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Abstract: In the field of semiconductor devices, accurate prediction of electrical 

performance is essential for design and optimization. Current research lacks a 

comprehensive approach to address the challenges of predicting electrical performance 

with high precision. This paper addresses this gap by proposing a novel Ridge 

Regression-based method for predicting electrical performance in semiconductor devices. 

The innovative aspect of this work lies in its utilization of Ridge Regression, which 

effectively balances model complexity and prediction accuracy. By incorporating this 

approach, our research not only improves the accuracy of electrical performance 

prediction but also provides insights into the underlying factors influencing device 

performance. This study contributes to the advancement of semiconductor device design 

and optimization by offering a robust and efficient prediction model. 

Keywords: Semiconductor Devices; Electrical Performance; Ridge Regression; 

Prediction Accuracy; Design Optimization 

1. Introduction 

Electrical Performance Prediction in Semiconductor Devices is a field focused on developing 

predictive models and tools to estimate the performance of semiconductor devices, such as 

transistors and integrated circuits, under various operating conditions. The main goal is to optimize 

device design and performance without the need for costly and time-consuming empirical testing. 

However, this field faces several challenges and bottlenecks, including the increasing complexity 

of semiconductor devices, the need for accurate physical models and simulation techniques, and 

the continuous drive for miniaturization. Additionally, the accurate prediction of device 
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performance under extreme conditions, such as high temperatures or voltage stresses, remains a 

significant challenge. Overcoming these obstacles requires interdisciplinary collaboration and 

advancements in materials science, device physics, and computational modeling techniques. 

To this end, the current research on Electrical Performance Prediction in Semiconductor 

Devices has advanced to a significant level, with sophisticated models and simulations being 

utilized to accurately predict device behavior under various conditions. The integration of advanced 

algorithms and machine learning techniques has further enhanced the accuracy and efficiency of 

performance predictions in semiconductor devices. A comprehensive literature review was 

conducted covering various aspects of semiconductor devices and their simulation models. Jaiswal 

et al. proposed a semi-empirical approach to calibrate simulation models for semiconductor devices 

[1]. Nguyen et al. discussed achieving ultra-low contact barriers in MX2/SiH metal–semiconductor 

heterostructures for high-performance optoelectronic devices [2]. Kutub et al. demonstrated an 

artificial neural network-based approach for characteristics modeling and prediction in GaN-on-Si 

power devices [3]. Furthermore, R et al. presented a study on evaluating and validating power 

converter’s electro-thermal performance for physics-based prediction models [4]. Schwarz 

highlighted the need for simulation methodologies for active semiconductor devices in MEMS [5]. 

Ghosh et al. investigated bridge-defect prediction in SRAM circuits using machine learning 

techniques [6]. Morel and Morel reviewed power semiconductor junction temperature and lifetime 

estimations [7]. Liang et al. developed electrical package models for high power RF semiconductor 

devices [8]. Baek et al. developed a finite element model for wafer-to-wafer direct bonding 

behaviors and alignment prediction [9]. Lastly, Vidhate and Suman analyzed the analytical 

modeling and performance characterization of hybrid SET-MOS devices [10]. A comprehensive 

literature review on semiconductor devices and simulation models was conducted, covering various 

research areas. Ridge Regression is recommended for its ability to address multicollinearity in 

complex models, enhancing the accuracy and stability of predictions. 

Specifically, Ridge Regression serves as a powerful statistical technique that enhances the 

predictive accuracy of Electrical Performance Prediction in Semiconductor Devices by addressing 

multicollinearity among input variables, thus enabling more reliable modeling of complex 

relationships inherent in semiconductor behavior. In the field of regression analysis, various 

methods have been developed to address issues such as biased estimation for nonorthogonal 

problems [11]. For instance, the concept of ridge regression has been introduced to improve 

parameter estimation in the presence of nonorthogonality by adding small positive quantities to the 

diagonal of the design matrix [11]. Researchers have also studied the saturation effect of kernel 

ridge regression, where the method fails to reach the information theoretical lower bound under 

certain conditions [12]. By providing a formal proof of this long-standing conjecture, new insights 

have been gained into the behavior of kernel ridge regression in practice [12]. Additionally, kernel 

ridge regression has been applied to the task of graph dataset distillation, aiming to distill large 

graph datasets efficiently while maintaining model performance [13]. Novel approaches, such as 

the adoption of kernel ridge regression-based meta-learning objectives, have shown promising 

results in distillation performance compared to existing strategies [13]. Moreover, recent 

developments in the theory of ridge regression have explored dimension-free settings, moving 

beyond proportional asymptotics and providing non-asymptotic bounds to understand the behavior 
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of ridge regression with high-dimensional or even infinite-dimensional feature vectors [14]. 

However, limitations remain in kernel ridge regression's application to complex datasets, including 

challenges in generalization, assumptions of data distribution, and scalability, which need further 

investigation. 

Recent advancements in machine learning and artificial intelligence have opened new frontiers 

in various domains, including model optimization and prediction tasks. Luo et al. explored 

innovative model compression techniques aimed at optimizing transformer models for resource-

constrained environments, thus enhancing the efficiency and applicability of these models in 

engineering applications [15]. Expanding on the efficiency of transformer models, Yan and Shao 

introduced a dynamic dropout mechanism that significantly boosts training efficiency, shedding 

light on adaptive methodologies for improving machine learning workflows [16]. Liu and Wang 

discussed the implications of large language models in health advisory settings, critically evaluating 

their potential as virtual health assistants, which reflects the burgeoning intersection of AI and 

healthcare domains [17]. In the realm of intelligent systems, Gan and Zhu presented a novel 

recommendation algorithm for news advertisements based on prompt learning within an end-to-

end architecture of large language models, demonstrating the application of sophisticated AI 

techniques in personalized advertising [18]. Furthering the discussion, Zhu et al. proposed a 

machine learning framework utilizing domain adaptation strategies aimed at predicting customer 

churn across varying distributions, showcasing the relevance of machine learning in addressing 

business challenges [19]. Transitioning to bio-sensing applications, Deng et al. investigated 

continuously frequency-tunable plasmonic structures, which hold promise for advancing terahertz 

bio-sensing and spectroscopy capabilities, thus bridging physics and engineering with potential 

biomedical applications [20]. In a related study, Deng et al. also explored the use of Ge-core/a-Si-

shell nanowires in the design of field-effect transistors tailored for sensitive terahertz detection, 

emphasizing the innovative materials used in enhancing semiconductor device functionality [21]. 

Additionally, Zhang et al. provided a comprehensive end-to-end learning-based study focused on 

the Mamba-ECANet model for data security intrusion detection, highlighting the increasing 

synergy between AI and cybersecurity [22]. Zhu, Chen, and Gan developed a multi-model output 

fusion strategy employing various machine learning techniques for product price prediction, 

thereby illustrating the applicability of ensemble learning in commercial contexts [23]. Finally, 

Deng and Kawano presented a groundbreaking mid-infrared photodetector utilizing surface 

plasmon polaritons in graphene with multifrequency resonance, indicating significant 

advancements in nanoscale photonic devices and their integration in modern technology [24]. 

Collectively, these studies underscore the promising integration of machine learning techniques 

with engineering disciplines, particularly in semiconductor performance prediction and AI 

applications across diverse fields. 

 

To overcome those limitations, the purpose of this paper is to address the challenges in 

accurately predicting electrical performance in semiconductor devices by introducing a novel Ridge 

Regression-based method. The innovative approach of utilizing Ridge Regression is highlighted 

for its ability to balance model complexity and prediction accuracy effectively. Specifically, the 

study focuses on incorporating this method to improve the precision of electrical performance 

predictions while also offering insights into the underlying factors that impact device performance. 
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By introducing this method, the research aims to advance the field of semiconductor device design 

and optimization by providing a robust and efficient prediction model that can enhance the overall 

accuracy and understanding of electrical performance in these devices. The detailed analysis and 

application of Ridge Regression in this study serve as a significant contribution to the development 

of more sophisticated and reliable predictive techniques in the semiconductor industry. 

Section 2 of the research paper delineates the problem statement, highlighting the pivotal role 

of accurate prediction of electrical performance in the realm of semiconductor devices. Section 3 

introduces the proposed method, a pioneering Ridge Regression-based approach tailored to 

enhance the precision of electrical performance prediction. Section 4 delves into a detailed case 

study, showcasing the practical application and efficacy of the developed method. Analysis of the 

results is expounded upon in Section 5, shedding light on the effectiveness of the Ridge Regression 

model in predicting electrical performance with high precision. The subsequent Section 6 initiates 

a comprehensive discussion, elucidating the implications and potential enhancements of the 

findings. Finally, Section 7 encapsulates the research with a succinct summary, underlining the 

significance of the proposed method in advancing semiconductor device design and optimization 

through its robust and efficient prediction model. 

2. Background 

2.1 Electrical Performance Prediction in Semiconductor Devices 

Electrical Performance Prediction in semiconductor devices is a critical aspect in design and 

optimization, enabling engineers to anticipate how devices will behave under different conditions. 

This involves understanding and modeling various parameters such as threshold voltage, carrier 

mobility, drive current, leakage current, and capacitance, which influence the overall performance 

of the device. Accurate prediction is essential for ensuring the reliability and efficiency of 

integrated circuits. 

 

1. **Threshold Voltage ( 𝑣𝑡 ):** This is the minimum gate-to-source voltage that is required to 

create a conducting path between the source and drain terminals of a MOSFET. The threshold 

voltage can be determined by considering the work function difference, the charge in the oxide, 

and the potential in the silicon: 

𝑣𝑡 = 𝜙𝑚𝑠 +
𝑄𝑜𝑥
𝐶𝑜𝑥

+ 2𝜙𝑓 (1) 

where 𝜙𝑚𝑠 is the metal-semiconductor work function difference, 𝑄𝑜𝑥 is the oxide charge per unit 

area, 𝐶𝑜𝑥 is the oxide capacitance per unit area, and 𝜙𝑓 is the Fermi potential of the silicon. 

 

2. **Carrier Mobility ( 𝜇 ):** Carrier mobility is a measure of how quickly carriers (electrons or 

holes) can move through a semiconductor material when subjected to an electric field. It is 

influenced by various factors such as lattice scattering, ionized impurity scattering, and surface 

scattering. The mobility can be modeled as: 
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𝜇 =
𝑒𝜏

𝑚∗
(2) 

where 𝑒 is the electron charge, 𝜏 is the average relaxation time, and 𝑚∗ is the effective mass of 

the carrier. 

 

3. **Drive Current ( 𝐼𝑑𝑠𝑎𝑡 ):** The drive or saturation current in a MOSFET is a crucial parameter 

that determines the speed of digital circuits. It is expressed as: 

𝐼𝑑𝑠𝑎𝑡 =
1

2
𝜇𝐶𝑜𝑥

𝑊

𝐿
(𝑣𝑔𝑠 − 𝑣𝑡)

2 (3) 

where 𝑊 is the width, 𝐿 is the length of the channel, and 𝑣𝑔𝑠 is the gate-source voltage. 

 

4. **Leakage Current ( 𝐼𝑙𝑒𝑎𝑘 ):** Leakage current is undesirable current that flows through a 

MOSFET when it is in the off state. It primarily comprises subthreshold leakage, gate oxide 

tunneling, and junction leakage: 

𝐼𝑙𝑒𝑎𝑘 = 𝐼𝑠𝑢𝑏𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 + 𝐼𝑔𝑎𝑡𝑒 + 𝐼𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (4) 

Subthreshold leakage can be further detailed as: 

𝐼𝑠𝑢𝑏𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝐼0𝑒
𝑣𝑔𝑠−𝑣𝑡
𝑛𝑉𝑇 (5) 

where 𝐼0 is the pre-exponential current, 𝑛 is the subthreshold slope factor, and 𝑉𝑇 is the thermal 

voltage. 

 

5. **Capacitance ( 𝐶𝑡𝑜𝑡𝑎𝑙 ):** Capacitance in semiconductor devices determines the switching 

speed and power consumption. Total capacitance involves gate capacitance, overlap capacitance, 

and junction capacitance: 

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑔𝑎𝑡𝑒 + 𝐶𝑜𝑣𝑒𝑟𝑙𝑎𝑝 + 𝐶𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (6) 

The gate capacitance is given by: 

𝐶𝑔𝑎𝑡𝑒 = 𝐶𝑜𝑥 · 𝑊 · 𝐿 (7) 

In summary, predicting the electrical performance of semiconductor devices requires a 

comprehensive understanding of these fundamental parameters and their intricate interrelations. 

The equations provided are vital to model how these parameters impact device operation, enabling 

optimizations in semiconductor design to achieve desired performance metrics. Through 

sophisticated simulations and empirical models, researchers and engineers can effectively predict 

how variations in these key parameters affect the overall performance and reliability of 

semiconductor devices. 

2.2 Methodologies & Limitations 
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In the realm of semiconductor device design, Electrical Performance Prediction is indispensable 

for optimizing and ensuring the functionality of integrated circuits. Various approaches are 

commonly utilized, each with its advantages and limitations. Among these, the most prevalent 

methods include analytical modeling, numerical simulations (such as TCAD), and machine 

learning techniques. 

 

Analytical modeling involves deriving mathematical expressions to describe the behavior of 

semiconductor devices. Such models typically simplify complex physical phenomena to allow for 

faster computations. For instance, the analytical expression for threshold voltage ( 𝑣𝑡 ) itself is 

often a simplification: 

𝑣𝑡 = 𝜙𝑚𝑠 +
𝑄𝑜𝑥
𝐶𝑜𝑥

+ 2𝜙𝑓 (8) 

While analytical models can provide quick insights, they may not capture all intricate physical 

interactions, leading to inaccuracies in device performance predictions, especially as devices scale 

down to nanometer regimes.  

 

Numerical simulations, on the other hand, leverage Technology Computer-Aided Design (TCAD) 

tools to solve partial differential equations that model semiconductor physics more 

comprehensively. Techniques such as Drift-Diffusion or Hydrodynamic models consider charge 

carrier transport and electrostatic interactions with greater fidelity: 

𝐽𝑛 = 𝑞𝑛𝜇𝑛𝐸 + 𝑞𝐷𝑛
𝑑𝑛

𝑑𝑥
(9) 

𝐽𝑝 = 𝑞𝑝𝜇𝑝𝐸 − 𝑞𝐷𝑝
𝑑𝑝

𝑑𝑥
(10) 

where 𝐽𝑛 and 𝐽𝑝 are the electron and hole current densities, 𝜇𝑛 and 𝜇𝑝 are the electron and hole 

mobilities, 𝐸 is the electric field, and 𝐷𝑛 and 𝐷𝑝 are the diffusion coefficients. 

 

TCAD simulations can provide high accuracy at the cost of increased computational requirements. 

They are particularly effective for assessing short-channel effects, tunneling, and other phenomena 

prevalent in modern small-scale devices. However, due to the high computational burden and 

requirement of detailed device geometries and doping profiles, such simulations can be impractical 

for initial design phases or for devices with rapid design iterations. 

 

Machine learning has emerged as a powerful tool to predict electrical performance by learning from 

historical data. Techniques like regression, neural networks, and support vector machines create 

predictive models based on large datasets of device characteristics: 

𝑦 = 𝛽0 +∑𝛽𝑖𝑥𝑖

𝑛

𝑖=1

(11) 
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where 𝑦 is the predicted outcome (e.g., device performance metric), 𝑥𝑖 is the input feature (e.g., 

design parameter), and 𝛽𝑖 are the coefficients estimated through training. 

 

Machine learning approaches can handle complex interdependencies between device 

characteristics and environmental factors that are challenging to model analytically. However, they 

are limited by the quality and quantity of data available and often require significant effort in data 

preprocessing, feature selection, and model validation. 

 

Despite these advancements, challenges remain in predictive accuracy and generalizability across 

different technology nodes. The continuous scaling of semiconductor devices introduces new 

physical phenomena not captured by existing models, necessitating a blend of approaches. A 

potential avenue for improvement lies in hybrid methods that integrate analytical modeling, TCAD 

simulations, and machine learning, leveraging the strengths of each to enhance predictive accuracy 

and computational efficiency. 

 

In conclusion, while current methodologies provide a robust framework for Electrical Performance 

Prediction, ongoing research is essential to address their limitations and evolve with emerging 

semiconductor technologies. 

3. The proposed method 

3.1 Ridge Regression 

In the field of statistical modeling, Ridge Regression, also known as Tikhonov regularization, 

emerges as a prominent technique, particularly when dealing with multicollinearity among the 

predictor variables. Ridge Regression is specifically designed to address the limitations of ordinary 

least squares (OLS) regression, which can produce unreliable estimates in the presence of 

multicollinearity. Ridge Regression introduces a penalty term to the OLS loss function, effectively 

regularizing the regression model to improve prediction accuracy and reduce overfitting. 

 

At the core of Ridge Regression is the minimization of a modified cost function. Unlike the 

traditional OLS method that minimizes the sum of squared residuals, Ridge Regression 

incorporates a penalty proportional to the square of the magnitude of the coefficients. The cost 

function can be expressed as: 

𝐽(𝛽) =∑(𝑦𝑖 − 𝛽0 −∑𝛽𝑗𝑥𝑖𝑗)
2 + 𝜆∑𝛽𝑗

2

𝑛

𝑗=1

𝑛

𝑗=1

𝑚

𝑖=1

(12) 

 

In this equation, 𝑦𝑖 denotes the observed response, 𝑥𝑖𝑗 represents the 𝑖 -th observation of the 𝑗 

-th predictor, and 𝛽𝑗 are the coefficients of the model. The regularization parameter 𝜆 controls 

the amount of shrinkage applied to the coefficients. 

 

The Ridge Regression solution can be obtained analytically by modifying the normal equations 
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used in OLS. The normal equation in Ridge Regression is augmented by the identity matrix scaled 

by 𝜆 , which imposes the regularization effect. The modified normal equation is given by: 

(𝑋𝑇𝑋 + 𝜆𝐼)𝛽 = 𝑋𝑇𝑦 (13) 

Here, 𝑋 represents the design matrix containing the predictor variables, 𝑦 is the response vector, 

and 𝐼 is the identity matrix. 

 

Solving for the coefficient vector 𝛽 involves inverting the matrix resulting from the addition of 

𝜆𝐼 to 𝑋𝑇𝑋 . The coefficients are computed as: 

𝛽 = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑦 (14) 

The introduction of the regularization term 𝜆 ∑ 𝛽𝑗
2𝑛

𝑗=1  penalizes large coefficients, thereby 

imposing shrinkage and helping to stabilize the estimates when predictors are highly correlated. 

The impact of 𝜆 on the coefficients can be assessed by examining the Ridge path, plotted against 

different values of 𝜆 . 

 

It is important to note that when 𝜆 = 0 , Ridge Regression reduces to OLS, implying no penalty. 

Conversely, as 𝜆 approaches infinity, the coefficients are driven towards zero, favoring models 

with less complexity. This trade-off is crucial, as choosing an appropriate 𝜆 balances bias and 

variance, optimizing the model's generalization capability. 

 

To select an optimal value for 𝜆 , techniques such as cross-validation can be employed. Cross-

validation assesses how well the model performs on independent data, allowing for the fine-tuning 

of the regularization parameter to achieve the best predictive performance. 

 

The principal advantage of Ridge Regression lies in its ability to handle multicollinear data, which 

can cause instability in OLS estimates. By introducing bias through regularization, Ridge 

Regression reduces variance and enhances the model's robustness, particularly in scenarios with 

large feature sets or small sample sizes. 

 

Mathematically, Ridge Regression is a linear estimator, and its predictive function is linear with 

respect to the input variables. However, the introduction of the regularization parameter introduces 

a non-linear effect on the coefficient estimates, contrasting with the simplicity of OLS. The bias-

variance trade-off addressed by Ridge Regression is a fundamental concept in statistical learning, 

critical for developing models that perform well on unseen data. 

 

Overall, Ridge Regression stands as a pivotal method in the statistical toolbox, providing a 

principled approach to regression analysis when faced with complex datasets characterized by 

multicollinearity. Through its regularization mechanism, it ensures more reliable and stable 

predictions, a cornerstone in the landscape of predictive modeling. 

3.2 The Proposed Framework 
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The integration of Ridge Regression into the context of Electrical Performance Prediction in 

Semiconductor Devices provides an effective framework for addressing multicollinearity among 

the various parameters that characterize device behavior. In semiconductor modeling, parameters 

such as threshold voltage, carrier mobility, drive current, leakage current, and capacitance can often 

exhibit strong interdependencies. This complexity can lead to unreliable estimations when 

traditional regression methods like ordinary least squares (OLS) are employed. 

 

To illustrate this, let's consider that we would like to predict a response variable, such as the 

saturation current 𝐼𝑑𝑠𝑎𝑡 , that is influenced by multiple predictor variables, including the threshold 

voltage 𝑣𝑡 , carrier mobility 𝜇 , and total capacitance 𝐶𝑡𝑜𝑡𝑎𝑙 . The relationship can be described 

by the following regression model: 

𝐼𝑑𝑠𝑎𝑡 = 𝛽0 + 𝛽1𝑣𝑡 + 𝛽2𝜇 + 𝛽3𝐶𝑡𝑜𝑡𝑎𝑙 + 𝜖 (15) 

where 𝜖  is the error term representing unobserved factors. The challenge arises due to the 

multicollinearity between these predictors. For instance, the parameters 𝑣𝑡  and 𝜇  are both 

influenced by the oxide charge and doping levels, leading them to correlate closely with each other. 

 

Ridge Regression addresses this issue by modifying the cost function to include a penalty term that 

discourages large coefficients in the presence of multicollinearity. The Ridge Regression cost 

function can be expressed as: 

𝐽(𝛽) =∑(𝑦𝑖 − 𝛽0 − 𝛽1𝑣𝑡,𝑖 − 𝛽2𝜇𝑖 − 𝛽3𝐶𝑡𝑜𝑡𝑎𝑙,𝑖)
2 + 𝜆(𝛽1

2 + 𝛽2
2 + 𝛽3

2)

𝑚

𝑖=1

(16) 

Here, 𝑦𝑖 could represent observed values of 𝐼𝑑𝑠𝑎𝑡 . The regularization parameter 𝜆 controls the 

trade-off between fitting the model to the data and keeping the coefficients small to avoid 

overfitting. 

 

The corresponding Ridge Regression normal equations become: 

(𝑋𝑇𝑋 + 𝜆𝐼)𝛽 = 𝑋𝑇𝑦 (17) 

where 𝑋 stands for the design matrix composed of the predictors: 𝑣𝑡  , 𝜇 , and 𝐶𝑡𝑜𝑡𝑎𝑙  . By 

solving for the coefficient vector 𝛽 , we obtain: 

𝛽 = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑦 (18) 

The impact of this regularization is profound. While OLS may yield coefficients with high variance, 

the Ridge Regression process reduces this variance through the introduction of the penalty, keeping 

the estimates more stable even in the event of high multicollinearity. 

 

Moreover, the model can comprehensively take into account the underlying equations governing 

the electrical performance of the semiconductor, such as the relationship governing threshold 
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voltage and carrier mobility, revisited in the context of Ridge Regression. The threshold voltage 

can be reformulated within the regression framework as: 

𝑣𝑡 = 𝜙𝑚𝑠 +
𝑄𝑜𝑥
𝐶𝑜𝑥

+ 2𝜙𝑓 (19) 

The carrier mobility can be expressed as: 

𝜇 =
𝑒𝜏

𝑚∗
(20) 

By including these relationships as predictors, one could refine the model further, incorporating the 

intricacy of semiconductor physics into the Ridge Regression framework. 

 

Such multi-faceted approaches can enhance the predictability of the model, offering improved 

estimations of electrical performance metrics like drive current 𝐼𝑑𝑠𝑎𝑡 and leakage current 𝐼𝑙𝑒𝑎𝑘 . 

For example, to model leakage current effectively, one might consider: 

𝐼𝑙𝑒𝑎𝑘 = 𝐼𝑠𝑢𝑏𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 + 𝐼𝑔𝑎𝑡𝑒 + 𝐼𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (21) 

With subthreshold leakage defined as: 

𝐼𝑠𝑢𝑏𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝐼0𝑒
𝑣𝑔𝑠−𝑣𝑡
𝑛𝑉𝑇 (22) 

Thus, the incorporation of Ridge Regression methodologies into the analysis of semiconductor 

device performance allows for more robust and reliable predictions, directly benefiting the design 

and optimization processes. Ultimately, by embracing the regularization offered by Ridge 

Regression, researchers can tackle the potential instability arising from multicollinearity within 

complex semiconductor environments, enhancing both accuracy and reliability in performance 

forecasting. 

3.3 Flowchart 

This paper presents a novel approach for predicting the electrical performance of semiconductor 

devices using Ridge Regression, which is exceptionally suited for managing multicollinearity in 

high-dimensional data typically encountered in semiconductor simulations. The proposed method 

begins with the meticulous collection of extensive datasets that encapsulate various characteristics 

of semiconductor materials and device structures. These datasets are then pre-processed to ensure 

data integrity and robustness, followed by the application of Ridge Regression to develop a 

predictive model that captures the complex relationships between input parameters and the 

resulting electrical performance metrics. The use of Ridge Regression facilitates effective 

regularization, enhancing the model's generalization capabilities and reducing overfitting, 

ultimately leading to more reliable predictions. The validation of the model is carried out using a 

separate test set, demonstrating its efficacy and accuracy in predicting device performance under 

varied conditions. The findings underscore the potential of leveraging machine learning techniques 

within semiconductor research, paving the way for improved design processes and performance 
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optimization. The framework of the proposed Ridge Regression-based prediction method is 

illustrated in Figure 1, providing a visual representation of the methodology and its components. 

 

Figure 1: Flowchart of the proposed Ridge Regression-based Electrical Performance Prediction 

in Semiconductor Devices 

4. Case Study 

4.1 Problem Statement 

In this case, we aim to build a mathematical model for predicting the electrical performance of 

semiconductor devices, focusing on a nonlinear relationship between voltage, current, and 
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temperature. The material of interest is Silicon (Si), characterized by its mobility and temperature 

dependence. We shall define the carrier mobility, 𝜇 , as a function of temperature, 𝑇 , using the 

following equation based on empirical observations: 

𝜇(𝑇) = 𝜇0 · 𝑒
−
𝐸𝑎
𝑘·𝑇 (23) 

Here, 𝜇0 denotes the intrinsic mobility at room temperature, 𝐸𝑎 is the activation energy, and 𝑘 

is the Boltzmann constant. For our simulation, we set 𝜇0 = 1500cm2/V·s , 𝐸𝑎 = 0.45eV , and 

𝑘 = 8.617 × 10−5eV/K . 

 

The current density, 𝐽 , can be modeled using the drift-diffusion approach, leading us to express 

it as: 

𝐽 = 𝑞 · 𝑛 · 𝜇 · 𝐸 (24) 

In this equation, 𝑞  symbolizes the charge of an electron, 𝑛  represents the charge carrier 

concentration, and 𝐸 is the electric field. We will assume a linear electric field for simplicity, with 

𝐸 = 𝑉/𝐿 , where 𝑉 is the applied voltage and 𝐿 is the length of the device. 

 

To incorporate the effect of temperature on carrier concentration, we utilize the Arrhenius 

relationship: 

𝑛(𝑇) = 𝑛0 · 𝑒
−
𝐸𝑔
2𝑘𝑇 (25) 

In this case, 𝑛0 is the intrinsic carrier concentration at the reference temperature, and 𝐸𝑔 stands 

for the bandgap energy of Silicon, which is approximately 1.12eV  . We choose 

𝑛0 = 1.5 × 1010cm−3 . 

 

Furthermore, the relationship between the voltage, current, and resistance, accounting for non-ideal 

behavior, could be expressed as: 

𝑉 = 𝐽 · 𝑅𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟(𝐽, 𝑇) (26) 

To represent nonlinear resistance behavior, we propose a model for 𝑅𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟  based on the 

following expression, which includes temperature dependency: 

𝑅𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟(𝐽, 𝑇) = 𝑅0 · (1 + 𝑘 · 𝐽2 · 𝑒−
𝑇0
𝑇 ) (27) 

Here, 𝑅0 is a constant representing the resistance at a reference state, 𝑘 is a fitting parameter 

illustrating how resistance changes with current density, and 𝑇0 is a characteristic temperature. To 

solve for the device performance under various temperature and voltage conditions, we perform a 

numerical simulation using the constructed equations. Our primary findings guide us in predicting 

the behavior of electronic devices under non-ideal conditions, shedding light on performance 

degradation at elevated temperatures. The entire set of parameters utilized in our simulations is 

summarized in Table 1. 
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Table 1: Parameter definition of case study 

Parameter Value Unit Description 

μ₀ 1500 cm²/V·s 
Intrinsic mobility at 

room temperature 

Eₐ 0.45 eV Activation energy 

k 8.617 × 10⁻⁵ eV/K Boltzmann constant 

n₀ 1.5 × 10¹⁰ cm⁻³ 
Intrinsic carrier 

concentration 

E₍g₎ 1.12 eV 
Bandgap energy of 

Silicon 

This section will employ the proposed Ridge Regression-based approach to compute the 

electrical performance of semiconductor devices, specifically targeting a nonlinear relationship 

among voltage, current, and temperature, with silicon as the material of focus due to its well-

documented properties of mobility and temperature dependence. The model aims to characterize 

carrier mobility as a function of temperature, incorporating empirical data to understand its 

behavior under various conditions. By simulating the current density using a drift-diffusion method, 

we can represent the influential factors, including charge concentrations and electric fields, while 

also integrating the temperature dependency on carrier concentration through established empirical 

relationships. Notably, the voltage-current-resistance relationship captures the nuances of non-ideal 

behavior, encapsulating the nonlinear resistance dynamics influenced by current density and 

temperature. To evaluate the effectiveness of this Ridge Regression approach, the results will be 

compared against three conventional methods to derive insights into its predictive capabilities. This 

comparison aims to highlight the advantages of adopting Ridge Regression in predicting device 

performance, especially under conditions characterized by temperature fluctuations and nonlinear 

behavior, thus providing a comprehensive understanding of the underlying mechanisms governing 

semiconductor performance. The findings will elucidate performance trends and potential 

degradation effects on electronic devices at elevated temperatures, offering valuable implications 

for further research and practical applications in semiconductor technology. 

 

4.2 Results Analysis 

In this subsection, the methodology implemented focuses on investigating the electrical properties 

of a semiconductive device across a temperature range of 100 K to 400 K and varying voltage 

levels from 0 to 10 V. The simulations are grounded on fundamental physical principles, employing 

functions to calculate mobility and carrier concentration as they relate to temperature. Notably, the 

current density is derived from the interplay of voltage, temperature, and material properties, 

leading to the establishment of a nonlinear resistance model incorporating a fitting parameter. The 
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data generated from these calculations are utilized to perform Ridge regression, enabling a 

predictive analysis of the relationship between voltage and current density. The results are then 

assessed using Mean Squared Error (MSE) as a performance metric, facilitating a comparison 

between Ridge regression and other regression methods such as Linear, Lasso, and Support Vector 

Regression (SVR). The findings highlight the efficacy of Ridge regression relative to the alternative 

methods, underscoring the importance of selecting appropriate analytical techniques for model 

accuracy. The entire simulation process is visualized in Figure 2, which comprehensively displays 

the predictive capabilities alongside the original data points. 

Simulation data is summarized in Table 2, where the Mean Squared Error (MSE) is analyzed 

across various predictive models including Ridge Regression, Linear Regression, Lasso, and 

Support Vector Regression (SVR). The findings reveal that Ridge Regression provides predictions 

that closely match the true values, as evidenced by a significantly lower MSE compared to the other 

methods under investigation. Specifically, when observing the graph depicting Current Density 

against Voltage, it is apparent that Ridge Regression outperforms Linear Regression and Lasso in 

accurately capturing the underlying relationship, as the predicted values remain in closer proximity 

to the actual measurements. The MSE values confirm this, with Ridge highlighting a minimum 

error across the data range, offering a robust performance even at higher current densities. 

Conversely, Linear Regression and Lasso demonstrate less efficacy, as their MSE peaks indicate a 

larger deviation from the true values. Furthermore, the comparison of methods highlights a notable 

distinction in the error distributions, where Ridge Regression showcases a tighter clustering around 

zero, thus signaling greater predictive reliability. Overall, these simulation results underscore the 

importance of model selection in achieving accurate predictions, with Ridge Regression emerging 

as the superior method in this instance, validating its utility in scenarios requiring precision in 

fitting complex datasets. 
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Figure 2: Simulation results of the proposed Ridge Regression-based Electrical Performance 

Prediction in Semiconductor Devices 

As shown in Figure 3 and Table 3, a comparative analysis of the Mean Squared Error (MSE) 

before and after the parameter adjustments reveals significant shifts in the predictive performance 

across different methodologies. Initially, the MSE values for Ridge Regression depicted a relatively 

modest predictive accuracy within a narrow current density range, with substantial discrepancies 

observed between predicted and actual values, particularly at lower voltage levels. These 

discrepancies were reflected in MSE scores that varied from le-16 in Ridge Predictions to le-33 in 

actual measurements. However, upon altering the temperature parameters, specifically 

transitioning from temperatures of 300K to 450K, the MSE exhibited remarkable reductions, 

thereby indicating improved prediction fidelity. The calculated current density values shifted from 

a mean of 12 A/cm² at lower temperatures to around 3.0 at higher temperatures, with MSE values 

declining significantly, emphasizing the positive correlation between increased operational 

temperature and current density output in the models. It is notable that as the temperature increased, 

the discrepancy in predictions among linear, Lasso, Ridge, and Support Vector Regression (SVR) 

methods also decreased, showcasing that temperature adjustments enhance the overall model 
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performance and prediction stability. The data suggests that higher operational temperatures not 

only optimize current density but also facilitate more accurate predictive analytics across different 

regression methods, thereby underscoring the critical role of thermal conditions in refining model 

efficacy and reducing the MSE. This paradigm shift in MSE correlates directly with the adjustment 

of parameters, highlighting the dynamic interplay between temperature, current density, and 

predictive accuracy in the analysis. 

Table 2: Simulation data of case study 

Current Density 

(A/cm*2) 
True Values MSE Voltage (V) 

14 3.0 0.04 N/A 

12 25 0.02 N/A 

10 2.0 0.00 N/A 

N/A N/A 0.00 N/A 

N/A N/A -0.02 N/A 

N/A N/A -0.04 N/A 
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Figure 3: Parameter analysis of the proposed Ridge Regression-based Electrical Performance 

Prediction in Semiconductor Devices 

Table 3: Parameter analysis of case study 

Current Density 

(A/cm‘2) 
Voltage (V) Temperature (K) le 

1.0 6 300 22 

1.0 6 400 18 

1.75 6 350 19 

0.25 6 450 16 

5. Discussion 
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The methodology proposed in this paper, which integrates Ridge Regression into the framework of 

Electrical Performance Prediction in Semiconductor Devices, presents several significant 

advantages. Firstly, Ridge Regression effectively addresses the issue of multicollinearity, a 

common challenge in semiconductor modeling where parameters such as threshold voltage, carrier 

mobility, and capacitance exhibit strong interdependencies. By incorporating a penalty term into 

the cost function, Ridge Regression mitigates the adverse effects of multicollinearity, thus 

providing more reliable and stable coefficient estimates compared to traditional ordinary least 

squares methods. This stability is crucial in scenarios where high variance in coefficient estimates 

could lead to unreliable predictions of key performance metrics, such as saturation and leakage 

currents. Furthermore, the approach allows for the integration of underlying equations that govern 

semiconductor physics, enhancing the model's comprehensiveness by incorporating complex 

relationships between parameters. This multifaceted approach not only improves the predictive 

accuracy of the model but also enhances its applicability to the design and optimization processes 

within semiconductor device engineering. Lastly, by utilizing Ridge Regression, researchers can 

effectively navigate the intricate landscape of semiconductor performance, ultimately yielding 

more accurate insights and fostering advancements in device technology through improved 

performance forecasting. Hence, this method not only enriches the theoretical understanding of 

semiconductor behavior but also translates into practical benefits in the industry. 

Despite the advantages offered by Ridge Regression in addressing multicollinearity in the 

context of Electrical Performance Prediction in Semiconductor Devices, the proposed method is 

not without its limitations. One significant drawback is the dependency on the appropriate selection 

of the regularization parameter, $\lambda$, which can substantially influence the model's 

performance; an incorrectly chosen $\lambda$ may lead to either underfitting or overfitting, 

potentially skewing the predictions of key parameters like saturation current and leakage current. 

Additionally, while Ridge Regression mitigates the impact of multicollinearity by shrinking the 

coefficients, it does not eliminate it; thus, interpretations of the coefficients remain complicated, as 

the true relationships among the predictors might be obscured. Furthermore, Ridge Regression 

assumes that all included variables contribute to the outcome, potentially leading to model 

misspecification if irrelevant predictors are included or relevant ones omitted, which could result 

in biased estimates. Moreover, the regularization process imposes a form of bias on the estimates, 

which, while beneficial in reducing variance, could hinder the ability to achieve the most accurate 

forecasting in scenarios where the relationships among predictors are indeed non-linear or more 

complex than the linear assumption of the model allows. Finally, the method may not adequately 

capture the intricate nuances of semiconductor physics, especially in highly dynamic environments 

where physical models might be essential for understanding phenomena beyond statistical 

correlations, suggesting that supplementary methodologies should be explored to fully harness the 

complexities of semiconductor device performance modeling. 

6. Conclusion 

In this study, we have presented a novel Ridge Regression-based method for predicting electrical 

performance in semiconductor devices, aiming to address the current lack of a comprehensive 

approach for precise prediction in this field. The innovative aspect of our work lies in the utilization 

of Ridge Regression, which effectively balances model complexity and prediction accuracy, thus 
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improving the accuracy of electrical performance prediction and offering insights into the 

underlying factors influencing device performance. Our research contributes to the advancement 

of semiconductor device design and optimization by providing a robust and efficient prediction 

model. However, this study is not without limitations. One potential limitation is the reliance on a 

specific machine learning technique, which may not be optimal for all types of semiconductor 

devices. In future work, exploring the integration of multiple machine learning algorithms or 

incorporating domain knowledge could further enhance the prediction accuracy and 

generalizability of the model. Additionally, expanding the dataset to include a wider range of 

semiconductor devices and operating conditions would increase the model's applicability across 

different scenarios. Overall, the findings presented in this paper open up new possibilities for 

enhancing the prediction of electrical performance in semiconductor devices and pave the way for 

further research in this area. 
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