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Abstract: Fault detection is crucial for maintaining high-quality production in 

semiconductor manufacturing. Despite research advancements in fault detection methods, 

the complexity and variability of semiconductor manufacturing processes continue to 

pose challenges. Current research primarily focuses on traditional fault detection 

techniques, which may not effectively handle the intricacies of modern manufacturing 

environments. This paper addresses this gap by proposing a novel approach using Naïve 

Bayes classification for fault detection in semiconductor manufacturing. The study 

demonstrates the effectiveness of the proposed method through experiments on real-

world data, highlighting its ability to accurately detect faults and improve overall 

manufacturing efficiency. This research contributes to the field by offering a new 

perspective on fault detection in semiconductor manufacturing, paving the way for more 

robust and reliable quality control systems in the industry. 

Keywords: Fault Detection; Semiconductor Manufacturing; Naïve Bayes Classification; 
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1. Introduction 

Fault Detection in Semiconductor Manufacturing is a field focused on developing techniques and 

technologies to identify and diagnose defects or abnormalities in the production process of 

semiconductor devices. The primary goal is to ensure the quality and reliability of the final products. 

However, this area faces several bottlenecks and challenges, including the increasing complexity 

of semiconductor manufacturing processes, the rapidly evolving nature of semiconductor 
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technologies, and the need for real-time monitoring and analysis of large volumes of data. 

Additionally, the high cost of implementing advanced fault detection systems and the lack of 

standardized methodologies for fault detection further complicate the research and development 

efforts in this field. Addressing these challenges requires interdisciplinary collaboration and 

innovative approaches to advance fault detection capabilities in semiconductor manufacturing. 

To this end, research on fault detection in semiconductor manufacturing has advanced 

significantly, with a focus on developing innovative algorithms and machine learning techniques 

to improve detection accuracy and speed. Current studies have also explored the integration of real-

time data monitoring and predictive maintenance to enhance overall manufacturing efficiency. 

Recent research in fault detection in semiconductor manufacturing processes has seen significant 

advancements in the utilization of machine learning techniques [2],[7],[8]. Arpitha and Pani (2022) 

provided a critical review of machine learning approaches for fault detection in semiconductor 

manufacturing process, emphasizing the importance of process data in enhancing efficiency and 

product quality monitoring [2]. Additionally, Zhang et al. introduced a sequential resampling 

approach for imbalanced batch process fault detection, addressing the challenges posed by batch 

process imbalances in fault detection [3]. Furthermore, Lee et al. (2023) proposed TRACE-GPT, a 

generative pre-training model for fault detection in semiconductor manufacturing, showing 

improved performance over previous unsupervised models [4]. Zhang et al. (2017) developed a 

nearest neighbor difference rule-based method to improve kernel principal component analysis for 

fault detection, specifically addressing the challenges posed by the multimode structures in 

semiconductor processes [5]. Finally, Feng et al. introduced a novel fault detection method 

integrating trace abstraction and time series alignment to enhance fault detection effectiveness and 

efficiency, showcasing the importance of automated feature extraction in fault detection processes 

[6]. Recent advancements in fault detection in semiconductor manufacturing processes have 

highlighted the significance of machine learning techniques. Among these approaches, Naïve 

Bayes Classification stands out for its simplicity, efficiency, and effectiveness in handling large 

datasets with high dimensionality. This technique is particularly advantageous in fault detection 

due to its ability to quickly classify data based on probabilistic models, making it a valuable tool 

for enhancing efficiency and product quality monitoring in semiconductor manufacturing processes. 

Specifically, Naïve Bayes Classification serves as an effective machine learning approach for 

fault detection in semiconductor manufacturing by leveraging probabilistic models to analyze 

patterns in production data, enabling the identification of anomalies and enhancing yield 

optimization. A literature review was conducted to explore the application of Naïve Bayes 

Classification in various domains. Jefriyanto et al. examined the use of stemming and stopwords in 

sentiment analysis, achieving improved performance with an f1-score of 65% [9]. Chen et al. 

proposed an improved Naïve Bayes algorithm for traffic risk management [10]. Saritas and Yaşar 

compared the performance of Artificial Neural Networks and Naïve Bayes in diagnosing breast 

cancer, highlighting the potential of data-driven classification [11]. Xue et al. developed a novel 

scheme for Naïve Bayes classification under local differential privacy, achieving higher accuracy 

compared to existing methods [12]. Other studies included the use of Naïve Bayes in identifying 

isotopologues (Herwerden et al., 2021) [13], conducting variable selection [14], and evaluating 

Arabic text classification [15]. These works collectively showcase the versatility and effectiveness 
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of Naïve Bayes Classification in various research areas. However, limitations persist regarding the 

scalability of Naïve Bayes in high-dimensional data and its sensitivity to data distribution, which 

may affect classification accuracy across diverse applications. 

Recent advancements in machine learning and artificial intelligence have significantly 

enhanced fault detection practices in semiconductor manufacturing. Luo et al. explored 

optimization techniques for transformer models tailored for resource-constrained environments, 

shedding light on model compression strategies that may be crucial for deploying fault detection 

systems in semiconductor processes [8]. Yan and Shao proposed a novel approach for enhancing 

transformer training efficiency through dynamic dropout methods, which holds potential for 

improving classification accuracy in detecting semiconductor manufacturing faults [9]. Innovations 

in health applications by Liu and Wang evaluated large language models as AI-driven health 

assistants, providing insights into their multi-functional applications, including monitoring fault 

conditions in semiconductor manufacturing environments [10]. Additionally, Gan and Zhu 

investigated intelligent news advertisement recommendations based on prompt learning for end-

to-end large language model architectures, demonstrating the versatility of such models in various 

predictive contexts, which may parallel advancements in fault detection methodologies [11]. Zhu 

et al. contributed to the field with a domain adaptation-based framework for machine learning that 

aids in customer churn prediction across varying distributions, hinting at the potential for adaptive 

learning systems in detecting manufacturing faults in semiconductors under variable operational 

conditions [12]. Deng et al. developed continuously frequency-tunable plasmonic structures that 

cater to terahertz bio-sensing applications, which may inspire innovative sensing technologies 

applicable in semiconductor fault detection [13]. Their further work on a Ge-core/a-Si-shell 

nanowire-based field-effect transistor highlights sensitive terahertz detection mechanisms, which 

could potentially enhance fault identification through improved signal detection in manufacturing 

processes [15]. Zhang et al. introduced an end-to-end learning-based approach with the Mamba-

ECANet model dedicated to data security intrusion detection, suggesting an intersection with fault 

detection efforts in semiconductors where security and operational integrity are paramount [16]. 

Zhu et al. also investigated a multi-model output fusion strategy that combines various machine 

learning techniques for product price prediction, offering valuable frameworks that could be 

adapted for predicting fault occurrences in semiconductor fabrication [17]. Lastly, Deng and 

Kawano provided insights into surface plasmon polariton graphene mid-infrared photodetectors, 

which feature multifrequency resonance and signify a trend toward advanced detection mechanisms 

that could be tailored for semiconductor manufacturing environments [18]. These collective 

advancements in machine learning, sensor technologies, and innovative detection methodologies 

present a promising trajectory for enhanced fault detection in semiconductor manufacturing 

through Naïve Bayes classification and beyond [19-21]. 

 

To overcome those limitations, this paper aims to propose a novel approach utilizing Naïve 

Bayes classification for fault detection in semiconductor manufacturing. Despite significant 

research progress in fault detection methods, the inherent complexity and variability of 

semiconductor manufacturing processes present ongoing challenges. The current emphasis on 

traditional fault detection techniques may not adequately address the nuances of modern 

manufacturing environments. The proposed method leverages Naïve Bayes classification to 
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enhance fault detection accuracy and operational efficiency. By conducting experiments on real-

world data, this study showcases the efficacy of the approach in accurately identifying faults and 

optimizing overall manufacturing processes. This research fills a crucial gap in the field by 

introducing a fresh perspective on fault detection in semiconductor manufacturing, paving the way 

for the development of more resilient and dependable quality control systems within the industry. 

Section 2 delineates the problem statement, emphasizing the importance of fault detection in 

semiconductor manufacturing to uphold production quality. Section 3 introduces the innovative 

approach of utilizing Naïve Bayes classification for fault detection, aiming to address the 

limitations of traditional techniques in modern manufacturing complexities. A case study is detailed 

in Section 4, showcasing the application and efficacy of the proposed method on real-world data. 

Section 5 analyzes the results, confirming the method's proficiency in accurately identifying faults 

and enhancing manufacturing efficiency. Section 6 engages in a thorough discussion, examining 

the implications and significance of the findings. Finally, Section 7 consolidates the research with 

a comprehensive summary, underscoring the contribution of this study towards advancing fault 

detection in semiconductor manufacturing and fortifying quality control systems within the 

industry. 

2. Background 

2.1 Fault Detection in Semiconductor Manufacturing 

Fault detection in semiconductor manufacturing is a critical process to ensure the quality and 

reliability of semiconductor devices. This practice involves identifying deviations from the normal 

operational conditions, which can indicate the presence of faults. Faults can arise from variations 

in processing parameters, environmental conditions, equipment malfunction, or material 

inconsistencies. Given the high precision required in semiconductor manufacturing, even minor 

faults can lead to significant defects in semiconductor devices, affecting their performance and 

durability. 

 

Fault detection typically leverages statistical methods, machine learning, and signal processing to 

monitor various stages of the semiconductor manufacturing process. The aim is to detect anomalies 

that could indicate faults, enabling timely intervention and correction before substantial defects 

occur. 

 

A primary approach employed in fault detection is statistical process control (SPC), which uses 

control charts to monitor the manufacturing process. Mathematically, controls can be established 

using a normal distribution model of a process variable 𝑋 : 

𝑃(𝑋 ∈ [𝜇 − 3𝜎, 𝜇 + 3𝜎]) = 0.997 (1) 

where 𝜇 is the mean and 𝜎 is the standard deviation. A data point falling outside this range could 

indicate a fault. 

 

Moreover, multivariate statistical techniques such as Principal Component Analysis (PCA) and 
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Partial Least Squares (PLS) are utilized. These methods help reduce dimensionality in datasets with 

correlated variables, emphasizing features that capture variance and potential anomalies in the 

manufacturing process. Consider 𝑋 an 𝑛 × 𝑝 matrix of observed data with 𝑛 samples and 𝑝 

variables, PCA can decompose 𝑋 as: 

𝑋 = 𝑇𝑃𝑇 + 𝐸 (2) 

where 𝑇 is the score matrix, 𝑃 is the loading matrix, and 𝐸 is the residual matrix. Faults are 

often detected by analyzing the residuals 𝐸 . 

 

Machine learning techniques are increasingly being adopted, leveraging their ability to model 

complex, nonlinear relationships between variables. One example is Support Vector Machines 

(SVM), which attempts to find a hyperplane that best separates normal and faulty states. The 

decision function for SVM can be written as: 

𝑓(𝑥) = sign(∑𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥) + 𝑏

𝑛

𝑖=1

) (3) 

where 𝐾(𝑥𝑖, 𝑥) is the kernel function, 𝑦𝑖 are the class labels, 𝛼𝑖 are the model parameters, and 

𝑏 is the bias term. 

 

Time-series analysis is another tool used for fault detection, particularly when dynamic behavior 

of processes is considered. An autoregressive integrated moving average (ARIMA) model might 

be employed: 

𝑋𝑡 = 𝑐 + 𝜙1𝑋𝑡−1 + 𝜃1𝜖𝑡−1 + 𝜖𝑡 (4) 

where 𝑐 is a constant, 𝜙1 and 𝜃1 are model coefficients, and 𝜖𝑡 is a white noise error term. 

 

Recent advancements involve deep learning methods, such as Recurrent Neural Networks (RNN) 

to capture sequential patterns: 

ℎ𝑡 = 𝜎(𝑊ℎℎ𝑡−1 +𝑊𝑥𝑥𝑡 + 𝑏) (5) 

where ℎ𝑡 is the hidden state, 𝑊ℎ and 𝑊𝑥 are weight matrices, 𝑥𝑡 is the input, and 𝑏 is the bias 

vector. 

 

In conclusion, fault detection in semiconductor manufacturing is a complex field integrating 

various statistical, machine learning, and deep learning techniques to ensure the reliability and 

quality of semiconductor devices. As manufacturing processes become more advanced, the 

development of sophisticated fault detection algorithms continues to be a key area of research. 

2.2 Methodologies & Limitations 

Fault detection in semiconductor manufacturing is an intricate domain that blends a myriad of 

analytical approaches to ensure device quality and reliability. A crucial element in this process is 
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the employment of Statistical Process Control (SPC) techniques. SPC provides a quantitative 

framework for monitoring manufacturing stability using control charts. It leverages the normal 

distribution of process metrics so that any deviation could point toward potential faults. The 

probability of a variable 𝑋 remaining within three standard deviations from the mean encapsulates 

process stability: 

𝑃(𝑋 ∈ [𝜇 − 3𝜎, 𝜇 + 3𝜎]) = 0.997 (6) 

where 𝜇 and 𝜎 denote the mean and standard deviation, respectively. 

 

Another prevalent method involves multivariate statistical techniques, specifically Principal 

Component Analysis (PCA) and Partial Least Squares (PLS). These techniques are fundamental 

for dimensional reduction in datasets characterized by correlated variables, isolating vectors that 

maximize variance and capture anomalies. For an observed data matrix 𝑋  , PCA aids in its 

decomposition as follows: 

𝑋 = 𝑇𝑃𝑇 + 𝐸 (7) 

Here, 𝑇 is the score matrix, 𝑃 is the loading matrix, and 𝐸 captures residuals — essential for 

fault indication. 

 

The field has seen an increasing pivot towards machine learning paradigms like Support Vector 

Machines (SVM). These enable effective modeling of compact, nonlinear interrelations between 

process variables. The SVM decision function is formalized as: 

𝑓(𝑥) = sign(∑𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥) + 𝑏

𝑛

𝑖=1

) (8) 

with 𝐾(𝑥𝑖, 𝑥) representing the kernel function, 𝑦𝑖 as class labels, 𝛼𝑖 as model coefficients, and 

𝑏 being the bias term. 

 

Time-series analysis also plays a pivotal role with models such as Autoregressive Integrated 

Moving Average (ARIMA). In the dynamic setting of semiconductor processes, ARIMA considers: 

𝑋𝑡 = 𝑐 + 𝜙1𝑋𝑡−1 + 𝜃1𝜖𝑡−1 + 𝜖𝑡 (9) 

In this equation, 𝑐 is constant, 𝜙1 and 𝜃1 are autoregressive and moving average components 

respectively, and 𝜖𝑡 signifies white noise. 

 

Recent advancements incorporate deep learning techniques, particularly Recurrent Neural 

Networks (RNN). RNNs are designed to capture temporal dependencies, ideal for sequential 

manufacturing process data: 

ℎ𝑡 = 𝜎(𝑊ℎℎ𝑡−1 +𝑊𝑥𝑥𝑡 + 𝑏) (10) 
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In this context, ℎ𝑡 is the hidden state, 𝑊ℎ and 𝑊𝑥 are neural network weight matrices, 𝑥𝑡 is 

input data, and 𝑏 is a bias vector. 

 

Despite providing a solid basis for fault detection, these methods are not devoid of limitations. 

Traditional statistical techniques such as SPC may inadequately handle processes exhibiting 

significant non-linearity or multivariate complexity. Machine learning-based approaches, including 

SVMs, can demand substantial computational resources and extensive feature engineering to 

achieve high accuracy. Deep learning methods hold promise in bypassing some of these constraints 

but require large-scale data and are susceptible to overfitting. Moreover, interpretability remains a 

hurdle for deep architectures, posing challenges in debugging and understanding fault causation. 

Addressing these limitations by developing robust, scalable, and interpretable algorithms remains 

a central focus as semiconductor manufacturing continues to evolve. 

3. The proposed method 

3.1 Naïve Bayes Classification 

Naïve Bayes Classification is a foundational method in machine learning, ascending in popularity 

due to its simplicity and efficacy in various classification tasks. In essence, Naïve Bayes is 

grounded on Bayes' Theorem, a principle of probability used to update the probability of a 

hypothesis as more evidence becomes available. The theorem itself provides a mathematical 

framework for quantifying uncertainty and is expressed as: 

𝑃(𝐻|𝐸) =
𝑃(𝐸|𝐻)𝑃(𝐻)

𝑃(𝐸)
(11) 

where 𝑃(𝐻|𝐸) is the posterior probability of hypothesis 𝐻 given the evidence 𝐸 , 𝑃(𝐸|𝐻) is 

the likelihood of evidence under hypothesis 𝐻 , 𝑃(𝐻) is the prior probability of the hypothesis, 

and 𝑃(𝐸) is the probability of the evidence. 

 

In the context of classification, Naïve Bayes posits that given the class variable, the features are 

conditionally independent. Thus, the joint probability of the features can be factorized. Suppose 

there is a set of features {𝑋1, 𝑋2, . . . , 𝑋𝑛} and a class variable 𝐶 , Naïve Bayes classifies instances 

based on the probability: 

𝑃(𝐶|𝑋1, 𝑋2, … , 𝑋𝑛) (12) 

By assuming independence among features, this probability can be reformulated using Bayes' 

Theorem as: 

𝑃(𝐶|𝑋1, 𝑋2, … , 𝑋𝑛) =
𝑃(𝑋1, 𝑋2, … , 𝑋𝑛|𝐶)𝑃(𝐶)

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛)
(13) 

Exploiting the conditional independence assumption, the likelihood term is factorized: 
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𝑃(𝑋1, 𝑋2, … , 𝑋𝑛|𝐶) =∏𝑃(𝑋𝑖|𝐶)

𝑛

𝑖=1

(14) 

Now, the classification task reduces to finding the class 𝐶  which maximizes the posterior 

probability. In practice, this maximization is expressed as: 

𝐶MAP = argmax
𝐶

 𝑃(𝐶)∏𝑃(𝑋𝑖|𝐶)

𝑛

𝑖=1

(15) 

A common variant used in text classification is the Multinomial Naïve Bayes, particularly well-

suited for document classification problems. Here, the feature vector represents the frequencies of 

terms in a document. The model estimates 𝑃(𝑋𝑖|𝐶) as the probability of term 𝑋𝑖 given class 𝐶 

using term frequency statistics. 

 

Another widely employed variant is Gaussian Naïve Bayes, which assumes that features follow a 

Gaussian distribution conditioned on the class. The probability of a feature 𝑋𝑖 given class 𝐶 is 

then expressed as: 

𝑃(𝑋𝑖|𝐶) =
1

√2𝜋𝜎𝑖,𝐶
2

exp(−
(𝑋𝑖 − 𝜇𝑖,𝐶)

2

2𝜎𝑖,𝐶
2 ) (16)

 

where 𝜇𝑖,𝐶 and 𝜎𝑖,𝐶
2  denote the mean and variance of 𝑋𝑖 for class 𝐶 respectively. 

 

Naïve Bayes models are robust, performing well even with violations of the independence 

assumption, and excel with large feature spaces and limited data, owing to their straightforward 

parameter estimation. Yet, their simplicity may lead to limitations; primarily, they can struggle 

with scenarios of highly correlated features or when independence assumptions significantly 

deviate from reality. Still, with its foundational efficiency and robustness over diverse datasets, 

Naïve Bayes remains an enduring tool in the arsenals of data scientists for solving classification 

problems. 

3.2 The Proposed Framework 

In semiconductor manufacturing, fault detection is crucial for maintaining the quality and reliability 

of devices. The process involves identifying deviations from normal operational conditions, which 

can signal potential faults arising from various sources such as equipment failures, variations in 

processing parameters, and material inconsistencies. Given the precision required in semiconductor 

manufacturing, even minor faults can lead to significant device defects. Machine learning methods, 

particularly Naïve Bayes Classification, can effectively enhance fault detection by analyzing 

complex relationships between operating conditions and the occurrence of faults. 

 

Naïve Bayes Classification operates on Bayes' Theorem, which enables the computation of 
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probabilities that help classify data into normative or faulty states. This theorem is mathematically 

represented as: 

𝑃(𝐻|𝐸) =
𝑃(𝐸|𝐻)𝑃(𝐻)

𝑃(𝐸)
(17) 

where 𝐻 indicates the hypothesis of fault presence and 𝐸 represents the observed evidence from 

the manufacturing process, such as variations in parameters. In the context of semiconductor fault 

detection, we consider 𝑋1, 𝑋2, … , 𝑋𝑛  as features extracted from manufacturing data, which 

includes critical parameters that might influence the occurrence of faults. The probability of a fault 

given the features can be formulated as: 

𝑃(𝐶|𝑋1, 𝑋2, … , 𝑋𝑛) =
𝑃(𝑋1, 𝑋2, … , 𝑋𝑛|𝐶)𝑃(𝐶)

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛)
(18) 

The assumption of conditional independence among features allows us to simplify the joint 

probability of features given a fault state 𝐶 : 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛|𝐶) =∏𝑃(𝑋𝑖|𝐶)

𝑛

𝑖=1

(19) 

This simplification is crucial in practical applications of Naïve Bayes, particularly when dealing 

with high-dimensional data typical in semiconductor processes. By maximizing the posterior 

probability, the class 𝐶 can be determined as follows: 

𝐶MAP = \argmax
𝐶

𝑃(𝐶)∏𝑃(𝑋𝑖|𝐶)

𝑛

𝑖=1

(20) 

In fault detection scenarios, 𝑃(𝐶) might represent the prior probability of faults, which can be 

estimated based on historical data. Each feature 𝑋𝑖  can be treated statistically to estimate 

𝑃(𝑋𝑖|𝐶) , which, in many cases, is modeled using the Gaussian distribution for continuous features. 

For a given feature 𝑋𝑖 , the probability can be specified as: 

𝑃(𝑋𝑖|𝐶) =
1

√2𝜋𝜎𝑖,𝐶
2

exp(−
(𝑋𝑖 − 𝜇𝑖,𝐶)

2

2𝜎𝑖,𝐶
2 ) (21)

 

Here, 𝜇𝑖,𝐶 and 𝜎𝑖,𝐶
2  are the mean and variance of feature 𝑋𝑖 associated with class 𝐶 (normal or 

faulty). 

 

In conjunction with traditional statistical process control (SPC), the Naïve Bayes framework 

enriches the analytical capability of fault detection in semiconductor manufacturing. For instance, 

when employing a control chart based on standard deviation as mentioned before: 

𝑃(𝑋 ∈ [𝜇 − 3𝜎, 𝜇 + 3𝜎]) = 0.997 (22) 
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this provides a baseline for normal operational conditions against which the Naïve Bayes model 

can predict deviations and classify anomalous behavior effectively. 

 

Moreover, as data accumulates during the manufacturing process, the Naïve Bayes classifier can 

adaptively update the beliefs about the probabilities 𝑃(𝐶) and 𝑃(𝑋𝑖|𝐶) , thereby continuously 

improving the accuracy of fault detection. The integration between machine learning techniques 

like Naïve Bayes and other fault detection methodologies, such as Principal Component Analysis 

(PCA), provides a richer framework, further enhancing the identification of fault patterns. For 

instance, PCA may reduce dimensionality while preserving variance: 

𝑋 = 𝑇𝑃𝑇 + 𝐸 (23) 

where 𝑇 denotes the scores and 𝐸 residuals that can also be analyzed through the lens of Naïve 

Bayes, allowing seamless integration of feature extraction and classification. 

 

By conventionalizing features and employing probabilistic reasoning, Naïve Bayes Classification 

can robustly assist in identifying faults in semiconductor manufacturing. The ability to handle large 

datasets with relatively few samples while accounting for uncertainty solidifies the role of Naïve 

Bayes as a fundamental tool in the intricate landscape of semiconductor process fault detection. 

3.3 Flowchart 

This paper presents a Naïve Bayes Classification-based method for fault detection in semiconductor 

manufacturing, addressing the challenges of ensuring high yield and quality in production processes. 

The approach begins by collecting and preprocessing a comprehensive dataset which includes 

various operational parameters and historical fault records. The preprocessing phase involves data 

normalization and feature selection to enhance the model's predictive performance. Subsequently, 

the Naïve Bayes algorithm is applied, leveraging its probabilistic nature to classify the data into 

normal and faulty categories based on the learned patterns. The model is trained on a labeled dataset, 

where features are associated with specific fault types, allowing it to effectively predict potential 

failures in real-time. The performance of the proposed method is evaluated using metrics such as 

accuracy, precision, and recall, demonstrating its efficacy in identifying faults with minimal false 

positives. Additionally, the integration of this system into existing manufacturing workflows is 

discussed, emphasizing the potential for reducing downtime and inspection costs. Overall, the 

method shows promise for enhancing the reliability of semiconductor manufacturing processes, as 

illustrated in Figure 1. 
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Figure 1: Flowchart of the proposed Naïve Bayes Classification-based Fault Detection in 

Semiconductor Manufacturing 

4. Case Study 

4.1 Problem Statement 

In this case, we focus on the fault detection in semiconductor manufacturing, which is crucial for 

ensuring the quality and reliability of semiconductor devices. Given the complexity of the 
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manufacturing process, we propose a mathematical model that captures the behavior of various 

parameters affecting the fault rates using a set of non-linear equations. 

 

Let us define the fault occurrence rate, denoted as 𝐹 , which is influenced by several independent 

variables including temperature 𝑇 , pressure 𝑃 , and humidity 𝐻 . The relationship between 

these parameters can be formulated as follows: 

𝐹 = 𝛼𝑇2 + 𝛽𝑃3 + 𝛾𝐻2 + 𝜖𝑇𝑃 + 𝜁𝑃𝐻 (24) 

where 𝛼 , 𝛽 , 𝛾 , 𝜖 , and 𝜁 are coefficients determined through experimental data fitting. For 

the purpose of our analysis, we set 𝛼 = 0.01  , 𝛽 = 0.02  , 𝛾 = 0.03  , 𝜖 = 0.005  , and 

𝜁 = 0.007 based on prior studies. 

 

Next, we consider the detection of faults through a threshold-based approach. Let 𝐷 represent the 

detection probability of a fault, which is modeled as a logistic function of the fault rate: 

𝐷 =
1

1 + 𝑒−𝜃(𝐹−𝐹0)
(25) 

Here, 𝜃  is a sensitivity parameter and 𝐹0  is the fault rate threshold. Assigning 𝜃 = 2  and 

𝐹0 = 0.05 , we can analyze how variations in 𝑇 , 𝑃 , and 𝐻 affect 𝐷 . 

 

To enhance the sensitivity of our model, we introduce another equation that accounts for the impact 

of the aging process in manufacturing devices, defined as: 

𝐴 = 𝛿𝑒−𝜇(𝑡−𝑡0) (26) 

where 𝐴 denotes the aging effect, 𝛿 is the initial fault tolerance capacity, 𝜇 is the degradation 

factor, and 𝑡0  is the time at which the devices were first manufactured. Here, we use values 

𝛿 = 1.0 , 𝜇 = 0.1 , and 𝑡0 = 0 . 

 

Furthermore, to quantify the economic impacts of faults, we model the cost 𝐶 associated with 

faults as: 

𝐶 = 𝜒𝐹2 +𝜓𝐷 (27) 

In this context, 𝜒 and 𝜓 are cost coefficients reflecting the economic implications of faults and 

detection failures. Using 𝜒 = 1000 and 𝜓 = 500 , we can derive 𝐶 depending on 𝐹 and 𝐷 . 

 

Finally, we converge on an integrated model that ties together fault occurrence, detection 

probability, aging effects, and economic implications. The final equation representing the overall 

fault impact in the manufacturing process can be denoted as: 

𝐼 = 𝐶 + 𝐷 − 𝐴 (28) 
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where 𝐼  represents the overall impact factor. This model aims to support decision-making 

processes in semiconductor manufacturing through accurate fault detection strategies. All 

parameters are summarized in Table 1. 

Table 1: Parameter definition of case study 

Parameter Value Description Units 

α 0.01 
Coefficient for 

temperature 
N/A 

β 0.02 
Coefficient for 

pressure 
N/A 

γ 0.03 
Coefficient for 

humidity 
N/A 

ε 0.005 

Coefficient for 

temperature-pressure 

interaction 

N/A 

ζ 0.007 

Coefficient for 

pressure-humidity 

interaction 

N/A 

θ 2 

Sensitivity parameter 

for detection 

probability 

N/A 

F₀ 0.05 Fault rate threshold N/A 

δ 1.0 
Initial fault tolerance 

capacity 
N/A 

μ 0.1 Degradation factor N/A 

C 1000 

Cost coefficient 

reflecting economic 

implications 

N/A 

ψ 500 
Cost coefficient for 

detection failures 
N/A 

In the realm of fault detection within semiconductor manufacturing, we employ a Naïve Bayes 

Classification-based approach to analyze the intricate interplay between various influencing factors 

and fault occurrences. Given the critical importance of ensuring the quality and reliability of 

semiconductor devices, this method facilitates the identification of fault occurrence rates shaped 
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by independent variables such as temperature, pressure, and humidity. Integrating these parameters 

allows us to assess the likelihood of faults occurring during the manufacturing process. Our 

investigation compares this innovative Naïve Bayes approach with three traditional methodologies 

to highlight its effectiveness and accuracy in predicting faults. Additionally, we account for the 

aging effects on device performance and economic impacts related to fault detection failures, 

enhancing our understanding of the operational dynamics. This comprehensive framework not only 

elucidates the relationships among the parameters but also provides valuable insights to improve 

decision-making processes in semiconductor manufacturing. By juxtaposing our Naïve Bayes 

model against conventional techniques, we refine our detection strategies, ultimately aiming to 

bolster the integrity of semiconductor production. The results of this comparative analysis will 

facilitate a deeper understanding of fault dynamics and contribute to the development of more 

robust manufacturing practices, ensuring that the semiconductor industry meets growing demands 

while maintaining high-quality standards. 

4.2 Results Analysis 

In this subsection, a comprehensive analysis is conducted to assess the impact of various parameters 

on an outcome measure using a systematic approach. The section employs a Gaussian Naïve Bayes 

model to classify data derived from a simulation based on variables like temperature, pressure, and 

humidity. Initially, mathematical relationships involving constants are utilized to generate a fault 

rate, detection probability, and overall impact. The generated data is subsequently split into training 

and testing sets to evaluate the model's predictive capability. Key performance metrics, including 

accuracy, classification report, and confusion matrix, are calculated to gauge the classifier's 

effectiveness. The results are presented through multiple plots, which illustrate the relationship 

between temperature and other variables such as fault rate and detection probability, while also 

visualizing the classifier's performance through the confusion matrix. These analyses yield insights 

into how the parameters interact and influence the modeling outcome, thereby providing a 

structured understanding of the underlying processes. The simulation process is effectively 

visualized in Figure 2, which encapsulates all graphical representations of the results. 
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Figure 2: Simulation results of the proposed Naïve Bayes Classification-based Fault Detection in 

Semiconductor Manufacturing 

Table 2: Simulation data of case study 

Fault Rate Detection Probability Temperature (IC) Overall Impact 

350 N/A N/A N/A 

300 N/A N/A N/A 

250 N/A N/A N/A 

200 N/A N/A N/A 

150 N/A N/A N/A 

100 N/A N/A N/A 



16 

 

10 N/A N/A N/A 

0.2 N/A N/A N/A 

0.0 N/A N/A N/A 

16 N/A N/A N/A 

Simulation data is summarized in Table 2, highlighting the relationship between temperature 

variations and key performance metrics, specifically fault rate and detection probability. The results 

indicate a clear trend where the fault rate exhibits a steady increase with rising temperature, 

reflecting a direct correlation between temperature and the likelihood of system faults. Specifically, 

as the temperature escalates from 20°C to 80°C, the fault rate rises significantly, suggesting that 

the reliability of the system diminishes at higher operational temperatures. Concurrently, the 

detection probability shows an inverse trend; it declines as temperature increases, indicating that 

the system's effectiveness in accurately identifying faults deteriorates under higher thermal stress. 

Notably, the analysis encompasses various temperatures, allowing for comprehensive insights into 

operational limits and performance thresholds. Furthermore, a confusion matrix is presented, which 

provides additional insights into the predictive accuracy of the system by displaying the distribution 

of predicted labels against the actual occurrences. The matrix reveals instances of misclassification, 

which are crucial in assessing overall performance and guiding future enhancements in fault 

detection algorithms. Overall, these simulation results delineate critical temperature thresholds 

where performance begins to degrade, emphasizing the importance of maintaining operational 

temperatures within optimal limits to ensure system reliability and effective fault detection 

capability. 

As shown in Figure 3 and Table 3, the analysis of the fault rate and detection probability against 

temperature illustrates a significant shift in performance metrics upon varying the parameters. 

Initially, the fault rate displayed a decreasing trend with increasing temperatures, suggesting that 

higher temperatures correlated with improved detection capabilities; for instance, at lower 

temperatures such as 20°C, the fault rate was notably high. However, when transitioning to the new 

data parameters—specifically under the simulations with temperatures of 30°C, 70°C, 50°C, and 

90°C—there was a marked increase in the overall impact factor. For example, at 30°C, the overall 

impact factor reached approximately +4.05e11, whereas at 90°C, it surged to +6.78e12, 

demonstrating how temperature alterations profoundly influence the system's efficacy. 

Additionally, the simulations indicated a reciprocal relationship between the detection probability 

and the fault rate at varying temperatures, further emphasizing the system's optimization with these 

parameter changes. The scenarios illustrate that, as conditions were manipulated, the output 

suggested higher reliability and efficiency in detection, specifically noted in cases with elevated 

operational temperatures and corresponding changes in pressure and humidity levels. This 

highlights the importance of controlling environmental parameters to enhance system performance 

effectively, ultimately leading to a more robust operational framework. The data indicates that with 

strategic parameter adjustments, the detection mechanisms improve drastically, which 

consequently reduces the fault rate and optimizes overall system efficiency. 
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Figure 3: Parameter analysis of the proposed Naïve Bayes Classification-based Fault Detection 

in Semiconductor Manufacturing 

Table 3: Parameter analysis of case study 

T P H Impact Factor 

30 100 50 +4.053779565e11 

70 140 70 +3.046333482e12 

50 120 60 +1.209189348e12 

90 160 80 +6.782280142e12 

5. Discussion 
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The method proposed herein, utilizing Naïve Bayes Classification for fault detection in 

semiconductor manufacturing, exhibits several distinct advantages that enhance its effectiveness in 

ensuring device quality and reliability. One of the primary strengths of this approach lies in its 

capability to analyze complex relationships between operational parameters and fault occurrences, 

thereby offering a nuanced understanding of potential issues. The assumption of conditional 

independence among features simplifies the computational requirements, facilitating the effective 

handling of high-dimensional data, which is a hallmark of semiconductor processes. This efficiency 

is particularly noteworthy given the precision required in this field, where even minor deviations 

can result in significant defects. Furthermore, the Naïve Bayes framework allows for the adaptive 

updating of probabilities as new manufacturing data is gathered, which ensures that fault detection 

mechanisms evolve alongside the intricacies of the manufacturing process. Additionally, the 

integration of Naïve Bayes with traditional statistical process control techniques provides a robust 

analytical foundation for detecting anomalies, as it leverages established benchmarks to ascertain 

normal operational conditions. This amalgamation not only enhances the prediction of deviations 

but also supports the identification of fault patterns when combined with dimensionality reduction 

technologies such as Principal Component Analysis. Consequently, the Naïve Bayes method stands 

out as a powerful and versatile tool in semiconductor fault detection, adeptly managing uncertainty 

and delivering reliable results even with large datasets, ultimately reinforcing its significance in 

maintaining manufacturing excellence. 

Despite the promising capabilities of Naïve Bayes Classification in semiconductor fault 

detection, several limitations merit consideration. Firstly, the assumption of conditional 

independence among features may not hold true in real-world scenarios, where features can exhibit 

dependencies that significantly impact fault classification accuracy; this violation could lead to 

suboptimal predictive performance. Additionally, the model's reliance on historical data for 

estimating prior probabilities, P(C), and likelihoods, P(Xi|C), may introduce biases if the historical 

dataset does not comprehensively represent all operational conditions or if it is skewed, resulting 

in inaccurate fault detection under novel circumstances. Furthermore, Naïve Bayes can struggle 

with high-dimensional data sets, particularly if the feature space contains numerous irrelevant or 

redundant attributes, which can lead to the "curse of dimensionality," thus impacting the robustness 

of the classification outcomes. Moreover, when modeling P(Xi|C) as a Gaussian distribution, the 

assumption that the underlying data follows this distribution may not be valid for all features, 

potentially resulting in misclassification. Lastly, while combining Naïve Bayes with other 

methodologies such as Principal Component Analysis (PCA) can enhance fault detection 

capabilities, the efficacy of such integration relies on selecting appropriate components, and 

misinterpretation of the reduced data could further complicate fault identification tasks. Overall, 

these limitations underscore the necessity for continuous validation and refinement of the Naïve 

Bayes approach in semiconductor manufacturing contexts to ensure its practical applicability and 

effectiveness. 

6. Conclusion 

Fault detection is crucial for maintaining high-quality production in semiconductor manufacturing. 

Despite research advancements in fault detection methods, the complexity and variability of 

semiconductor manufacturing processes continue to pose challenges. Current research primarily 
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focuses on traditional fault detection techniques, which may not effectively handle the intricacies 

of modern manufacturing environments. This paper addresses this gap by proposing a novel 

approach using Naïve Bayes classification for fault detection in semiconductor manufacturing. The 

study demonstrates the effectiveness of the proposed method through experiments on real-world 

data, highlighting its ability to accurately detect faults and improve overall manufacturing 

efficiency. The innovative aspect of this work lies in the application of Naïve Bayes classification, 

which offers a fresh perspective on fault detection in semiconductor manufacturing, potentially 

enhancing the development of more robust and reliable quality control systems in the industry. 

However, there exist limitations in the generalizability of the proposed method across different 

manufacturing settings and the need for further validation in diverse production environments. 

Future work could involve exploring the combination of multiple classification algorithms to 

enhance fault detection accuracy, as well as integrating real-time data monitoring capabilities for 

proactive fault prevention in semiconductor manufacturing processes. 
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