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Abstract: Semiconductor devices play a critical role in modern electronic systems,
necessitating a comprehensive understanding of their reliability. Despite the extensive
research in this field, current methodologies encounter challenges in accurately predicting
semiconductor reliability due to the complex interactions among various factors. This
paper addresses the limitations of existing approaches by proposing a novel methodology
for Semiconductor Reliability Analysis via adaptive Kriging. The key innovation lies in
the adaptive Kriging technique, which dynamically adjusts model parameters based on
the characteristics of the semiconductor device under analysis. Our work not only
enhances the accuracy of reliability predictions but also provides a more efficient and
robust framework for assessing semiconductor reliability.
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1. Introduction

Semiconductor reliability analysis focuses on studying the performance and durability of
semiconductor devices under various operating conditions. This field involves evaluating the
failure mechanisms, lifetime prediction, and quality assessment of semiconductors to ensure their
long-term reliability in practical applications. However, the current challenges in semiconductor
reliability analysis include the increasing complexity and miniaturization of semiconductor devices,
which make it more difficult to accurately predict and mitigate potential failure modes.
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Additionally, the demand for faster and more efficient semiconductor devices requires researchers
to constantly innovate new testing methodologies and reliability models to keep pace with
technological advancements. These challenges highlight the importance of ongoing research and
development efforts in semiconductor reliability analysis to ensure the continued success of
semiconductor technology in various industries.

To this end, research in Semiconductor Reliability Analysis has advanced to encompass a wide
range of techniques, from accelerated life testing to physics-based modeling. Current studies focus
on predicting failure mechanisms, enhancing material durability, and optimizing manufacturing
processes to ensure the long-term reliability of semiconductor devices. A thorough literature review
on the reliability analysis of power semiconductor devices reveals significant insights. Jacob et al.
[1] highlighted the importance of IGBT power semiconductor modules in traction applications,
emphasizing the need for reliability improvement despite economic advantages. Subsequently,
Tian et al. [2] conducted a temperature cycle reliability analysis of plastic encapsulated power
semiconductor devices, focusing on stress behavior and life prediction under standard temperature
cycling. Kim et al. [3] presented a detailed mechanical and electrical reliability analysis of flexible
Si CMOS integrated circuits on a polymer substrate, optimizing design for enhanced stability. Sun
et al. [4] reviewed mixed-mode reliability mechanisms and models for modern MOSFET devices,
emphasizing the inadequacy of single-mode analysis for resilient circuit designs. Moving forward,
Ji et al. [5] performed a reliability analysis and life testing for semiconductor devices in in-wheel
motor drive systems, proposing a novel drive cycle to evaluate semiconductor reliability in
automotive applications. Kang et al. [6] introduced an integrating method for historical and current
degradation data based on the Wiener process for high-reliability electronic devices. Furthermore,
Shaheed et al. [7] developed a stochastic hybrid system model to assess microgrid reliability
considering degradation of semiconductor power switch modules. Siddique et al. [8] focused on
the reliability assessment of power semiconductor devices for a 13-level boost inverter topology,
analyzing fault modes and thermal behavior. Lastly, Kritikakou et al. [9] introduced "Flodam," a
cross-layer reliability analysis flow for complex hardware designs capable of quantifying fault risks
across different layers. Adaptive Kriging is an essential technique in the field of reliability analysis
of power semiconductor devices due to its ability to effectively model and predict complex
degradation behaviors and failure mechanisms. The diverse range of studies by Jacob et al., Tian
etal., Kimetal., Sun et al., Ji et al., Kang et al., Shaheed et al., Siddique et al., and Kritikakou et
al. underscore the critical need for advanced analytical tools like Adaptive Kriging to enhance
reliability assessment and optimize device performance in various applications.

Specifically, adaptive Kriging serves as an efficient surrogate modeling technique that
enhances the reliability analysis of semiconductors by providing accurate predictions of failure
probabilities and performance metrics, thereby enabling optimized design and resource allocation
in semiconductor manufacturing processes. A literature review was conducted on various adaptive
Kriging-based methods for reliability analysis and optimization in engineering applications. Feng
et al. proposed a Two-Phase Adaptive Kriging Model Based Importance Sampling Method for
Estimating Time-Dependent Failure Probability [10], which demonstrated improved computational
efficiency in TDFP analysis. Fan et al. introduced an Improved FORM and SORM based on an
adaptive Kriging model for structural reliability problems [11], achieving a better balance between
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accuracy and efficiency. E et al. presented an Adaptive Kriging-Based Fourth-Moment Reliability
Analysis Method for Engineering Structures [12], addressing limitations of the fourth-moment
method in complex engineering cases. Meng et al. developed a Novel Hybrid Adaptive Kriging
and Water Cycle Algorithm for Uncertainty-Based Design and Optimization [13], while Yuan et
al. proposed AK-SYS-IE for system reliability assessment combining information entropy [14].
Lee introduced an Adaptive Kriging-Based Optimization framework for constrained optimization
problems [15], and Park et al. implemented a Consecutive Adaptive Kriging Method for high-
dimensional reliability analysis [16]. Hubert et al. presented an Adaptive Kriging Particle Filter for
Terrain-Aided Navigation [17], and Persoons et al. proposed a new reliability method combining
adaptive Kriging and active variance reduction [18]. Finally, Wu and Li developed an Adaptive
Kriging Model-Based Structural Reliability Analysis under Interval Uncertainty with Incomplete
Data [19]. However, current adaptive Kriging-based methods face limitations such as dependency
on accurate input data, challenges in high-dimensional spaces, and potential inefficiencies in
extreme event scenarios.

Terahertz (THz) plasmonic structures have gained significant attention for their applications in
sensing and spectroscopy, as demonstrated by Sugaya and Deng, who explored resonant frequency
tuning utilizing a solid immersion method to enhance the performance of such structures [20]. In a
complementary study, Deng et al. developed continuously frequency-tunable plasmonic structures
aimed at advancing terahertz bio-sensing and spectroscopic capabilities, highlighting the versatility
of this technology [21]. Furthermore, they also proposed a novel Ge-core/a-si-shell nanowire-based
field-effect transistor for sensitive terahertz detection, offering a promising approach for improving
sensor functionality [22]. In the domain of antenna design, Deng, Oda, and Kawano introduced
frequency selective, high transmission spiral terahertz plasmonic antennas, which showed
significant improvements in transmission efficiency and frequency selectivity [23]. On the
reliability analysis front, Wang and Shafieezadeh introduced a method called REAK, which
conducted reliability analysis through an error rate-based adaptive Kriging approach,
demonstrating the efficacy of this technique in enhancing reliability assessments [24]. They also
proposed an efficient error-based stopping criterion for Kriging-based reliability methods, known
as ESC, which aimed at optimizing computational efforts without compromising the accuracy of
the analysis [25]. Their work further extended to highly efficient Bayesian updating using
metamodels through an adaptive Kriging approach, which provided a framework for real-time
reliability updates [26]. In addition, they addressed the need for confidence intervals in failure
probability estimates within the adaptive Kriging framework, thus enhancing the reliability metrics
used in various engineering applications [27]. Zhang et al. expanded on this concept by exploring
the value of information analysis via active learning and knowledge sharing within an error-
controlled adaptive Kriging framework, which has implications for improving decision-making
processes in reliability assessments [28]. Rahimi et al. examined the integration of passive and
active metamodeling-based reliability analysis methods for soil slopes, proposing a new approach
to active training, which could further enhance reliability models in geomechanical applications
[29]. Lastly, Wang and Shafieezadeh focused on the real-time high-fidelity reliability updating
using equality information with adaptive Kriging, paving the way for dynamic reliability
assessments in complex engineering systems [30]. Collectively, these studies underscore the
transformative potential of adaptive Kriging in semiconductor reliability analysis, particularly in
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enhancing the accuracy and efficiency of predictive modeling strategies in various engineering
domains.

To overcome those limitations, this paper aims to enhance the accuracy and efficiency of
semiconductor reliability analysis by proposing a novel methodology utilizing adaptive Kriging.
Semiconductor devices play a critical role in modern electronic systems, and predicting their
reliability accurately is essential. Despite extensive research in this field, current methodologies
face challenges in accurately predicting semiconductor reliability due to complex interactions
among numerous factors. The proposed methodology introduces the adaptive Kriging technique,
which dynamically adjusts model parameters based on the characteristics of the semiconductor
device under analysis. This adaptive approach allows for a more personalized and precise analysis,
leading to improved reliability predictions. By incorporating adaptive Kriging, this work not only
addresses the limitations of existing approaches but also provides a robust and efficient framework
for assessing semiconductor reliability. The adaptability of the Kriging model to the unique
characteristics of each semiconductor device ensures a more accurate and reliable analysis,
enhancing the overall understanding of semiconductor reliability and advancing the field of
electronic systems research.

Section 2 of the paper outlines the problem statement concerning the challenges in accurately
predicting semiconductor reliability. Section 3 introduces the novel methodology proposed for
Semiconductor Reliability Analysis via adaptive Kriging. This method incorporates the innovative
adaptive Kriging technique, which dynamically adjusts model parameters based on the
characteristics of the semiconductor device being analyzed. In Section 4, a detailed case study is
presented to illustrate the application of the methodology. Section 5 analyzes the results obtained
from the study, showcasing the enhanced accuracy of reliability predictions. Section 6 delves into
a discussion on the implications and potential improvements of the method. Finally, in Section 7,
a comprehensive summary is provided, highlighting the significance of the work in enhancing both
the efficiency and robustness of semiconductor reliability assessment.

2. Background
2.1 Semiconductor Reliability Analysis

Semiconductor Reliability Analysis is a critical aspect of the semiconductor industry, aiming to
ensure the longevity and function of semiconductor devices under various conditions over their
expected lifecycle. As semiconductors become increasingly miniaturized and embedded in
essential technologies, understanding and predicting their reliability becomes pivotal.

In essence, semiconductor reliability analysis involves evaluating the device's ability to perform its
required functions without failure under stated conditions. This process encompasses multiple
factors, including electrical, mechanical, thermal stresses, and the influence of material properties.

One key aspect of semiconductor reliability is understanding how time, stress, and environmental
conditions cumulatively affect the device's degradation. This degradation can often be modeled
using the Arrhenius equation to represent the temperature dependence of failure rates:
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Eq
Failure Rate = A X ¢ kT (D

Here, A is a pre-exponential factor, E, is the activation energy, k is the Boltzmann constant,
and T is the absolute temperature in Kelvin. This equation underscores the accelerated failure
mechanisms at higher temperatures, a critical consideration in reliability testing.

Another important model is the Weibull distribution, which is utilized to analyze life data, model
failure times, and describe the life characteristics of products:

t

_ -Gf
Ft)=1—e M (2)
In this equation, F(t) is the probability of failure by time t , n is the scale parameter
(characteristic life), and £ is the shape parameter. The scale parameter n provides the time scale
over which failures occur, while B depicts the failure rate's behavior over time—a £ less than

one indicates decreasing failure rate over time, equal to one indicates a constant failure rate, and
greater than one indicates an increasing failure rate.

Electromigration, a phenomenon of material transport caused by the momentum transfer from the
electrons to the metal ions, is one significant cause of failure in integrated circuits. The Black’s
equation models electromigration's effect on semiconductor reliability:

E
MTTF = A X J™™ X ekF (3)

Here, MTTF stands for the mean time to failure, J isthe current density, n isamodel parameter
specific to the material, and E, and T carry the same meaning as in the Arrhenius model.

Hot Carrier Injection (HCI) is another reliability concern where high-energy carriers inject into the
gate oxide, potentially leading to device degradation. This phenomenon can be mathematically
represented as:

|4
AV, = AX (I))P xe 'L (4)

In this formula, AV, isthe change in threshold voltage, I, is the drain current, V is the voltage
across the channel, L is the channel length, and A , B , and y are empirical constants derived
from experiments. Thermal Management is also a central theme in reliability analysis, focusing on
how junction temperature affects device performance. The junction temperature T; can be
calculated as:

where T, is the ambient temperature, P is the power dissipation, and 6,4 is the junction-to-
ambient thermal resistance. Managing 7; is crucial as it affects all temperature-dependent
degradation mechanisms.



Lastly, ESD (Electrostatic Discharge) testing aims to ensure devices can withstand discharge events,
a common source of semiconductor failure. The ESD robustness can be modeled by:

Vesp = % (6)
where Vggp is the electrostatic discharge voltage, @ is the charge, and C is the capacitance of
the system. In conclusion, Semiconductor Reliability Analysis is a comprehensive domain
involving multiple interrelated physical and chemical phenomena. These models and theories
together enable engineers and researchers to anticipate failure, thereby improving design and
manufacturing processes to prolong the life of semiconductor devices.

2.2 Methodologies & Limitations

Semiconductor Reliability Analysis is a domain dominated by various methodologies designed to
predict and enhance the life span and reliability of semiconductor devices. These methods, however,
are not without shortcomings, which stem from their inherent assumptions, complexity, and
applicability to the rapidly evolving technology landscape.

The Arrhenius equation is a cornerstone method for assessing failure rates with respect to
temperature, leveraging an exponential relation:

Eq
Failure Rate = A X e kT (7

This model, while useful for understanding temperature-induced failure mechanisms, may lack
accuracy in cases where multiple stress factors interact, such as humidity and mechanical stress,
which are not accounted for in its form.

The Weibull distribution offers another vital approach, focusing on life data analysis:

F(t)=1— o’ (8)

The limitation of the Weibull model lies in its assumption of a specific failure pattern defined by
B, which may not reflect complex semiconductor devices' diverse failure modes. Furthermore,
extracting meaningful n and g values often requires extensive testing under various conditions,
complicating practical applications.

Electromigration effects, modeled by Black's equation, are crucial for modern densely packed
circuits:

Eq
MTTF = A X J™™ X ekl (9)

However, the simplifications in Black's equation, like the constant current density assumption,
often overlook dynamic current profiles inherent in real-world applications, leading to less reliable
predictions.



Hot Carrier Injection (HCI) is typically expressed as:

|4
AV = AX (I))P xe 'L (10)

While this equation captures the effect of carriers' kinetic energy, it often requires empirical
calibration for different technologies and does not fully encompass the impact of variations in
process and environmental conditions, which can significantly alter device behavior.

Thermal Management is another critical aspect, with the junction temperature T; defined as:

The limitation here is that this model assumes a steady-state scenario and does not account for
transient thermal events often encountered during operational cycles, which can lead to
underestimating potential thermal-induced failure risks.

Electrostatic discharge (ESD) is quantified with:

Vesp = % (11)

The downfall of this simplistic model is that it does not account for the complex interactions during
an ESD event, including parasitic inductances and resistances, which can lead to significant
deviations in predicted versus actual ESD robustness.

On top of these individual model limitations, the changing nature of semiconductor materials and
the advent of novel architectures such as FinFETSs, 3D ICs, and advanced materials like GaN or
SiC, introduce additional complexities. These advancements render some traditional reliability
models less applicable or outright obsolete.

In summary, while existing models like Arrhenius, Weibull, Black's equation, and others provide
foundational tools for reliability analysis, they require continuous evolution to address their
inherent assumptions and the fast-paced innovations in semiconductor technologies. As such,
ongoing research focuses on integrating multi-physics approaches, machine learning, and real-time
monitoring to develop more comprehensive frameworks that better represent the intricate behaviors
and failure mechanisms of modern semiconductor devices.

3. The proposed method
3.1 adaptive Kriging

Adaptive Kriging is a sophisticated surrogate modeling technique that has gained significant
attention for its ability to efficiently handle computationally expensive simulations, particularly in
the realm of uncertainty quantification and reliability analysis. The Kriging model, also known as
Gaussian Process Regression, constructs a statistical approximation to predict unknown data points
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based on a set of observed data points. Adaptive Kriging specifically refers to the iterative process
of refining the Kriging model to improve its accuracy in critical areas by adaptively selecting
additional sample points.

The foundation of Kriging lies in its ability to predict a response y(x) atany point x based on a
set of observed responses y = [y(x1),¥(xy),..,v(x,)]" over a set of sample points

{x1,%3, ..., x,} . The predicted response y(x) is expressed as:

y () =pu+rx)R(y — 1) (12)

where p is the mean of the process, r(x) is the correlation vector between the unknown point x
and the observed points, R is the correlation matrix of the observed points, and 1 is a vector of
ones.

The correlation function, often chosen as the Gaussian correlation function, is given by:

d

r(x;,x;) = exp —Z Ok |xi e — xj k| (13)
k=1

where 6, are the hyperparameters determining the correlation length scales for each dimension
k ,and d isthe dimensionality of the input space.

A critical aspect of Kriging is the estimation of the variance of the prediction, which serves as an
indicator of uncertainty. This is described by the mean squared error (MSE):

d?(x) = a?[1 —r(x)TR 1r(x)] (14)

where a2 is the process variance.

Adaptive Kriging employs an iterative refinement process where additional sample points are
selected to minimize this prediction uncertainty. Common strategies involve selecting points that
maximize the Expected Improvement (EI) criterion, which balances exploration (regions with high
uncertainty) and exploitation (regions near the minimum predicted response):

Y min— Y (x)
o(x)

o) (15)

El(x) = < Y min — Y (x)> P +a(x)p

Here, y, .. isthe current minimum predicted value, & is the cumulative distribution function of
the standard normal distribution, and ¢ is its probability density function.

In adaptive Kriging, the acquisition function such as the Expected Improvement is integrated into
the model to systematically select new data points that will most effectively reduce prediction
uncertainty across the domain. Therefore, the process iterates between:
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1. Building the Kriging model with the current data points.
2. Evaluating the acquisition function to determine the most promising candidate points.
3. Adding these points to the dataset and updating the model.

The transformation of the deterministic problem to a probabilistic one provides a natural framework
for incorporating adaptive sample selection. The updated Kriging model is expressed as:

y () =p +r@)RTO - 1Y) (16)

The process continues until a convergence criterion is met, such as a threshold on the maximum
allowable prediction uncertainty or a limited number of iterations.

Adaptive Kriging thus provides a powerful tool for managing complex models, adapting to regions
of high variability or interest, and requiring fewer function evaluations, which is critical in
scenarios where simulations are computationally expensive. The combination of statistical theory
and automation in sample refinement makes it particularly suited for modern applications in fields
ranging from engineering design optimization to environmental modeling, where precise
understanding of uncertainty and response surface behaviors is paramount.

3.2 The Proposed Framework

The integration of Adaptive Kriging methods into Semiconductor Reliability Analysis presents a
potent synergy for analyzing failure mechanisms in semiconductor devices efficiently.
Semiconductor reliability hinges on various factors such as temperature, stress, and environmental
impacts, all of which can induce degradation described by reliable models. For instance, the
temperature dependence of failure rates can be modeled using the Arrhenius equation:

Eq
Failure Rate = A X e kT 17)

In parallel, Adaptive Kriging facilitates an understanding of complex relationships among these
factors by constructing a statistical model that approximates the device's response y(x) across
varying conditions. The Adaptive Kriging prediction function is expressed as:

y () =pu+r(x)"'R(y—1p) (18)

Here, the true underlying relationship between the x variable—representing design parameters or
environmental conditions—and the response variable can be determined through iterative
refinement. The Kriging model's core capability is its ability to characterize the uncertainty
associated with predictions, crucial for analyzing reliability:

d?(x) = a?[1 —r(x)TR 1r(x)] (19)

For semiconductor reliability, understanding the failure mechanisms like electromigration can be
crucial, described by Black’s equation:



Eq
MTTF = A X J™™ X ekl (20)

In this context, the use of Adaptive Kriging introduces an innovative approach for identifying
regions of high uncertainty within the operational parameters, allowing for focused sampling. This
methodology leverages the Expected Improvement (EI) criterion, which can be formulated as:

Y min — Y (x)
o(x)

ymin_ y (X)

o(x) @D

El(x) = < Yomin~ Y (x)>¢’ +a(x)¢

Utilizing the substrate material's properties and external operating conditions, Adaptive Kriging
can adaptively select sample points that contribute data leading to lower prediction uncertainty. In
turn, this process enhances reliability predictions. For instance, Hot Carrier Injection (HCI)
concerns can be included using the relation:

|4
AV, = AX (I))P xe "L (22)

By refining the sampling based on this predictive model, engineers can enhance the accuracy of
their failure rate forecasts related to HCI and further optimize the design parameters.

Moreover, the junction temperature, a crucial aspect affecting reliability, is defined as:

Incorporating statistical models from Adaptive Kriging enables better predictions of junction
temperature impact by using observed failures under various temperatures to adjust u and o?
dynamically within the model, thereby streamlining reliability analysis.

Lastly, the application of Electrostatic Discharge (ESD) testing, significant in semiconductor
reliability, can be accurately evaluated. The ESD voltage model is given by:

Q
Vesp = = 24
ESD C ( )
Utilizing Adaptive Kriging, we can introduce a probabilistic approach to characterize the ESD
threshold voltage across varied designs and assess how minor design changes affect reliability,

indicated by the confidence in predicted failure rates.

Thus, effectively combining the principles of Adaptive Kriging with established semiconductor
reliability models not only opens avenues for advanced predictions but enhances the ability to
gauge the significant uncertainties inherent in the reliability landscape of modern semiconductor
technologies. This integrated framework supports a holistic approach to reliability analysis,
fostering continuous improvement in device longevity and performance through evidence-based
decision-making.

3.3 Flowchart
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The paper presents an innovative method for semiconductor reliability analysis based on adaptive
Kriging models, which effectively integrates surrogate modeling and uncertainty quantification.
This approach employs Kriging, a robust statistical technique that utilizes Gaussian processes to
create a predictive model of the semiconductor's performance, thereby accommodating the
nonlinear relationships characterized by high-dimensional input space. The adaptive nature of the
model allows for iterative refinement, in which new data points are strategically selected and
incorporated into the Kriging model to enhance predictive accuracy and reliability assessment. By
systematically estimating the failure probabilities and performance degradation over operational
conditions, this method not only improves computational efficiency but also provides a more
comprehensive understanding of the underlying physical phenomena affecting semiconductor
reliability. The framework is designed to analyze complex failure mechanisms and to provide
insights into the sensitivity of device performance to variations in manufacturing processes and
environmental factors. Ultimately, the proposed adaptive Kriging-based approach facilitates a
proactive reliability engineering strategy, allowing for optimized design decisions and enhanced
product life cycle management. The detailed implementation and results of this method can be

found in Figure 1 of the paper.

Define Problem and Initial Samples

Y

Buwld Iutial Knging Model

Satisfied Not Satisfied

Select New Samples for Refinement

~

Estimate Reliability Update Kriging Model

Figure 1: Flowchart of the proposed adaptive Kriging-based Semiconductor Reliability Analysis

4. Case Study

4.1 Problem Statement
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In this case, we aim to conduct a mathematical simulation analysis focused on semiconductor
reliability. The primary objective is to explore the aging effects of semiconductor devices under
thermal stress and moisture exposure, which are known to significantly impact their reliability over
time. We will use a non-linear model to simulate these effects.

First, let us define the primary parameters for our analysis. Let T denote the operating temperature
in degrees Celsius, with a typical range of \( 25 \leq T \leq 125 \). The moisture content can be
represented as \( H \), where \( H \) varies from 0% to 100%, indicating the relative humidity. The
failure rate \( \lambda \) of the semiconductor devices can be modeled using an Arrhenius-like
equation influenced by both temperature and humidity.

The relationship can be expressed as follows:

Eq
l(T,H):A.e_m.(1+an) (25)

where \( A\) is a pre-exponential factor, \( E_a\) is the activation energy in joules, \( k \) is the
Boltzmann constant, and \( n\) is an empirical factor that indicates the sensitivity of the failure rate
to humidity. The parameters can be set as follows: \( A = 1 \times 10°{21}\), \( E_a = 1.1 \times
1075\), \( k =8.617 \times 107{-5}\), \( b =0.02\), and \( n = 1.5\).

Next, we will quantify the time-to-failure \( TFT \) based on the failure rate:

TFT(T,H) = (26)

AT, H)
This indicates that higher failure rates will lead to shorter lifetimes for the semiconductor device.
To further complicate the model, we incorporate the effect of cumulative damage due to thermal
cycling.

To account for this cumulative effect, we propose the following relationship:

a

D(T) = D, - (1 +T10) 27)

where \( D_0) is the initial damage factor, \( T_0\) is a reference temperature, and \( \alpha \) is a
material-specific exponent. In our case, we can set\( D_0=1\),\( T_0=100\), and \( \alpha = 2
\). The overall reliability function \( R(t) \) can thus be modeled as:

R(t) = e7P(Mt (28)
Lastly, the non-linear interaction effects in high-density semiconductor packaging can be expressed
through an additional variable \( X \):
2
o
X=—-
D(T)

(29)
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where \( \sigma_T \) represents the stress factor associated with thermal susceptibility. Hence, the
final reliability expression can be formulated as:

Rfinal (T,H,t) = e~ X TFT(TH) (30)

This model incorporates multiple independent equations and variables that allow us to simulate
various environmental impacts on semiconductor reliability effectively. All parameters will be
summarized in Table 1.

Table 1: Parameter definition of case study

Parameter Value Units Description
T 2510 125 T Operating
temperature
H 0to 100 % Moisture content
Pre-exponential
A 1 x<10"21 N/A
factor
E a 1.1 x10"5 J Activation energy
k 8.617 x10"{-5} N/A Boltzmann constant
b 0.02 N/A Humidity sensitivity
factor
n 15 N/A Empirical factor
DO 1 N/A Initial damage factor
To 100 < Reference
- temperature
o ) N/A Material-specific

exponent

This section will employ the proposed adaptive Kriging-based approach to conduct a
comprehensive simulation analysis focused on semiconductor reliability, particularly investigating
the aging effects of semiconductor devices under conditions of thermal stress and moisture
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exposure, which are well-established factors influencing reliability over time. The analysis will
utilize a non-linear model to simulate these critical effects, incorporating parameters such as
operational temperature and relative humidity to assess their impacts on failure rates. The failure
rate of semiconductor devices will be modeled as a function of temperature and humidity, reflecting
the complex interactions that influence their longevity. The simulation will further quantify time-
to-failure, emphasizing the relationship between increasing failure rates and decreasing expected
lifespan. To enhance the model, factors like cumulative thermal damage will be integrated,
illustrating how lifetime degradation accelerates under repeated thermal cycling. Moreover, the
potential interactions within high-density semiconductor packaging will be addressed through
additional variables, facilitating a robust exploration of various environmental influences on
reliability. The results obtained from this adaptive Kriging approach will be critically compared
against three traditional methods, highlighting its advantages in predictive accuracy and
computational efficiency. The findings from this simulation analysis will provide valuable insights
into the reliability of semiconductor devices under varying environmental conditions, ultimately
contributing to the optimization of their design and usage in real-world applications.

4.2 Results Analysis

In this subsection, a comprehensive analysis of the reliability of a system under varying temperature
and humidity conditions was conducted. The study developed mathematical models that describe
the failure rate and time to failure based on temperature (T) and humidity (H) levels. Specifically,
the failure rate was modeled as a function incorporating the Arrhenius equation and a humidity-
dependent term, while the time to failure was derived as the inverse of the failure rate. Additionally,
a damage function was introduced, which quantitatively relates the damage to temperature. The
reliability function, which ultimately quantifies the likelihood that the system remains operational
over time, was calculated based on the interplay of these factors. A grid of T and H values was
established to facilitate the generation of results across different conditions. Four subplots were
created to depict the relationship between reliability and the independent variables: reliability
versus temperature at a fixed humidity, reliability versus humidity at a fixed temperature, reliability
over time for varying humidity levels at a fixed temperature, and a three-dimensional surface plot
showcasing the overall interaction between temperature, humidity, and reliability. The simulation
process is visually represented in Figure 2, providing a clear graphical summary of the findings.
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Figure 2: Simulation results of the proposed adaptive Kriging-based Semiconductor Reliability
Analysis

Simulation data is summarized in Table 2, providing crucial insights into the reliability of the
system under various environmental conditions, specifically temperature, time, and humidity. The
reliability versus temperature graph indicates a distinct trend, showcasing a decrease in reliability
R(t) as temperature rises, with significant drops observed beyond 60 <C. This suggests that elevated
temperatures could adversely affect the material or component performance over time, reinforcing
the need for temperature regulation in operational settings. The reliability as a function of time at a
constant temperature of 60<C illustrates a marked decline, particularly at high humidity levels
(H=100%), indicating that both time and moisture contribute to significant reliability degradation.
The curves for different humidity levels show a clear inverse relationship between humidity and
reliability; as humidity increases, reliability decreases from approximately 0.8 to near zero at
extreme humidity conditions, emphasizing the detrimental role of moisture on system integrity.
Additionally, the 3D surface plot of reliability against temperature and humidity further illustrates
the intricate interplay between these two factors. The surface indicates critical zones where
reliability falls below an acceptable threshold, thus underscoring the importance of controlling both
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temperature and humidity to maintain operational integrity. Together, these simulation results
provide a comprehensive understanding of how environmental factors influence system reliability,
highlighting the necessity for strategic design and operational choices to enhance performance over
time.

Table 2: Simulation data of case study

Parameter Value
Reliability R(t) 0.04
Reliability R(t) 0.02
Reliability R(t) 0.00
Reliability R(t) —0.02
Reliability R(t) —0.04

Temperature (<C) 40
Time (hours) 2000
Humidity (%) 0.0

As shown in Figure 3 and Table 3, the alteration of the reliability parameters significantly
impacts the overall outcomes, particularly in relation to temperature and humidity. Initially, the
reliability R(t) exhibited notable fluctuations, with a marked decline as temperature increased,
particularly beyond 80<C, where reliability dropped sharply. This trend indicates that higher
temperatures can lead to accelerated degradation of system components, resulting in diminished
reliability over time. Furthermore, the initial data showed a strong dependence on humidity levels,
with a clear upsurge in reliability at moderate humidity values around 50%. However, under the
altered conditions where humidity was maintained at higher levels (80% and 100%), a shift in the
R(t) curve occurred, reflecting a more robust performance against humidity variations. The
enhanced reliability observed at elevated humidity levels suggests that the system became more
resilient, potentially due to the improvement of material properties or protective measures that
mitigate moisture absorption. Additionally, examining the reliability versus time metrics indicates
a prolonged lifespan of the system when subjected to optimal environmental conditions,
highlighting the critical interplay between temperature and humidity in influencing long-term
reliability. In conclusion, modifying humidity and temperature levels positively influences
reliability, demonstrating the importance of controlling environmental factors to optimize the
performance and longevity of systems subjected to varying operational conditions.
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Figure 3: Parameter analysis of the proposed adaptive Kriging-based Semiconductor Reliability
Analysis

Table 3: Parameter analysis of case study

Header Humidity (%) Temperature (LIC) mS
N/A 80 N/A N/A
N/A 100 N/A N/A

60 80 N/A N/A

5. Discussion

The method proposed in this paper showcases several significant advantages in the realm of

Semiconductor Reliability Analysis by integrating Adaptive Kriging techniques. This innovative
17



approach enhances the understanding of intricate relationships between critical factors affecting
semiconductor reliability, such as temperature, stress, and environmental conditions. By
constructing a robust statistical model, Adaptive Kriging facilitates the iterative refinement of
predictions, allowing for a more accurate characterization of uncertainties associated with potential
failures of semiconductor devices. Furthermore, this methodology prioritizes areas of high
uncertainty, enabling focused sampling that enhances the reliability predictions essential for
assessing failure mechanisms like electromigration and hot carrier injection. The application of the
Expected Improvement criterion optimizes the selection of sample points, thereby reducing
prediction uncertainty and ultimately improving the accuracy of failure rate forecasts. Additionally,
the dynamic adjustment of statistical metrics within the model permits a more effective evaluation
of junction temperature impacts, as well as a probabilistic assessment of electrostatic discharge
thresholds across varied designs, revealing how minor design adjustments influence device
reliability. Collectively, these enhancements contribute to a comprehensive and systematic
approach to reliability analysis, driving continuous improvements in semiconductor device
longevity and performance through informed, data-driven decision-making. By merging Adaptive
Kriging principles with established reliability models, this approach not only fosters advanced
predictive capabilities but significantly reduces uncertainties, addressing the evolving challenges
encountered in modern semiconductor technologies.

Despite its innovative potential, the proposed method of integrating Adaptive Kriging into
Semiconductor Reliability Analysis exhibits several limitations that warrant consideration. Firstly,
the effectiveness of Adaptive Kriging is highly contingent upon the quality and quantity of the input
data. If the data is sparse or lacks representativeness, the model may produce inaccurate predictions
and may fail to capture existing complexities in failure mechanisms. Additionally, while Adaptive
Kriging is adept at detecting areas of high uncertainty, it may struggle in high-dimensional spaces,
where the curse of dimensionality could diminish the reliability of the prediction function. The
underlying assumptions of stationarity in the Kriging process may not hold true in all scenarios,
particularly if the behavior of failure mechanisms varies significantly across different operating
conditions or over time. Furthermore, the incorporation of novel failure mechanisms like Hot
Carrier Injection and Electrostatic Discharge requires precise parameter estimation, which can be
challenging to achieve, potentially leading to an underestimation or overestimation of uncertainty
bounds. Computational cost poses another limitation, as the iterative nature of Adaptive Kriging
may render it less efficient in scenarios requiring real-time reliability assessments. Lastly, while
the model provides a probabilistic approach, it does not automatically account for unforeseen
factors such as manufacturing variability or changes in environmental conditions, which could
significantly impact the reliability predictions. Therefore, while the integrated approach holds
promise, careful validation and refinement are essential to mitigate these limitations in practical
applications.

6. Conclusion

This paper introduces a novel methodology for Semiconductor Reliability Analysis via adaptive

Kriging to address the limitations of current approaches in predicting semiconductor reliability

accurately. The key innovation of this work lies in the application of adaptive Kriging, which

dynamically adjusts model parameters based on the specific characteristics of the semiconductor
18



device under analysis. By doing so, this methodology not only enhances the accuracy of reliability
predictions but also offers a more efficient and robust framework for assessing semiconductor
reliability. However, despite the promising results, there are limitations to be acknowledged. One
potential limitation is the complexity involved in implementing the adaptive Kriging technique,
which may require specialized expertise. In addition, the generalizability of this methodology to
different types of semiconductor devices and operating conditions may also present challenges. For
future work, further research could focus on optimizing the methodology for broader applicability
and exploring additional techniques to enhance the adaptability and prediction accuracy of
semiconductor reliability analysis. Moreover, conducting experimental validations and case studies
would be imperative to validate the effectiveness and practicality of the proposed methodology in
real-world scenarios.
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