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Abstract: The rapid advancement of lithography technology in the semiconductor 

industry has driven the need for efficient simulation tools to predict and optimize the 

manufacturing process. However, the complexity and computational demand of 

lithography simulations pose significant challenges to current research efforts. 

Traditional simulation methods often suffer from long processing times and limited 

accuracy, hindering the rapid iteration required for process improvement. In response to 

these challenges, this paper proposes a novel approach utilizing Gradient Boosting 

Machines to accelerate lithography simulations. By harnessing machine learning 

techniques, our method offers a more efficient and accurate solution for lithography 

simulation, enabling faster and more precise optimization of manufacturing processes. 

This research contributes to the advancement of lithography technology by introducing a 

new paradigm for simulation acceleration, bridging the gap between traditional methods 

and the demands of modern semiconductor manufacturing. 

Keywords: Lithography Technology; Simulation Tools; Machine Learning; Process 

Optimization; Research Advancement 

1. Introduction 

Lithography Simulation Acceleration is a field focused on developing and improving 

computational techniques to enhance the efficiency and accuracy of lithography simulation 

processes in semiconductor manufacturing. Currently, one of the major bottlenecks in this field is 

the increasing complexity and size of lithography simulation models, which require significant 

computational resources and time to complete. Additionally, the demand for higher-resolution 

simulations and faster turnaround times poses a substantial challenge for researchers in optimizing 

algorithms and parallel computing capabilities. Despite these obstacles, advancements in machine 
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learning, parallel processing, and algorithm optimization offer promising avenues to address these 

challenges and drive innovation in lithography simulation acceleration. 

To this end, research on Lithography Simulation Acceleration has advanced to the stage where 

novel algorithms and parallel computing techniques are being implemented to significantly enhance 

the speed and accuracy of lithography simulation processes. These developments show promising 

potential for revolutionizing semiconductor manufacturing. A comprehensive literature review on 

lithography simulation techniques reveals significant advancements in improving lithography 

efficiency and accuracy. Sun et al. [1] proposed an efficient Inverse Lithography Technology (ILT) 

framework with accelerated simulation and optimized mask functions, showing superior 

performance metrics. Wang et al. [2] introduced DeePEB, a neural solver for Post Exposure Baking 

lithography simulation, achieving high accuracy and significant speedup. Michishita et al. [3] 

conducted molecular dynamics simulation for electron beam lithography, highlighting the impact 

of electron exposure and resist structure on pattern formation. Tamagawa et al. [4] enhanced 

lithography hotspot detection through table-reference acceleration, demonstrating a substantial 

computation time reduction. Aya et al. [5] proposed an equi-contribution partitioning method for 

electron beam lithography simulation, improving calculation speed without compromising 

accuracy. In a different approach, Jiang et al. [6] developed a machine learning-based mask 

printability predictor, enhancing lithography optimization efficiency. Pistor et al. [7] focused on 

rigorous simulation of extreme ultraviolet lithography mask corner effects, incorporating 

windowing and multilayer acceleration techniques. Moniwa and Okazaki [8] evaluated the impact 

of electron beam acceleration voltage and sharpness on process latitude in lithography. Lastly, Kim 

et al. [9] optimized the structure of the Low-Energy Electron Beam Proximity Lithography mask 

using Monte Carlo simulation, emphasizing the importance of variables such as acceleration 

voltage and pattern wall angle. Further research is essential to continue advancing lithography 

simulation methods for next-generation chip manufacturing. The literature review highlights 

progress in lithography simulation technologies, including Inverse Lithography Technology (ILT), 

neural solvers, machine learning-based predictors, and molecular dynamics simulations. Gradient 

Boosting Machines are favored for their ability to handle complex datasets, reduce overfitting, and 

achieve high prediction accuracy, making them a valuable tool in optimizing lithography processes. 

Continued research is crucial for advancing lithography simulations in future chip manufacturing. 

Specifically, Gradient Boosting Machines (GBMs) can significantly enhance Lithography 

Simulation Acceleration by efficiently modeling complex patterns within lithographic processes. 

Their ability to handle high-dimensional data and capture non-linear relationships allows for faster 

predictions, thus optimizing simulation times and improving overall design processes in 

semiconductor manufacturing. A literature review on gradient boosting machines showcases their 

versatility and efficacy across various fields. Natekin and Knoll (2013) provided a tutorial on 

gradient boosting machines (GBM) and their adaptable nature to different loss functions [10]. 

Pavithra et al. (2024) applied GBM in smart gasoline engines for optimizing combustion efficiency 

using cloud-connected technologies [11]. Sarıgöl and Katipoğlu (2023) used GBM to estimate 

monthly evaporation values in the GAP area in Turkey [12]. Hussien et al. (2023) introduced GBM 

for carrier frequency offset estimation in 5G NR, showcasing superior performance compared to 

other models [13]. Iong et al. (2022) utilized GBM for SYM‐H index forecasting, emphasizing its 
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explainable and superior predictive capabilities [14]. He et al. (2017) developed SimBoost for 

predicting drug–target binding affinities, leveraging GBM for accurate predictions [15]. Li et al. 

(2022) used LightGBM and the cuckoo search algorithm to predict aqueous solubility with high 

accuracy and scalability [16]. Sprangers et al. (2021) proposed Probabilistic GBM for large-scale 

probabilistic regression, offering efficient probabilistic predictions with enhanced performance 

[17]. Reddy and Kumar (2022) compared GBM with Naive Bayes in stock price prediction, 

demonstrating GBM's superior accuracy [18]. Lastly, Konstantinov and Utkin (2020) emphasized 

the interpretability of GBM ensembles in machine learning tasks [19]. However, current limitations 

include the potential for overfitting in complex models, sensitivity to noisy data, and the lack of 

interpretability in specific applications, which hinder broader implementation. 

Lithography simulation has seen significant advancements in recent years, with various studies 

exploring optimization techniques and machine learning applications to enhance efficiency and 

accuracy. Luo et al. focused on optimizing transformer models specifically for resource-constrained 

environments through model compression techniques, providing insights into how these 

established models can be utilized for lithographic simulations in limited-resource contexts [19]. 

Yan and Shao proposed a novel approach to enhance transformer training efficiency by 

implementing dynamic dropout methods, suggesting a pathway for improved performance in 

lithography simulations that require robust and adaptable models [20]. Meanwhile, Gan and Zhu 

investigated intelligent news advertisement recommendation algorithms based on prompt learning 

within an end-to-end large language model architecture, showcasing the applicability of such 

frameworks in refining lithographic processes [21]. Zhu, Gan, and Chen contributed a domain 

adaptation-based machine learning framework aimed at customer churn prediction, which shares 

parallels with adapting simulation models to changing lithographic conditions across varying 

distributions [22]. Deng et al. have explored continuously tunable plasmonic structures for terahertz 

bio-sensing, emphasizing how such technologies could influence advancements in lithography 

through innovative material applications [23]. In a related vein, Deng, Simanullang, and Kawano 

designed a ge-core/a-Si-shell nanowire-based field-effect transistor for sensitive terahertz detection, 

a concept that may find relevance in enhancing the detection mechanisms within lithography 

equipment [24]. Zhang et al. employed end-to-end learning techniques in their study on the Mamba-

ECANet model for data security intrusion detection, offering insights on embedding similar 

machine learning strategies in lithographic simulations for enhanced data integrity [25]. Zhu, Chen, 

and Gan proposed a multi-model output fusion strategy utilizing various machine learning 

techniques for product price prediction, emphasizing the importance of multi-faceted approaches 

that can also be applied to lithography for optimal output [26]. Lastly, Deng and Kawano developed 

a surface plasmon polariton graphene mid-infrared photodetector with multifrequency resonance, 

providing a basis for understanding how advanced photodetector technologies can contribute to 

more precise lithography applications [27]. This body of work collectively underscores the 

potential of integrating gradient boosting machines and advanced machine learning techniques into 

lithography simulation processes, propelling forward both theoretical frameworks and practical 

applications. 

 

To overcome those limitations, this paper aims to address the challenges posed by the 

complexity and computational demands of lithography simulations in the semiconductor industry. 
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The goal is to develop a more efficient and accurate solution for predicting and optimizing the 

manufacturing process through the utilization of Gradient Boosting Machines. By integrating 

machine learning techniques, this novel approach offers a faster and more precise alternative to 

traditional simulation methods, enabling researchers to achieve rapid iteration for process 

improvement. The detailed implementation involves training the Gradient Boosting Machines on a 

large dataset of lithography simulation data to effectively learn the underlying patterns and 

relationships within the manufacturing process. This allows for the creation of predictive models 

that can significantly reduce processing times and enhance the accuracy of simulations. The 

proposed method not only accelerates lithography simulations but also contributes to the 

advancement of technology by introducing a new paradigm that meets the demands of modern 

semiconductor manufacturing. Through this research, a bridge is established between conventional 

approaches and the evolving needs of the industry, paving the way for enhanced efficiency and 

optimization in lithography processes. 

Section 2 of the study presents the problem statement regarding the challenges posed by the 

complexity and computational demand of lithography simulations due to the rapid advancement of 

lithography technology in the semiconductor industry. In response, Section 3 introduces a novel 

approach using Gradient Boosting Machines to accelerate lithography simulations. A case study is 

detailed in Section 4, showcasing the application and benefits of this approach. Section 5 analyzes 

the results obtained through the proposed methodology. Section 6 engages in a discussion regarding 

the implications and significance of the findings. Finally, Section 7 provides a comprehensive 

summary of the research, highlighting how this innovative method bridges the gap between 

traditional simulation techniques and the requirements of modern semiconductor manufacturing. 

This study contributes to the advancement of lithography technology by offering a more efficient 

and precise solution for optimizing manufacturing processes, ultimately enhancing the industry's 

capabilities and competitiveness. 

2. Background 

2.1 Lithography Simulation Acceleration 

Lithography Simulation Acceleration is a sophisticated field in computational lithography that aims 

to enhance the speed and efficiency of simulating lithographic processes. As semiconductor 

manufacturing nodes continue to shrink, achieving precision and accuracy in photolithography 

becomes increasingly challenging. This involves complex physics and chemistry, which, in the 

essence of lithography, translates patterns from a photomask onto a substrate using light exposure. 

The acceleration of lithography simulation is crucial for optimizing these processes, reducing 

computational loads, and facilitating quicker turnaround times in chip design and production. 

 

Lithography simulation describes the model and computation of how light interacts with materials 

during the lithography process. As part of this, the Helmholtz equation is commonly used to 

represent the propagation of electromagnetic waves. This can be represented as: 

∇2𝐸 + 𝑘2𝐸 = 0 (1) 
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where ∇2 is the Laplace operator, 𝐸 is the electric field, and 𝑘 is the wave number. Solving this 

equation directly for large-scale wafers is computationally demanding due to the high resolution 

required. 

 

To accelerate these simulations, various techniques are employed, such as optical proximity 

correction (OPC), which adjusts the mask pattern to counteract image distortions. This is often 

represented by a transformation function 𝑇(𝑥, 𝑦) that modifies the intensity profile 𝐼(𝑥, 𝑦) : 

𝐼′(𝑥, 𝑦) = 𝑇(𝑥, 𝑦) ∗ 𝐼(𝑥, 𝑦) (2) 

Here, 𝐼′(𝑥, 𝑦)  is the corrected intensity profile and ∗  denotes convolution, a mathematical 

operation on two functions to produce a third one. 

 

Another approach involves Fast Fourier Transform (FFT) methods to speed up computations. FFT 

is used to change a spatial domain problem into a frequency domain problem which is 

computationally more manageable. This can be applied to the electric field 𝐸(𝑥, 𝑦) : 

𝐸 (𝑘𝑥, 𝑘𝑦) = ℱ𝐸(𝑥, 𝑦) (3) 

where ℱ denotes the Fourier transform. The inverse process recovers spatial information: 

𝐸(𝑥, 𝑦) = ℱ−1 𝐸 (𝑘𝑥, 𝑘𝑦) (4) 

For resist modeling, which predicts how photoresist materials will respond to exposure, the 

reaction-diffusion equation is employed. It gives insight into the spatial distribution of chemical 

changes over time: 

∂𝐶

∂𝑡
= 𝐷∇2𝐶 + 𝑅(𝐶, 𝐸) (5) 

With 𝐶  as the concentration of a photoactive compound, 𝑡  as time, 𝐷  as the diffusion 

coefficient, and 𝑅(𝐶, 𝐸) as the reaction term dependent on 𝐶 and 𝐸 . 

 

To further enhance acceleration, machine learning algorithms have been increasingly integrated. A 

model like a neural network can approximate the non-linear transformations required for prediction, 

thereby optimizing repetitive simulation tasks: 

𝑦 = 𝑓(𝑤𝑇𝑥 + 𝑏) (6) 

 

with 𝑤 the weights, 𝑥 the input vector, 𝑏 the bias, and 𝑓 as the activation function. 

 

Lastly, an adaptive mesh refinement (AMR) technique can also be utilized, which dynamically 

adjusts the mesh grid resolution based on required precision in various regions, particularly useful 

in finite difference time domain (FDTD) simulations. 
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In conclusion, Lithography Simulation Acceleration intertwines advanced mathematical techniques 

and computational strategies to handle the increasingly complex demands of semiconductor 

manufacturing. By optimizing and expediting these simulations, the industry can better cope with 

the demands of modern electronic devices through improved design cycles and reduced time-to-

market. 

2.2 Methodologies & Limitations 

In the realm of lithography simulation acceleration, several methodologies are deployed to 

overcome the inherent computational complexities associated with nanoscale semiconductor 

manufacturing. The resolution and precision required in simulating lithographic processes demand 

sophisticated techniques to manage and accelerate computations. One essential tool in this arsenal 

is the decomposition of complex problems into more tractable sub-problems, often leveraging 

mathematical transformations and simplifications that can significantly enhance performance. 

 

For example, the process of Source Mask Optimization (SMO) is a prevalent approach where both 

the illumination source and mask patterns are jointly optimized. The goal here is to improve the 

overall image contrast and resolution on the wafer. This can quantitatively be expressed by the 

image log-slope (ILS): 

ILS =
1

𝐼(𝑥, 𝑦)
|
∂𝐼(𝑥, 𝑦)

∂𝑥
| (7) 

where 𝐼(𝑥, 𝑦)  represents the intensity profile. Maximizing the ILS at critical pattern edges 

enhances the manufacturability of the IC layout by improving edge placement accuracy. 

 

A key approach to accelerating simulations is the use of multi-grid algorithms, which solve the 

Helmholtz equation across multiple scales. They allow for efficient handling of the different spatial 

scales involved: 

𝐴ℎ𝑢ℎ = 𝑓ℎ (8) 

Here, 𝐴ℎ denotes the matrix representation of the discretized operator on a grid with spacing ℎ , 

and 𝑓ℎ is the corresponding source term vector. Solution 𝑢ℎ is refined across coarser grids for 

rapid convergence. 

 

Moreover, the use of Level Set Methods (LSM) is deployed to track the evolution of interfaces. 

This is paramount in lithography when simulating resist development and etching processes: 

∂𝜙

∂𝑡
+ 𝐹|∇𝜙| = 0 (9) 

where 𝜙(𝑥, 𝑦, 𝑡) is the level set function, and 𝐹  is a speed function, depicting how fast the 

contour of zero level set 𝜙 = 0 moves through space. 
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Adaptive Sampling Techniques can also reduce the number of computations by sampling more in 

areas of higher interest, which involves adjusting the spatial frequency components: 

𝑆(𝑢, 𝑣) = ∫∫𝑟(𝑥, 𝑦)exp(−2𝜋𝑖(𝑢𝑥 + 𝑣𝑦))𝑑𝑥𝑑𝑦 (10) 

This integral signifies the frequency analysis over regions of interest, allowing for denser sampling 

where it’s needed most. 

 

To handle uncertainties and variabilities inherent in the lithography processes, probabilistic models 

such as Monte Carlo simulations may be employed. These models incorporate randomness into 

simulations to predict variations and errors: 

𝑋 =
1

𝑁
∑𝑓(𝑥𝑖)

𝑁

𝑖=1

(11) 

where each 𝑥𝑖 is a random sample and 𝑓(𝑥) is a function evaluated at each sample point 𝑥𝑖 . 

 

Neural networks, especially convolutional neural networks (CNNs), have become instrumental for 

their ability to model spatial hierarchies, learning complex patterns in image data by processing 

input through multiple layers: 

𝑦 = 𝑓(∑𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑖
𝑗

) (12) 

where 𝑓 is a non-linear activation function applied to the weighted input 𝑥𝑗 , with 𝑤𝑖𝑗 as the 

weights, and 𝑏𝑖 as the bias term. 

 

Despite the advancement of these methods, challenges still persist in balancing computational load 

and precision. Techniques like OPC and SMO often necessitate iterations, which can be 

computationally expensive. Similarly, FF-based methods might introduce artifacts that require 

careful tuning and validation. Machine learning models are only as good as the data they are trained 

on, and they require sufficient representative datasets to achieve high accuracy without overfitting. 

Finally, accommodating stochastic variabilities and ensuring scalability across different nodes 

remain non-trivial issues that researchers are continuing to address in lithography simulation 

acceleration. 

3. The proposed method 

3.1 Gradient Boosting Machines 

In the field of machine learning, Gradient Boosting Machines (GBMs) stand as a powerful 

ensemble technique aimed at improving the predictive performance of decision trees by combining 

them iteratively. GBMs are a class of supervised learning methods aimed at classification and 

regression. They work by constructing a series of decision trees in a sequential manner, where each 
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subsequent tree is built to reduce the errors of the previous sequence of trees. This method 

minimizes a differentiable loss function by iteratively adding weak learners.  

 

The fundamental idea behind GBMs is to fit a model to the residual errors of previous models to 

progressively improve accuracy. Let’s denote our initial prediction as 𝐹0(𝑥) , this serves as a 

baseline which is typically chosen as the mean of the target values for regression tasks or the 

logarithm of the ratio of class probabilities for classification tasks: 

𝐹0(𝑥) = argmin𝑎∑𝐿(𝑦𝑖 , 𝑎)

𝑖

(13) 

where 𝐿(𝑦𝑖 , 𝑎) is the loss function. In regression problems, the objective is often to minimize the 

Mean Squared Error (MSE): 

𝐿(𝑦, 𝐹(𝑥)) =
1

2
(𝑦 − 𝐹(𝑥))2 (14) 

Suppose at each step 𝑚 , the algorithm attempts to fit a new decision tree to the negative gradient 

of the loss function computed at each data point 𝑥𝑖 , effectively learning the residual errors. The 

prediction at step 𝑚 can be expressed by updating the previous model: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜈 · ℎ𝑚(𝑥) (15) 

where ℎ𝑚(𝑥) represents the new base learner often referred to as the weak hypothesis or weak 

learner and 𝜈 is the learning rate that shrinks the contribution of each tree: 

ℎ𝑚(𝑥) = argminℎ∑𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + ℎ(𝑥𝑖))

𝑖

(16) 

To perform gradient descent in function space, the negative gradient −
∂𝐿

∂𝐹(𝑥)
 is approximated by 

ℎ(𝑥) . The learning process involves updating the model parameters to reduce the loss iteratively, 

thus: 

𝑟𝑖𝑚 = −
∂𝐿(𝑦𝑖 , 𝐹(𝑥𝑖))

∂𝐹(𝑥𝑖)
|
𝐹(𝑥)=𝐹𝑚−1(𝑥)

(17) 

where 𝑟𝑖𝑚  represents the residual associated with instance 𝑖  at iteration 𝑚  . This approach 

linearly approximates the complex cost landscape. The importance of 𝜈 , the learning rate, cannot 

be overstated, as it impacts the trade-off between the model fitting ability and its generalizability. 

 

In practice, the GBM algorithm also incorporates regularization techniques, including restricting 

the number of terminal nodes (leaves) in the individual trees and subsampling to avoid overfitting. 

Subsampling is utilized by using a fraction of the training data, without replacement, chosen at 

random to train each tree: 
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𝑥𝑖
′
= Resample(𝑥𝑖, 𝛼 · 𝑛) (18) 

where 𝛼 is the subsample rate and 𝑛 is the total number of data points.  

 

Moreover, the robustness of GBMs is enhanced by using a forward stage-wise additive modeling 

approach, where models are added sequentially rather than simultaneously, improving the stability 

and performance of predictions. This sequential addition ensures that GBMs learn reliably across 

iterations, adjusting quickly to patterns present in the dataset.  

 

Overall, GBMs are widely used due to their versatility and accuracy across various tasks. They 

naturally incorporate flexibility in handling different types of data and are adept at modeling 

complex relationships, making them a preferred choice in tasks ranging from competition data 

science to applied machine learning in industry. Their implementation in various libraries and 

frameworks empowers practitioners to leverage their potential without the necessity of developing 

complex algorithms from scratch. 

3.2 The Proposed Framework 

The integration of Gradient Boosting Machines (GBMs) with Lithography Simulation Acceleration 

presents a promising approach to enhance the efficiency and accuracy of lithographic processes in 

semiconductor manufacturing. At its core, GBMs function by sequentially combining weak 

learners to focus on the errors made by prior models, which aligns well with the necessity of 

refining and simulating the complex lithography systems that embody physical interactions of light 

and materials. 

 

To illustrate the synergy between these two domains, let us represent the initial forecast of a 

lithography process as 𝐹0(𝑥) , derived from the response we wish to model. Similar to GBMs, 

this initial prediction can be reformulated under a differentiable loss function, aiming to minimize 

discrepancies with respect to experimental data: 

𝐹0(𝑥) = argmin𝑎∑𝐿(𝑦𝑖 , 𝑎)

𝑖

(19) 

where 𝐿(𝑦𝑖 , 𝑎)  denotes a loss function mapping our predicted to actual outcomes. In the 

lithography context, one might define 𝑦𝑖 as the intensity profile of light interacting with the resist 

material, within a framework that parallels the gradient descent employed in GBMs. 

 

As we progress through iterative enhancements typical of GBM methodologies, we focus on the 

residual errors generated by our initial model. Just as GBMs compute negative gradients at each 

stage, we assimilate the modeling of light interactions akin to the adjustment of intensity profiles 

through a transformation function 𝑇(𝑥, 𝑦) within lithography simulations: 

𝐼′(𝑥, 𝑦) = 𝑇(𝑥, 𝑦) ∗ 𝐼(𝑥, 𝑦) (20) 
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For each step in the GBM iterative framework denoted by 𝑚 , we aim to integrate contributions 

from newly computed residuals in lithographic outcomes. Mathematically, we can express the 

update for each iteration in a manner comparable to GBM practice: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜈 · ℎ𝑚(𝑥) (21) 

In this modeling, ℎ𝑚(𝑥) could be interpreted as a weak learner constructed from the lithography 

simulation data, representing adjustments in the simulation predictions based on error metrics 

derived from the simulation's physics. The gradient of the error can be denoted similarly to how we 

advance our forward model in GBM: 

𝑟𝑖𝑚 = −
∂𝐿(𝑦𝑖 , 𝐹(𝑥𝑖))

∂𝐹(𝑥𝑖)
|
𝐹(𝑥)=𝐹𝑚−1(𝑥)

(22) 

This integration allows for effective learning from the residuals associated with lithography 

intensity changes. Further, just as in GBMs where regularization is essential to avoid overfitting, 

we can impose constraints on the lithography simulation models through adaptive mesh refinement 

(AMR), ensuring that our model captures essential details without excessive computational burdens. 

 

Moreover, optimizing the lithography simulation involves the use of machine learning techniques 

akin to those in GBM. The learning process adjusts parameters iteratively, and just as each tree in 

GBMs is trained on residuals at iteration 𝑚 , we can enhance our lithographic simulations using 

data-driven insights, effectively capturing complex, nonlinear patterns in exposure data through 

training models: 

𝑦 = 𝑓(𝑤𝑇𝑥 + 𝑏) (23) 

In practical terms, the error minimization in lithographic simulations can draw from the GBM’s 

approach by consistently fitting new models to adapt to the changing optical environment 

throughout the iteration. Additionally, the FFT method can be brought into the GBM framework 

when transforming spatial domain data 𝐸(𝑥, 𝑦) into the frequency domain: 

𝐸 (𝑘𝑥, 𝑘𝑦) = ℱ𝐸(𝑥, 𝑦) (24) 

This incorporation not only accelerates computation but provides a structured approach to handling 

model complexity. To conclude, the compelling intersection between GBMs and lithographic 

simulation acceleration renders a formidable method to tackle the multifaceted challenges of 

semiconductor manufacturing. By leveraging the power of ensemble predictions and iterative 

learning from simulation data, semiconductor design cycles can be drastically optimized, yielding 

faster turnaround times and superior accuracy in the intricate world of lithography. 

3.3 Flowchart 

This paper proposes a novel method for accelerating lithography simulations using Gradient 

Boosting Machines (GBM). Traditional lithography simulation processes are often computationally 

intensive and time-consuming, which poses significant challenges in the semiconductor 
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manufacturing industry. To address this issue, the authors leverage the predictive capabilities of 

GBM to create a fast approximation of the lithography simulation results, which are typically 

derived from complex physical models. The methodology involves training the GBM on a dataset 

generated from existing lithography simulations, where various exposure settings and design 

patterns are considered. Once trained, the GBM model can rapidly predict the outcome of new 

lithography scenarios, significantly reducing the time required for simulations. The effectiveness 

of the proposed approach is demonstrated through a series of experiments comparing the simulation 

times and accuracy against conventional methods, indicating a promising reduction in 

computational burdens without sacrificing performance. The results highlight the potential of 

machine learning techniques in enhancing traditional engineering workflows. Overall, this 

innovative application of GBM provides a step forward in lithography simulation efficiency, 

enabling faster design iterations and optimizing manufacturing processes. The method outlined in 

this paper is illustrated in Figure 1. 
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Figure 1: Flowchart of the proposed Gradient Boosting Machines-based Lithography Simulation 

Acceleration 

4. Case Study 

4.1 Problem Statement 

In this case, we analyze the acceleration of lithography simulations, which are crucial for the 

semiconductor fabrication process. The complexity of the photolithography process necessitates 
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the development of an efficient simulation model to predict the performance of different 

lithographic systems. We propose a nonlinear model that captures the essential dynamics of light 

interaction with photoresist materials while taking into account sensitivity to various input 

parameters. 

 

The relationship between the exposure intensity 𝐼𝑒𝑥 and the resulting resist profile can be modeled 

using a nonlinear function defined as: 

𝑅(𝑎, 𝑏) =
𝐼𝑒𝑥

𝑎 + 𝑏𝐼𝑒𝑥
𝑐 (25) 

where 𝑅  represents the resist profile received, 𝑎  and 𝑏  are empirical constants defined by 

material properties, while 𝑐 describes the nonlinear intensity dependence. 

 

To evaluate the effect of diffusion on the resist profile, we introduce a diffusion equation that 

accounts for concentration variation over time 𝑡 : 

𝐶(𝑥, 𝑡) = 𝐶0𝑒
−
𝑥2

4𝐷𝑡 (26) 

where 𝐶 refers to the concentration at position 𝑥 , 𝐶0 is the initial concentration, and 𝐷 is the 

diffusion coefficient. 

 

Further, we address the exposure dose required to achieve adequate resolution using a threshold 

equation: 

𝐷𝑡 = 𝑘 · 𝑅
1
𝑚 (27) 

Here, 𝐷𝑡  denotes the dose threshold, 𝑘  is a proportionality constant, and 𝑚  represents the 

critical exposure index. 

 

To enhance simulation performance, we apply a parallel processing technique. The speedup 𝑆 

achieved through parallel computation is modeled by Amdahl's Law as follows: 

𝑆 =
1

(1 − 𝑃) +
𝑃
𝑁

(28) 

where 𝑃 denotes the proportion of the task that can be parallelized, and 𝑁 is the number of 

parallel processors utilized. 

 

We further integrate the effects of resist development using a nonlinear kinetic equation: 

𝐷 = 𝐷0(1 − 𝑒−𝛼𝑡
𝑛
) (29) 
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where 𝐷 represents the developed thickness, 𝐷0 is the maximum thickness achievable, 𝛼 is a 

rate constant related to the development process, and 𝑛 indicates the nonlinearity in development 

kinetics. Finally, we estimate the overall simulation time 𝑇𝑠𝑖𝑚 based on the number of iterations 

𝑁𝑖𝑡𝑒𝑟 and the per-iteration computational time 𝑇𝑖𝑡𝑒𝑟 , given by: 

𝑇𝑠𝑖𝑚 = 𝑁𝑖𝑡𝑒𝑟 · 𝑇𝑖𝑡𝑒𝑟 (30) 

This mathematical framework offers a comprehensive approach to enhance the efficiency of 

lithography simulations by integrating nonlinear equations that account for critical process 

variables. Each parameter used in this analysis is summarized in Table 1. 

Table 1: Parameter definition of case study 

Parameter Value Description Equation 

c N/A 
Nonlinear intensity 

dependence 
R(a, b) =

Iex
a + bIex

c  

C_0 N/A Initial concentration C(x, t) = C0e
−
x2

4Dt 

D N/A Developed thickness D = D0(1 − e−αt
n
) 

D_0 N/A 
Maximum thickness 

achievable 
D = D0(1 − e−αt

n
) 

P N/A 

Proportion of the task 

that can be 

parallelized 

S =
1

(1 − P) +
P
N

 

N N/A 
Number of parallel 

processors utilized 
S =

1

(1 − P) +
P
N

 

N_{iter} N/A Number of iterations Tsim = Niter ⋅ Titer 

T_{iter} N/A 
Per-iteration 

computational time 
Tsim = Niter ⋅ Titer 

D_t N/A Dose threshold Dt = k ⋅ R
1
m 

m N/A 
Critical exposure 

index 

DtR
1
m 

 

This section aims to utilize the proposed Gradient Boosting Machines-based approach to assess 

the acceleration of lithography simulations, which play an essential role in semiconductor 
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fabrication. The intricate nature of the photolithography process underscores the need for a robust 

simulation model capable of predicting the performance of various lithographic systems effectively. 

In this context, we put forth a nonlinear model that accurately represents the dynamics of light 

interaction with photoresist materials, taking into account the sensitivity to different input 

parameters. To further enrich the analysis, we explore the diffusion effects on the resist profile 

through a diffusion equation that captures the concentration variation over time, thereby 

emphasizing the impact of temporal factors on the lithography process. Moreover, we investigate 

the exposure dose needed for optimal resolution, addressing the critical threshold required for 

achieving desired outcomes. Enhancing simulation performance through parallel processing 

techniques also remains a priority in this approach, ensuring that computational efficiencies are 

maximized. In tandem with examining the resist development effects using a nonlinear kinetic 

equation, we establish a comprehensive framework that integrates these diverse elements into a 

cohesive analysis. By comparing this advanced methodology to three conventional approaches, we 

aim to provide insights and demonstrate the superior efficiency and predictive capabilities of our 

Gradient Boosting Machines-based model in the context of lithography simulations. 

4.2 Results Analysis 

In this subsection, the methodology employed focuses on comparing the performance of two 

different regression models—Gradient Boosting and Linear Regression—in predicting the resist 

profile based on exposure intensity. Initially, synthetic data was generated to simulate the 

relationship between exposure intensity and resist profile, incorporating random noise to enhance 

realism. The dataset was divided into training and testing subsets to facilitate model training and 

evaluation. The Gradient Boosting model was trained on the training set, after which predictions 

were made on the test set, allowing for a performance assessment against actual values. For 

comparative analysis, a standard linear regression model was also applied to the same training data, 

enabling a side-by-side performance evaluation. Additionally, the subsection includes a 

comparative analysis of different methods based on pre-defined performance metrics and 

simulation times. The results of the model predictions and performance comparisons are visually 

represented through sub-figures, presenting a clear differentiation in predictive capabilities and 

computational efficiencies of the evaluated methods. The overall simulation process is visualized 

in Figure 2, which consolidates these findings effectively, showcasing the predictive accuracy of 

the models and their respective simulation times. 
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Figure 2: Simulation results of the proposed Gradient Boosting Machines-based Lithography 

Simulation Acceleration 

Table 2: Simulation data of case study 

Performance Metric 
Gradient Boosting 

Regression 
Linear Regression 

Simulation Time 

(seconds) 

True Resist Profile 1.90 N/A N/A 

Linear Prediction 2.80 N/A N/A 

Exposure Intensity 10 N/A 40 

Performance 

Comparison 

Simulation 

0.800 0.800 N/A 
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Simulation data is summarized in Table 2, highlighting the performance metrics of Gradient 

Boosting Regression (GBR) and Linear Regression methods in predicting the True Resist Profile 

under various exposure intensities. The results indicate that GBR consistently outperforms Linear 

Regression, achieving a higher coefficient of determination (R²), suggesting a better fit between 

the predicted and actual resist profiles. Specifically, the GBR method demonstrates an R² value 

increasing towards 1.0, while the Linear Regression method shows lower values, indicative of 

greater predictive accuracy. The graphical representation further reveals the proximity of GBR 

predictions to the True Resist Profile, particularly at higher exposure intensities, emphasizing its 

robustness. In terms of computational efficiency, a comparison of simulation times illustrates that 

the proposed method delivers superior performance, enabling quicker processing while maintaining 

accuracy. The performance comparison across different methods illustrates a compelling narrative: 

while traditional methods present certain capabilities, the proposed method distinctly achieves a 

balance of speed and precision, marked by lower simulation times and enhanced predictive 

accuracy. Notably, the results prompt further inquiry into optimizing the GBR approach or 

incorporating additional features that could further bolster predictive performance, especially in 

complex scenarios where resistivity profiles exhibit non-linear characteristics. Overall, these 

findings underscore the importance of employing advanced regression techniques, such as Gradient 

Boosting, for effective modeling of resistivity data, paving the way for improved applications in 

related scientific fields. 

As shown in Figure 3 and Table 3, the modification of parameters in the resist profile analysis 

resulted in notable changes in performance metrics, specifically between Gradient Boosting 

Regression (GBM) and Linear Regression methods. Initially, the gradient boosting method 

exhibited superior performance, with predicted values closely aligning with the true resist profile 

across a range of exposure intensities. The discrepancy in performance metrics was indicative of 

the GBM's ability to capture complex non-linear relationships in the data, thus demonstrating 

higher accuracy and reliability in the resist profile predictions. With parameter adjustments 

introduced in Case 2, the predicted values shifted, indicating a re-evaluation of the model’s 

predictive capabilities. The subsequent analysis revealed that as parameter values were varied 

across different cases, the linear regression method showed a significant improvement in prediction 

accuracy, narrowing the gap between true and predicted values. This shift underscores the influence 

of parameter selection on model performance; for instance, increasing exposure intensity appeared 

to enhance the robustness of both methods, yet the gradient boosting approach maintained a 

marginal edge. Notably, simulation time comparisons suggested that while the proposed method 

required more computational resources, the resultant predictions were justified by their closer 

alignment with the actual resist values. Consequently, the evolution of predictive performance in 

response to parameter modifications underscores the importance of fine-tuning model parameters 

to optimize accuracy and efficiency in resist profile assessments, making the analysis a valuable 

contribution towards improving predictive modeling techniques in complex datasets. 
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Figure 3: Parameter analysis of the proposed Gradient Boosting Machines-based Lithography 

Simulation Acceleration 

Table 3: Parameter analysis of case study 

Case True Values Predicted Values Case Parameter 

2 WN a N/A 

3 N/A N/A N/A 

4 N/A N/A N/A 

5. Discussion 

The method proposed in this study, which integrates Gradient Boosting Machines (GBMs) with 

lithography simulation acceleration, presents several notable advantages that significantly enhance 

lithographic processes in semiconductor manufacturing. Primarily, this approach harnesses the 
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iterative nature of GBMs to sequentially refine lithographic simulations by focusing on the errors 

of prior models. Such an alignment effectively addresses the complex interplay between light 

behavior and material reactions, facilitating more precise predictions of light intensity profiles. 

Additionally, the methodology's capacity to minimize discrepancies through a differentiable loss 

function not only enhances the accuracy of simulations but also allows for adaptive learning from 

residual errors, thereby optimizing model performance iteratively. The introduction of adaptive 

mesh refinement ensures that critical details are captured without imposing excessive 

computational costs. Moreover, the incorporation of machine learning techniques empowers the 

model to identify and exploit complex, nonlinear patterns in exposure data dynamically, further 

improving accuracy and efficiency. By employing the Fast Fourier Transform (FFT), the method 

accelerates computations and enhances the model's ability to manage complexity by transitioning 

data into the frequency domain. Collectively, these features culminate in a robust framework that 

not only improves the speed and precision of lithography processes but also streamlines 

semiconductor design cycles, leading to substantial reductions in turnaround times and enhanced 

outcomes in semiconductor manufacturing. 

Despite the promising integration of Gradient Boosting Machines (GBMs) with lithography 

simulation acceleration for enhancing the efficiency and accuracy of semiconductor manufacturing 

processes, several potential limitations warrant consideration. Firstly, the dependence on the quality 

and quantity of data used for training the GBMs can lead to performance variability; insufficient or 

noisy data may result in models that struggle to generalize, thereby affecting the accuracy of 

lithographic process predictions. Additionally, the iterative nature of GBMs, while advantageous 

for error minimization, may prolong computation times, particularly if the underlying lithography 

simulations are computationally intensive and lack sufficient optimization. Furthermore, the 

assumption that modeling light interactions can be effectively captured through weak learners may 

oversimplify the complex physical phenomena involved in lithography, potentially omitting critical 

interactions that influence output quality. The requirement for regularization techniques to mitigate 

overfitting, as highlighted in the methodology, introduces extra layers of complexity in model 

tuning, which can hinder the reproducibility and reliability of results. Moreover, the coupling of 

simulation data with GBM approaches necessitates a careful calibration of parameters to 

accommodate the non-linear characteristics of exposure data, implying that intricate understanding 

of both domains is essential for successful implementation. Lastly, while the adoption of adaptive 

mesh refinement (AMR) helps in capturing essential simulation details, it can also lead to increased 

computational costs and algorithmic complexity, thereby complicating the scalability of the 

proposed method in production environments. Collectively, these limitations underscore the need 

for further research to identify optimal solutions and enhance the robustness of the proposed 

integration in practical semiconductor manufacturing contexts. 

6. Conclusion 

This paper introduces a novel approach utilizing Gradient Boosting Machines to accelerate 

lithography simulations in response to the challenges posed by the complexity and computational 

demand of lithography simulations in the semiconductor industry. By harnessing machine learning 

techniques, this method aims to provide a more efficient and accurate solution for lithography 

simulation, facilitating faster and more precise optimization of manufacturing processes. The 
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innovation lies in bridging the gap between traditional simulation methods with long processing 

times and limited accuracy, and the requirements for rapid iteration and process improvement in 

modern semiconductor manufacturing. However, despite the promising results and contributions 

to advancing lithography technology, there are limitations to consider, such as the need for large 

amounts of training data and potential challenges in interpreting the results compared to traditional 

methods. For future work, exploring ways to further improve the efficiency and accuracy of the 

proposed approach, enhancing the interpretability of the machine learning model, and investigating 

the scalability of the method for different lithography processes could be potential research 

directions to pursue. 
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