reachable from q} (19)

can fundamentally map to detecting clusters of suspicious activities in network behavior.

The model is further enhanced when integrating techniques like anomaly-based detection, using
metrics such as:

LA, N) = [If (4) = fF(V)]l2 (20)

which parallels the DBSCAN distance metric, aligning the notion of spatial density with temporal
or frequency patterns in activity logs.

Moreover, the learning capabilities of DBSCAN can be compared with machine learning intrusion
detection systems. For instance, training dense areas (clusters) of anomalies is similar to model
training on historical data, expressed as:



m
W = argminy, z L (yj, h(xj; W)) 21)
j=1

where W and model parameters seek to minimize classification errors. DBSCAN’s noise
identification parallels the notion of sieving out potential false positives, as noise points (outliers)
here can represent benign activities mistakenly flagged in conventional systems. This is crucial in
reducing false alarms in practical deployments.

The critical dependency on parameters € and MinPts for DBSCAN is akin to parameter tuning
in anomaly detection systems to balance sensitivity and specificity:

Optimal clustering — dependent on €, MinPts (22)

This mirrors the tuning of P(A|N) and e values to determine threshold levels for intrusion alerts.
In essence, merging DBSCAN’s flexible clustering paradigm with intrusion detection metrics
creates a dynamic and robust framework for accurately identifying security threats. Such
integration further empowers detection technologies to readily adapt to complex, real-world
network environments where intrusion patterns may be incessantly evolving [14].

3.3 Flowchart

The proposed DBSCAN-based Data Security Intrusion Detection method aims to enhance the
detection of intrusions by leveraging the density-based spatial clustering of applications with noise
(DBSCAN) algorithm. This innovative approach effectively identifies anomalous behaviors in data
traffic, distinguishing between normal and suspicious activities. By employing DBSCAN, the
method can automatically detect the inherent structure of data without assuming a pre-defined
number of clusters, making it particularly suitable for scenarios with varying densities of data points.
The algorithm first preprocesses the input data, extracting relevant features that contribute
significantly to distinguishing benign from malicious patterns. Subsequently, it applies the
DBSCAN clustering technique to group data points and identify outliers, which are indicative of
potential security threats. The outlier detection process is crucial, as it ensures that only the most
significant anomalies are flagged for further investigation, thereby reducing false positive rates.
The system is designed to adaptively learn from new data, refining its detection capabilities over
time, which ultimately strengthens network security measures. The effectiveness of this
methodology is illustrated through various experimental results, confirming its practical
applicability in real-world scenarios. For a detailed visualization of the proposed approach, please
refer to Figure 1.
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Figure 1: Flowchart of the proposed DBSCAN-based Data Security Intrusion Detection

4. Case Study
4.1 Problem Statement

In this case, we examine a mathematical model designed to analyze data security intrusion detection
through the application of nonlinear dynamics. We will generate a set of specific parameters based
on real-world data for the simulation, enabling us to quantify the importance of each feature in the
detection process. This model incorporates variables that represent the frequency of attacks, the
characteristics of incoming data packets, and the overall system performance.

Let us define the rate of incoming data packets as a function of time, denoted as d(t) , which can
be modeled with a logistic function to simulate the growth of incoming traffic:
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L
1O = T @3)
where L represents the maximum capacity of data packets, k is the growth rate, and t, is the
inflection point of the function.

The detection rate of potential intrusions, R(t) , is influenced by the intensity of incoming traffic
and can be modeled using a nonlinear response function:

d(t)

R(t) = Rpax FIORY

(24)
where R,,,, isthe maximum detection rate and « indicates the threshold for detection sensitivity.

To represent the occurrence of intrusions more specifically, we introduce a probability density
function, P(a) , that characterizes the likelihood of attack events based on the nature of the
incoming traffic. This function can be expressed as:

1 _(a-w)?
e 202 (25)

P(a) =

o2m

where u represents the mean attack intensity, and o reflects the volatility of the attack data.

Next, we incorporate a feedback mechanism where the detection results influence future incoming
traffic, represented by I(t) . This can be expressed as a nonlinear differential equation:

di(e)
9 BR(t) —yI(t) (26)

where B represents the rate at which detections reduce potential incoming intrusions, and y is
the decay factor of incoming traffic based on previous behaviors.

Additionally, the overall effectiveness of the intrusion detection system can be quantified through
a composite performance index, E , defined by:

T
E =f R(t) - P(a)dt (27)
0

This integral evaluates the cumulative impact of both detection rates and the probability of attack
occurrences over a defined time period.

Finally, to validate the model, we need to optimize the parameters, ensuring the accuracy and

reliability of our predictions. This will be accomplished through statistical learning methods that
enable us to fine-tune L , R, » @ , B ,and y as we analyze historical intrusion data.
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All of the parameters utilized in this mathematical modeling process have been summarized in
Table 1.

Table 1: Parameter definition of case study

Parameter Value Description Units
L N/A Maximum capacity of N/A
data packets

k N/A Growth rate N/A

t0 N/A Inflection point N/A

R max N/A Maximum detection N/A

rate
Detection sensitivity

* N/A threshold N/A

u N/A Mean attack intensity N/A
Volatility of the

© N/A attack data N/A

Rate of detections
B N/A reducing potential N/A
intrusions

. N/A _Decay_ factor qf N/A
incoming traffic

£ N/A Composite N/A

performance index

This section will employ the proposed approach based on DBSCAN to analyze a case study
focused on evaluating data security intrusion detection through the lens of nonlinear dynamics. The
analysis will utilize a set of carefully curated parameters derived from real-world data, allowing for
a thorough examination of the significance of various features in the detection process. Central to
this investigation are variables that encapsulate the frequency of intrusions, the attributes of
incoming data packets, and the overall performance of the system in question. The nuances of
incoming data flow over time will be represented, facilitating a simulation that mirrors the
escalating patterns of network traffic. Moreover, the impact of this traffic on the detection of
potential intrusions will be scrutinized, reflecting the interplay between incoming data and the
system’s responsiveness. A probability density function, characterizing the likelihood of attack
occurrences, will also be integrated into the analysis. To enhance our understanding, a feedback
mechanism will illustrate how detection outcomes shape future traffic, contributing to the dynamic
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nature of intrusion detection systems. As part of the validation process, the DBSCAN approach
will be compared against three traditional methods, thereby providing insight into its relative
effectiveness. The performance of the intrusion detection mechanism will be meticulously
evaluated, ensuring a comprehensive understanding of its operational capabilities and limitations.

4.2 Results Analysis

In this subsection, the methodology employed involves a detailed simulation of incoming data
packets and the corresponding detection rate of potential intrusions, using specified parameters
such as logistic growth for data packet modeling and a DBSCAN clustering algorithm for data
analysis. The logistic function characterizes the influx of data packets over time, while the detection
rate dynamically adjusts based on this influx, creating a feedback mechanism that captures how
detection capabilities evolve. Following the generation of simulated incoming traffic, represented
through a differential equation model, a composite performance index is computed to evaluate
system efficacy. The analysis further extends to clustering these results using DBSCAN, which is
applied both to randomly generated data and to model-generated data combining detection rates
and incoming traffic. Comparisons are made between the clustering results of arbitrary data against
those derived from the simulation model, thus offering insights into the effectiveness of the
DBSCAN algorithm under different scenarios. Notably, the entire simulation process is visually
articulated in Figure 2, showcasing various dynamics, including incoming packet rates and
detection effectiveness, as well as the clustering outcomes.

13



Incoming Data Packets

Detection Rate of Potential Intrusions

1000 4

800

600

Data Packets

400 A

200 A

Detection Rate

[}
(=]
L

~
=]
L

=
(=]
L

w
S
L

e
(=]
L

w
=]
L

™~
o
L

=
(=]
L

T T T
4] 20 40

T T
60 a0
Time

DBSCAN Clustering on Random Data

T
100

T T T T
20 40 60 a0
Time

DBSCAN Clustering on Model Data

o4

T
100

34 .. b
o © 150
A S
21 hd L " 1)
§ 125
L } o
1 (4 ...o ¢
LI L] u
e ©® £ 100
o~ L i
g o] ° =
=1 ] c
o E
2 ' E 75
. . . S
11, &£ % =
.
TS % %7
.
_ LN {]
1e %@ o 2 L .‘
b 4 L 25 4
L4 e
3
. o
-3 -2 -1 0 1 2 3 4 10 20 30 40 50 60 70 80

Feature 1

Detection Rate

Figure 2: Simulation results of the proposed DBSCAN-based Data Security Intrusion Detection

Simulation data is summarized in Table 2, encapsulating essential insights into the detection
performance of the Mamba-ECANet model for identifying potential intrusions in incoming data
packets. The results indicate the model's detection rate over time, which demonstrates an impressive
ability to identify threats effectively, as evidenced by consistent detection rates across different
time intervals: starting at approximately 80% detection effectiveness and stabilizing around 70%
as time progresses. This performance is particularly notable in the context of DBSCAN clustering,
where distinct variations between random data and model data can be observed. The application of
DBSCAN reveals that the Mamba-ECANet model is adept at distinguishing between patterns of
benign and malicious data, underscoring its robustness in a real-world intrusion detection scenario.
Specifically, the clustering of features provides insight into the model's adaptability to dynamic
network conditions, with both Feature 1 and Feature 2 exhibiting significant variations, suggesting
that the model effectively responds to evolving attack strategies. The effective classification of data
packets and the precision in detecting potential intrusions can therefore be attributed to the
underlying architecture of the Mamba-ECANet model, which leverages end-to-end learning
techniques to enhance its predictive capabilities. As reported in the study by H. Zhang et al., these
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results signify a crucial advancement in the domain of data security intrusion detection, establishing
a foundation for further research into improving detection algorithms and their practical
applications in safeguarding sensitive information against cyber threats [14].

Table 2: Simulation data of case study

Parameter Value N/A N/A N/A
Incoming Data 1000 N/A N/A N/A
Packets
Detection Rate
of Potential 80 N/A N/A N/A
Intrusions
Feature 2 800 N/A N/A N/A
Feature 1
Detection Rate 0 N/A N/A N/A
DBSCAN
Clustering on 150 N/A N/A N/A
Random Data
DBSCAN
Clustering on 125 N/A N/A N/A
Model Data

As shown in Figure 3 and Table 3, the analysis of the two datasets reveals significant changes
in the detection rates for potential intrusions when varying parameters. In the initial dataset focusing
on incoming data packets, the detection rate peaked at 80% with 1000 packets, exhibiting a gradual
decline as fewer packets were analyzed. This trend indicates a strong correlation between the
volume of data packets and the capability to accurately detect intrusions, specifically utilizing
parameters from the DBSCAN clustering technique on random data. Conversely, the modified
dataset highlighted a more nuanced approach to intrusion detection, showcasing varying detection
rates R(t) influenced by the alpha parameter settings (10, 20, 30, and 40). The results indicate that
increasing the alpha parameter generally enhances the detection rates, with the highest observed
rate reaching 200 under optimal conditions. Each alpha value appears to modulate the algorithm's
sensitivity to potential intrusion signals, suggesting that a fine-tuned balance between true positive
rates and false positive rates could be achieved by adjusting the alpha parameter. This controlled
variability enables improved adaptability of the Mamba-ECANet model to diverse intrusion
scenarios, further underscoring the discussed methodology's effectiveness and potential for robust
data security applications in automated systems. The consistent performance as reported by H.
Zhang et al. indicates that such fine-tuning in parameters can lead to substantial gains in the efficacy
of intrusion detection mechanisms, affirming the reliability of E2E learning approaches in
addressing data security challenges effectively [14].
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Figure 3: Parameter analysis of the proposed DBSCAN-based Data Security Intrusion Detection

Table 3: Parameter analysis of case study

Detection Rate Alpha Time Value
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200 10 N/A N/A

200 20 N/A N/A

180 10 N/A N/A

180 20 N/A N/A

160 10 N/A N/A

160 20 N/A N/A
5. Discussion

The methodology outlined in the study offers a distinctive advantage over the model presented by
H. Zhang et al. through its integration of the DBSCAN clustering algorithm within the intrusion
detection framework. Unlike the end-to-end learning approach of the Mamba-ECANet model,
which relies heavily on predefined training datasets to classify network activities, the proposed
method leverages the flexibility and noise-handling capability of DBSCAN to dynamically identify
clusters of anomalous behavior amidst noisy data environments. This adaptability is particularly
advantageous in ever-evolving network scenarios, where intrusion patterns are not statically
defined and may not align with historical datasets. The DBSCAN algorithm's ability to detect
clusters based on the density connectivity concept allows for the identification of irregular patterns
without requiring extensive prior knowledge, thereby reducing dependency on complete training
datasets that the Mamba-ECANet model necessitates. Furthermore, by translating intrusion
detection into a spatial clustering problem, the proposed method inherently provides a granular
perspective on network anomalies, distinguishing between core and noise points to minimize false
positives effectively. Although Zhang et al. recognize the effectiveness of end-to-end learning
systems, the proposed approach'’s reliance on dynamic parameter tuning for density metrics allows
for amore tailored sensitivity and specificity balance, directly addressing the potential issue of false
alarms in practical applications [14]. This robust adaptability signifies a major technical
advancement in real-world security threat detection environments compared to the more static,
training-dependent approach of the Mamba-ECANet model.

In the realm of Data Security Intrusion Detection, various methodologies, such as the Mamba-
ECANet model as discussed by Zhang et al., are employed for the vital task of distinguishing
between normal and anomalous behaviors within networks. While the Mamba-ECANet model
introduces innovative approaches for identifying influential patterns in security data, it is not
without certain limitations that merit further exploration [14]. One critical limitation is the model's
reliance on predefined parameters, which, much like the DBSCAN's dependency on $\epsilon$ and
$MinPts$, necessitates fine-tuning to strike an optimal balance between false positives and missed
detections in diverse network environments. This fine-tuning requires expertise and may not
generalize well across varying security contexts, presenting a challenge in adapting to dynamic
threat landscapes. Additionally, the model's end-to-end learning framework, while efficient,
sometimes oversimplifies the multi-faceted nature of intrusion patterns, potentially leading to an

underrepresentation of nuanced anomalies that do not conform to prominent trends. Zhang et al.
17



acknowledge these constraints in their work and suggest that future research could focus on
integrating complementary detection techniques, such as anomaly-based methods, to address the
rigidity of parameter dependencies and enhance identification accuracy [14]. By incorporating
more adaptive clustering approaches like DBSCAN, which effectively discerns irregular patterns
amid noise, the model's precision in anomaly detection could be improved. This integration would
not only mitigate the limitations identified within the Mamba-ECANet model but also offer a
comprehensive solution capable of adjusting to evolving security threats, thereby solidifying its
utility in protecting complex network infrastructures [14].

6. Conclusion

This paper introduces a novel approach, the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) for Data Security Intrusion Detection, to address the challenge of effectively
identifying and categorizing intrusion activities amidst the vast amount of data. By leveraging
density-based clustering, our method stands out for its ability to capture intricate relationships and
anomalies within the data, thereby enhancing the detection capability compared to traditional
methods. The experimental results showcased the effectiveness and reliability of our approach in
improving the accuracy and efficiency of intrusion detection systems. This innovative contribution
not only enriches the existing research landscape in data security intrusion detection but also lays
the foundation for enhanced data security measures in the digital era. However, it is essential to
acknowledge certain limitations such as the need for further optimizations and validations in
diverse datasets to ensure the generalizability of the proposed approach. Moving forward, future
work could explore the integration of machine learning algorithms to enhance the predictive
capabilities of intrusion detection systems and consider real-time monitoring solutions for timely
threat identification and response.
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