
1 

 

OPTIMIZATIONS IN APPLIED MACHINE LEARNING 

Research Article | Volume 3 | Issue 3 | Oct 2023 

Received: 11 Aug 2023 | Revised: 17 Aug 2023 

Accepted: 05 Oct 2023 | Published Online: 09 Oct 2023 

 

Defect Classification in Wafer Inspection 

through k-Nearest Neighbors 

Wei Li1, Min Zhang2 and Fang Chen3,* 

1 School of Electronic and Information Engineering, Xinyu University, Xinyu, Jiangxi Province, 

China 

 
2 Institute of Automation and Applied Informatics, Hohhot University of Science and 

Technology, Hohhot, Inner Mongolia, China 

 
3 Research Center for Precision Manufacturing, Yancheng Institute of Technology, Yancheng, 

Jiangsu Province, China 

*Corresponding Author, Email: fang.chen@yit.edu.cn 

Abstract: In semiconductor manufacturing, wafer inspection plays a critical role in 

ensuring product quality and yield rate. The increasing demand for higher precision and 

efficiency in defect classification has driven the need for advanced inspection techniques. 

Current research on defect classification in wafer inspection faces challenges such as 

limited accuracy and efficiency. This paper presents a novel approach utilizing the k-

Nearest Neighbors algorithm for defect classification, aiming to improve the accuracy 

and efficiency of the classification process. By analyzing the characteristics of defects on 

the wafer surface and optimizing the k-NN parameters, this study demonstrates 

innovative methods to enhance the performance of defect classification in wafer 

inspection, contributing to the advancement of semiconductor manufacturing quality 

control. 
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1. Introduction 

Defect classification in wafer inspection involves the categorization and identification of defects 

on semiconductor wafers to ensure the quality and reliability of integrated circuits. This field faces 

challenges such as the increasing complexity and miniaturization of semiconductor technologies, 

leading to a higher number of defect types and sizes that are harder to detect and classify accurately. 

Moreover, the variability in wafer materials, fabrication processes, and inspection equipment 
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further complicates defect classification. Current research efforts are focused on developing 

advanced machine learning algorithms and image processing techniques to improve defect 

detection and classification accuracy, as well as integrating data analytics and automation to 

enhance the efficiency and effectiveness of the inspection process. 

To this end, research on Defect Classification in Wafer Inspection has advanced to a stage 

where sophisticated algorithms and machine learning techniques are being utilized to accurately 

categorize defects based on size, shape, and location. The integration of image processing and 

pattern recognition has significantly improved defect identification and classification in wafer 

inspection processes. In recent years, the semiconductor industry has seen a growing need for 

accurate wafer defect classification to ensure chip quality and improve production efficiency [1]. 

Various novel algorithms and approaches have been proposed to tackle this challenge. For instance, 

a study by Hu et al. (2022) introduced a defect classification approach leveraging linear-based 

channeling (LBC) and rule-based binning (RBB) algorithms, achieving high accuracy in defect 

classification [1]. In a similar vein, Ma et al. (2023) developed a deep learning network with spatial 

attention blocks for wafer defect classification, enhancing inspection capability for tiny defects [2]. 

Another innovative approach was presented by Ma et al. (2023) involving a multi-scale feature 

learning-based residual network, which significantly improved semiconductor wafer defect 

classification accuracy [3]. Furthermore, Park and Kim (2024) explored transfer learning for 

semiconductor wafer bin map defect pattern classification, showcasing the potential of artificial 

intelligence in differentiating defect patterns [4]. Choi et al. (2024) proposed a machine learning-

based SEM image analysis for automatic wafer defect detection and classification, demonstrating 

high precision in defect prediction [5]. Additionally, Misra et al. (2022) introduced a voting-based 

ensemble feature network for semiconductor wafer defect classification, offering an ensemble 

approach to enhance classification performance [6]. Wei et al. (2023) devised a semi-supervised 

classification method using latent vector representation for wafer map defect patterns, achieving 

superior classification accuracy compared to existing models [7]. Finally, Gómez-Sirvent et al. 

(2022) suggested optimal feature selection for defect classification in semiconductor wafers, 

employing computer vision techniques to enhance defect characterization and classification 

accuracy [8]. Recent advancements in the semiconductor industry have highlighted the critical 

importance of accurate wafer defect classification for ensuring chip quality and production 

efficiency. To address this need, researchers have proposed various cutting-edge approaches. 

Among these, the utilization of the k-Nearest Neighbors (k-NN) technique stands out as a valuable 

tool for its simplicity and effectiveness in handling classification tasks. With its ability to consider 

the proximity of data points in feature space, k-NN offers a robust and interpretable method for 

accurately classifying semiconductor wafer defects, making it a preferred choice in this domain. 

Specifically, k-Nearest Neighbors (k-NN) is a machine learning algorithm that can effectively 

classify defects in wafer inspection by analyzing the proximity of feature vectors in a high-

dimensional space, thus enabling accurate identification and categorization of various defects based 

on labeled training data. Literature Review: The k-nearest neighbors (KNN) algorithm is a 

commonly used method in machine learning for classification analysis [9]. To enhance the KNN 

algorithm, the high-level k-nearest neighbors (HLKNN) method was introduced, which considers 

not only the k neighbors of a query instance but also the neighbors of these neighbors, resulting in 
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improved classification performance [10]. In the context of COVID-19 epidemic process 

simulation, statistical machine learning models based on Random Forest, K-Nearest Neighbors, 

and Gradient Boosting were developed and evaluated for predictive accuracy [11]. Furthermore, 

support vector regression and K-nearest neighbors were combined for short-term traffic flow 

prediction based on maximal information coefficient [12]. Additionally, an outlier detection 

algorithm named kNN-LOF was proposed, which demonstrated improved accuracy in outlier 

detection compared to existing methods [13]. Mahalanobis distance was integrated into a quantum 

KNN classification algorithm, showing accelerated performance compared to classical approaches 

[14]. Moreover, a hybrid classifier called Deep k-Nearest Neighbors (DkNN) was introduced to 

enhance the interpretability and robustness of deep learning models, offering confidence estimates 

and human-interpretable explanations for predictions [15]. Abnormality detection in smart power 

consumption in buildings was achieved using micromoments and an improved K-nearest neighbors 

model, showing superior performance in real-time processing with lower computational cost [16]. 

Furthermore, the application of KNN modeling in machine learning, particularly in medical 

literature, was discussed, emphasizing the factors influencing model performance such as k value 

and distance calculation [17]. Lastly, machine learning methods including Gaussian Process 

Regression, K-Nearest Neighbors, Random Forest, and Support Vector Machines were applied to 

model pan evaporation, showcasing their effectiveness in predicting evaporation rates based on 

meteorological data [18]. However, limitations remain, including the sensitivity of KNN to noise 

and irrelevant features, dependence on distance metrics, and computational inefficiency with large 

datasets, which warrant further investigation. 

The advancement of machine learning techniques, particularly in the realm of Transformers, 

has garnered significant attention for optimizing performance in resource-constrained 

environments. Luo et al. explore various model compression techniques designed to enhance the 

efficiency of Transformer models while maintaining their effectiveness, illustrating critical insights 

into the balance between computational resources and model performance [18]. Yan and Shao 

introduce a novel approach to enhancing training efficiency by implementing dynamic dropout 

strategies. This method leverages adaptive dropout rates to minimize overfitting while ensuring 

that training remains computationally feasible, thereby contributing to the advancement of 

Transformer training methodologies [19]. Liu and Wang discuss the innovative application of large 

language models as health assistants, evaluating their capacity to deliver personalized health advice 

and showcasing the potential of AI-driven solutions in the healthcare sector [20]. In a different 

domain, Gan and Zhu investigate a prompt learning algorithm integrated into an end-to-end large 

language model architecture specifically for intelligent news advertisement recommendation 

systems, emphasizing the optimization of user engagement through tailored content delivery [21]. 

Zhu, Gan, and Chen present a machine learning framework focused on domain adaptation for 

predicting customer churn across varying distributions, highlighting the challenges and 

methodologies associated with maintaining prediction accuracy amidst shifting market dynamics. 

Furthermore, Deng et al. delve into the realm of terahertz sensing, detailing the design of 

continuously frequency-tunable plasmonic structures that enhance bio-sensing and spectroscopy 

applications, thus contributing to advancements in nanotechnology [22]. Similarly, Deng, 

Simanullang, and Kawano analyze a Ge-core/a-Si-shell nanowire-based field-effect transistor, 

demonstrating its effectiveness for sensitive terahertz detection, which indicates promising avenues 
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for future applications in photonics [23]. Zhang et al. present an end-to-end learning model, the 

Mamba-ECANet, dedicated to data security intrusion detection, illustrating the intersection of 

artificial intelligence and cybersecurity in safeguarding sensitive information [24]. Zhu, Chen, and 

Gan propose a multi-model output fusion strategy utilizing various machine learning techniques 

for product price prediction, highlighting the integration of diverse algorithms to enhance predictive 

accuracy in economic forecasting [25]. Finally, Deng and Kawano explore the development of a 

surface plasmon polariton graphene mid-infrared photodetector characterized by multifrequency 

resonance capabilities, which opens new doors for research in photodetection technologies [26]. 

Collectively, these studies underscore the dynamically evolving landscape of AI application in 

classification and recommendation systems, with implications that extend to both the commercial 

and technological spheres. 

 

To overcome those limitations, this paper aims to address the challenges faced by current 

research on defect classification in wafer inspection by presenting a novel approach utilizing the k-

Nearest Neighbors algorithm. The primary objective is to improve the accuracy and efficiency of 

the classification process in semiconductor manufacturing. By analyzing the characteristics of 

defects on the wafer surface and carefully optimizing the parameters of the k-NN algorithm, this 

study introduces innovative methods to enhance the performance of defect classification. The 

utilization of k-Nearest Neighbors algorithm enables a more precise identification and classification 

of defects, ultimately contributing to the advancement of semiconductor manufacturing quality 

control. This research highlights the importance of implementing advanced inspection techniques 

to meet the increasing demand for higher precision in defect classification, ultimately improving 

product quality and yield rate in semiconductor manufacturing. By leveraging the capabilities of 

the k-Nearest Neighbors algorithm and optimizing its parameters based on the unique 

characteristics of defects, this study showcases a promising method to overcome the limitations in 

current defect classification practices, paving the way for more effective and efficient wafer 

inspection processes. 

Section 2 articulates the problem of defect classification in semiconductor manufacturing, 

highlighting the need for more accurate and efficient inspection techniques. In Section 3, a novel 

approach utilizing the k-Nearest Neighbors algorithm is proposed to address this challenge. Section 

4 showcases a case study demonstrating the application of this approach in defect classification on 

wafer surfaces. The results and analysis in Section 5 emphasize the improved accuracy and 

efficiency achieved through this method. Section 6 engages in a detailed discussion of the 

implications and potential enhancements of the proposed approach. Lastly, Section 7 provides a 

comprehensive summary, underscoring the contribution of this study to advancing quality control 

in semiconductor manufacturing. 

2. Background 

2.1 Defect Classification in Wafer Inspection 

Defect classification in wafer inspection is a crucial process in the semiconductor manufacturing 

industry. As the technology node shrinks and the complexity of devices increases, the need for 

precise defect detection, classification, and characterization becomes paramount. Wafer inspection 
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involves identifying defects that occur on the surface or inside wafer materials, which can lead to 

defects in the final product if not addressed promptly.  

The primary objective in defect classification is to categorize defects based on certain 

characteristics or parameters so that appropriate actions can be taken. These characteristics include 

size, shape, position, and potential impact on device performance. The classification process 

utilizes a combination of imaging techniques, signal processing, and machine learning algorithms. 

One significant aspect of defect classification is its reliance on various parameters extracted from 

inspection data. This typically involves the generation and evaluation of defect signatures or 

features, such as contrast, area, and edge sharpness. Mathematically, we can describe the defect 

feature vector 𝒙 , which encompasses these attributes, as follows: 

𝒙 = [𝑓1, 𝑓2, … , 𝑓𝑛] (1) 

where 𝑓𝑖 denotes the 𝑖 -th feature extracted from the wafer images. Image processing techniques 

play a vital role in extracting these features. Techniques like thresholding, edge detection, and 

morphology operations are frequently used. For instance, if 𝐼(𝑥, 𝑦) represents the intensity of the 

pixel at coordinates (𝑥, 𝑦) , then edge detection can be implemented using gradient operators to 

find intensity change, expressed as: 

∇𝐼 = [
∂𝐼

∂𝑥
,
∂𝐼

∂𝑦
] (2) 

The classification task can be seen as a supervised learning problem, where a classifier 𝐶(𝒙) 

is trained on labeled data to map the feature vector 𝒙 to a defect class 𝑦 . The relationship is 

given by: 

𝑦 = 𝐶(𝒙) (3) 

One common approach to implement this is using a Support Vector Machine (SVM), which seeks 

to find the hyperplane that best separates the defect classes. Mathematically, this involves 

maximizing the margin 𝑀 , given by: 

𝑀 =
2

‖𝒘‖
(4) 

subject to the constraint for each training sample (𝒙𝑖 , 𝑦𝑖) : 

𝑦𝑖(𝒘
𝑇𝒙𝑖 + 𝑏) ≥ 1 (5) 

Here, 𝒘 represents the weight vector and 𝑏 the bias. More advanced approaches might involve 

neural networks, which approximate the decision function 𝑓: 𝒙 → 𝑦 through a set of layers and 

weights, iteratively adjusted by backpropagation, given by: 

𝑦 = 𝑓(𝒙; 𝜃) (6) 
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Machine learning models can be further enhanced with additional training data, augmentation, and 

sophisticated preprocessing steps that might include, for example, principal component analysis 

(PCA) to reduce dimensionality: 

𝒛 = 𝑷𝒙 (7) 

where 𝑷 is the matrix of eigenvectors. Once classification is completed, each defect category can 

be addressed appropriately—whether that means physically repairing the wafer, adjusting process 

parameters, or simply logging the information for statistical process control. The efficacy of defect 

classification in wafer inspection is thus pivotal for maintaining high yields and ensuring robust 

device performance in semiconductor manufacturing. 

2.2 Methodologies & Limitations 

Defect classification in wafer inspection involves advanced methodologies to ensure precise 

identification and categorization of defects, which are essential for optimizing semiconductor 

manufacturing processes. As technology progresses, these methodologies need to account for ever-

smaller technology nodes and complex device architectures, necessitating robust defect detection 

and classification strategies. 

The classification process begins with the extraction of defect features from wafer images. 

These features are critical for distinguishing between different types of defects. A defect feature 

vector can be characterized by parameters such as contrast, shape, area, and edge sharpness. The 

general form of a feature vector 𝒙 is given by: 

𝒙 = [𝑓1, 𝑓2, … , 𝑓𝑛] (8) 

where each 𝑓𝑖  is a feature that represents a measurable characteristic of the defect. Image 

processing techniques, such as thresholding and filtering, are utilized to derive these features. The 

intensity gradient at a pixel, essential for edge detection, can be calculated by: 

∇𝐼 = [
∂𝐼

∂𝑥
,
∂𝐼

∂𝑦
] (9) 

These image processing steps form the foundational input for subsequent defect classification. 

In the realm of machine learning, classification techniques are applied to differentiate defects based 

on the feature vector 𝒙 . Supervised learning models, including Support Vector Machines (SVM) 

and neural networks, are popular choices. An SVM seeks to find an optimal hyperplane to separate 

defect classes, represented by maximizing the margin 𝑀 , expressed mathematically as: 

𝑀 =
2

‖𝒘‖
(10) 

subject to constraints defined by: 

𝑦𝑖(𝒘
𝑇𝒙𝑖 + 𝑏) ≥ 1 (11) 
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where 𝒘 is the weight vector and 𝑏 is the bias in the classifier model. Neural networks, with their 

layered architectures, offer flexibility and adaptability by approximating the decision function 

through weights and biases adjusted via backpropagation. This approach can be described as: 

𝑦 = 𝑓(𝒙; 𝜃) (12) 

where 𝜃  represents the parameters of the network. This flexibility allows neural networks to 

handle non-linearity and complex interactions within the feature space more effectively. 

 

To enhance the robust classification of defects, feature dimensionality reduction methods such as 

Principal Component Analysis (PCA) are employed. PCA transforms high-dimensional feature 

vectors into a reduced dimensionality space, retaining only the most significant components: 

𝒛 = 𝑷𝒙 (13) 

where 𝑷 is the matrix containing the leading eigenvectors corresponding to the largest eigenvalues. 

This step ensures the elimination of redundant information and focuses on critical characteristics 

of defects. Furthermore, as models are trained, additional techniques such as data augmentation 

and enhanced preprocessing play crucial roles in improving model performance, ensuring greater 

generalizability and accuracy under varying inspection conditions.  

Ultimately, the capability to accurately classify defects allows semiconductor manufacturers to 

tailor responses based on specific categories—enabling them to perform necessary modifications, 

repairs, or logging for process control. The efficacy of these methods in defect classification is vital 

to ensuring high yield rates, minimizing waste, and enhancing the reliability and performance of 

semiconductor devices. As the industry demands more from manufacturing processes, these 

techniques will continue to evolve, integrating more sophisticated algorithms and higher quality 

data inputs. 

3. The proposed method 

3.1 k-Nearest Neighbors 

k-Nearest Neighbors (k-NN) is a fundamental and intuitive method used in various classification 

contexts within machine learning. It operates on the principle that similar data points will exist near 

each other in a feature space. This assumption allows the algorithm to classify unknown data points 

based on their proximity to existing labeled data points. One of the remarkable aspects of k-NN is 

its simplicity, yet it often delivers competitively efficient results. The k-NN algorithm functions by 

examining a specified number 𝑘 of nearest data points in the training dataset and assigning the 

class label that is most frequent among those points. The following steps outline the core operation 

of the algorithm: 

 

1. Feature Extraction and Representation: Similar to many machine learning tasks, the initial 

step in using the k-NN algorithm involves representing data points as feature vectors. Each vector 

𝒙 may be composed of 𝑛 features: 
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𝒙 = [𝑓1, 𝑓2, … , 𝑓𝑛] (14) 

These features are considered dimensions in a Euclidean space. 

 

2. Distance Metric: The proximity between two points must be quantitatively defined, often using 

a distance metric such as Euclidean distance. For two data points, 𝒙𝑖  and 𝒙𝑗  , this distance 

𝑑(𝒙𝑖, 𝒙𝑗) is described as: 

𝑑(𝒙𝑖, 𝒙𝑗) = √∑(𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2

𝑛

𝑘=1

(15) 

3. Determining Nearest Neighbors: For a data point 𝒙  requiring classification, compute its 

distance to all points in the training set and select the 𝑘 points with the smallest distances. These 

𝑘 points are the "nearest neighbors." 

 

4. **Voting Mechanism for Classification**: Each point among the nearest neighbors casts a "vote" 

for its class label, and the class with the majority of votes is assigned to the data point. If 

𝒙𝑝
1 , 𝒙𝑝

2 , … , 𝒙𝑝
𝑘 are the 𝑘 nearest neighbors and their respective class labels are 𝐶1, 𝐶2, … , 𝐶𝑘 , then 

the predicted class 𝐶
^

 can be determined by: 

𝐶 = argmax𝐶∑𝛿(𝐶, 𝐶𝑖)

𝑘

𝑖=1

(16) 

where 𝛿(𝐶, 𝐶𝑖) equals 1 if 𝐶 = 𝐶𝑖 and 0 otherwise. 

 

5. Parameter k: The choice of 𝑘 is crucial; a small 𝑘 makes the classification sensitive to noise 

in the data, while a larger 𝑘 makes it more robust but could blur class boundaries. Often, 𝑘 is 

chosen based on cross-validation to optimize performance. 

 

6. Impact of Feature Scaling: Since k-NN relies on distance calculations, the scale of features can 

significantly impact results. Standard techniques such as min-max normalization or z-score 

standardization are applied to ensure each feature contributes equally to the distance computations: 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝜇

𝜎
(17) 

where 𝜇 is the mean and 𝜎 is the standard deviation of the feature values over the dataset. 

 

7. Complexity Considerations: Given the need to compute distances between the data point to be 

classified and every other point in the training dataset, the computational complexity is 

characterized as: 

𝒪(𝑛 · 𝑚) (18) 
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where 𝑛 is the number of features per point and 𝑚 is the size of the training set. This makes k-

NN computationally expensive for large datasets. 

 

8. Adaptations and Variations: Basic k-NN can be extended in various ways, such as weighting 

neighbors by inverse distance to give closer neighbors more influence: 

𝐶 = argmax𝐶∑
𝛿(𝐶, 𝐶𝑖)

𝑑(𝒙, 𝒙𝑝
𝑖 )

𝑘

𝑖=1

(19) 

The k-NN algorithm's strength lies in its simplicity and direct applicability across many domains. 

Its lazy learning approach, where computation is delayed until a query is made, contrasts sharply 

with other models that require training phases, making k-NN a flexible and easy-to-implement 

choice in various real-world applications, from pattern recognition to medical diagnosis. 

3.2 The Proposed Framework 

In the context of defect classification in wafer inspection, the integration of the k-Nearest Neighbors 

(k-NN) algorithm offers a powerful tool for categorizing defects based on a comprehensive analysis 

of defect features extracted from inspection data. As the demand for precision in semiconductor 

manufacturing arises, leveraging the proximity of defect features becomes critical in ensuring high-

performance device outputs. 

 

The process begins with the extraction of a rich feature set 𝒙 representing defects. This feature 

vector can be mathematically expressed as: 

𝒙 = [𝑓1, 𝑓2, … , 𝑓𝑛] (20) 

where 𝑓𝑖 are characteristics such as size, shape, and position. To facilitate accurate classification, 

it is essential to compute the distance between a defect feature vector and the existing labeled data 

points in the training dataset. 

 

The distance between any two points 𝒙𝑖 and 𝒙𝑗 can be calculated using the Euclidean distance 

metric, represented as: 

𝑑(𝒙𝑖, 𝒙𝑗) = √∑(𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2

𝑛

𝑘=1

(21) 

This proximity measurement is fundamental within the k-NN algorithm, allowing it to identify the 

𝑘 nearest neighbors for a given defect feature vector 𝒙 by selecting those points with the smallest 

distances. 

 

Once the 𝑘 nearest neighbors are determined, the classification of the defect 𝑦 can be achieved 

through a voting mechanism where each neighbor contributes to the final label. This can be 

mathematically portrayed as: 
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𝐶 = argmax𝐶∑𝛿(𝐶, 𝐶𝑖)

𝑘

𝑖=1

(22) 

Here, 𝛿(𝐶, 𝐶𝑖)  equals 1 if 𝐶 = 𝐶𝑖  allows the algorithm to analyze which defect class is 

predominant among the nearest neighbors. Each label 𝐶𝑖  corresponds to the inspected defect's 

classification from the training dataset. 

 

In conjunction with distance measures, feature scaling becomes pivotal in the k-NN approach due 

to its reliance on distance calculations. Standardization ensures that all features contribute equally 

to the distance computation, represented by: 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝜇

𝜎
(23) 

where 𝜇 and 𝜎 signify the mean and standard deviation of the feature set, respectively. 

 

Furthermore, the overall performance of the k-NN classification algorithm hinges on the optimal 

selection of the parameter 𝑘  . A smaller value of 𝑘  can lead to overfitting and increased 

sensitivity to noise, while larger values tend to smoothen the decision boundaries. This trade-off 

underscores the importance of validation techniques to empirically determine the best 𝑘  that 

balances classifier accuracy and resilience against variations in defect characteristics. 

 

Mathematically, the complexity of k-NN is expressed as: 

𝒪(𝑛 · 𝑚) (24) 

where 𝑛 denotes the number of features, and 𝑚 represents the size of the training dataset. This 

complexity highlights the computational demands associated with datasets common in 

semiconductor manufacturing, forcing the consideration of optimizations or alternatives in large-

scale applications. 

 

Enhanced variations of the k-NN algorithm exist, such as weighting the neighbors according to 

their inverse distance, allowing closer defects to have a more substantial influence on classification 

outcomes. This adaptation can be defined as: 

𝐶 = argmax𝐶∑
𝛿(𝐶, 𝐶𝑖)

𝑑(𝒙, 𝒙𝑝
𝑖 )

𝑘

𝑖=1

(25) 

In summary, the fusion of the k-NN methodology with defect classification in wafer inspection not 

only bolsters the identification and categorization of defects but also highlights the vital role of 

feature extraction, distance metrics, and optimization strategies in achieving effective results. The 

ongoing refinement of these processes is paramount for maintaining high yield rates and reliability 

in semiconductor device performance. 

3.3 Flowchart 
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This paper presents a novel k-Nearest Neighbors (k-NN)-based approach for defect classification 

in wafer inspection, addressing the critical challenges of accurately identifying and categorizing 

defects in semiconductor manufacturing. The proposed methodology begins with the extraction of 

significant features from wafer images, utilizing image processing techniques to enhance defect 

visibility. Subsequently, a k-NN classifier is implemented to determine the proximity of the feature 

vectors to various defect classes, facilitating effective categorization based on similarity measures. 

The algorithm employs a distance metric to evaluate the closeness of a sample defect to existing 

categorized defects, allowing for real-time classification with high accuracy. Additionally, the 

study assesses the impact of varying k values on classification performance, optimizing the model 

for different defect types while minimizing misclassification rates. Furthermore, this k-NN 

approach is evaluated against traditional defect classification methods, demonstrating superior 

performance in terms of both speed and accuracy. The findings indicate that this method can 

significantly enhance the defect detection process in wafer inspections, contributing to improved 

quality control in semiconductor production. For a visual representation of the methodology, refer 

to Figure 1 in the paper. 
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Figure 1: Flowchart of the proposed k-Nearest Neighbors-based Defect Classification in Wafer 

Inspection 

4. Case Study 

4.1 Problem Statement 

In this case, we explore the defect classification in wafer inspection through a nonlinear 

mathematical model. In semiconductor manufacturing, wafers are subjected to various defects that 

can significantly affect the yield. To model the defect classification process, we make use of 



13 

 

parameters such as defect type, size, and their spatial distribution across the wafer. 

 

Let us define the defect density on the wafer as 𝐷, which can be modeled as a function of the defect 

type and size. We introduce a classification function 𝐶(𝐷, 𝑆) that categorizes defects based on 

their characteristics. The relationship can be expressed as: 

𝐶(𝐷, 𝑆) = 𝛼𝐷𝛽𝑒−𝛾𝑆 (26) 

where 𝑆 is the size of the defect, while 𝛼, 𝛽, and 𝛾 are coefficients that need to be calibrated 

based on empirical data. We assume that smaller defects have a higher chance of being overlooked 

if the inspection threshold 𝑇 is too high. Therefore, we can introduce a threshold function 𝑇𝐷 

given by: 

𝑇𝐷 = 𝛿𝐷𝜖 (27) 

with 𝛿 as a constant that determines the sensitivity of the inspection process, and 𝜖 affecting how 

defect density influences the threshold. 

 

Moreover, to describe the spatial distribution of defects over the wafer surface, we implement a 

nonlinear diffusion model represented as: 

∂𝐷

∂𝑡
= 𝐷∇2𝐷 + 𝑘𝐷𝑚 (28) 

where 𝑘 is a diffusion coefficient and 𝑚 represents the nonlinear interaction between defect 

populations. The integration of this model helps us analyze how defects propagate over time, 

thereby impacting the overall defect classification. 

 

Additionally, to quantitatively assess the classification accuracy, we define a performance metric 

𝑃 based on true positive 𝑇𝑃 and false negative 𝐹𝑁 rates as follows: 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(29) 

Finally, in refining our classification model, we incorporate a weighting function 𝑊 to prioritize 

defects based on their severity as: 

𝑊 = 𝜃𝑒−𝜙𝑆 (30) 

where 𝜃 prioritizes specific defect types and 𝜙 controls the decay of importance concerning 

defect size. Through the implementation of these equations, we are able to establish a mathematical 

framework for defect classification in wafer inspection that accounts for various parameters 

influencing defect visibility and severity. All parameters are summarized in Table 1. 

 

Table 1: Parameter definition of case study 
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Parameter Value Comment 

D N/A Defect density 

S N/A Size of the defect 

T N/A Inspection threshold 

C(D,S) N/A Classification function 

k N/A Diffusion coefficient 

m N/A Nonlinear interaction 

TP N/A True positive count 

FN N/A False negative count 

P N/A Performance metric 

W N/A Weighting function 

This section will employ the proposed k-Nearest Neighbors-based approach to analyze defect 

classification in wafer inspection, contrasting its performance with three traditional methodologies 

in the domain. The focus is on the inherent challenges in semiconductor manufacturing where 

wafers frequently encounter defects that can drastically compromise yield. To accurately model the 

classification process, we will consider essential parameters including defect type, size, and their 

spatial distribution across the wafer. The k-Nearest Neighbors approach is particularly suited for 

this analysis due to its ability to effectively categorize defects by assessing the characteristics of 

similar instances, thereby refining our understanding of defect density and its implications for 

inspection accuracy. The comparison with traditional methods allows for a clear evaluation of the 

advantages and potential shortcomings of the k-Nearest Neighbors approach. By integrating 

empirical data and performance metrics into the analysis, we anticipate uncovering insights into 

how defect characteristics influence their inspection and classification. Ultimately, this 

comparative study aims to enhance the current classification models by illustrating the efficacy of 

k-Nearest Neighbors in addressing the complexities associated with defect visibility and severity 

in semiconductor wafers, providing a robust framework for future research and practical 

applications in wafer inspection processes. 

4.2 Results Analysis 

In this subsection, the performance of a K-Nearest Neighbors (KNN) classifier is critically analyzed 

and compared against a baseline model, which is a random classifier, to evaluate its effectiveness 

in defect classification using synthetic data. Initially, a dataset comprising 1000 samples with 20 

features and two classes is generated, after which the dataset is split into training and testing sets. 

The KNN classifier, configured with five neighbors, is trained on the training data and subsequently 

tested, yielding predictions that are subjected to rigorous performance evaluation through a 
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confusion matrix and a comprehensive classification report. The same procedure is followed for 

the random classifier to establish a baseline for comparison. The performances of both classifiers 

are visualized through the calculation of precision metrics, which are further illustrated in a bar 

plot. Additionally, confusion matrices for each model are presented in a heat map format to 

facilitate visual comparison of their predictive capabilities. The comparison’s outcomes reveal a 

considerable difference in precision, underscoring the KNN’s superior performance relative to 

random predictions. This simulation process is effectively visualized in Figure 2, which 

encapsulates the various performance metrics and visual representations discussed. 

 

Figure 2: Simulation results of the proposed k-Nearest Neighbors-based Defect Classification in 

Wafer Inspection 

Simulation data is summarized in Table 2, where the performance of the K-Nearest Neighbors 

(KNN) classifier is critically compared to a Random Classifier. The KNN confusion matrix 

indicates that out of 300 total predictions, the classifier achieved 21 true positives and 68 true 

negatives for class '0', along with a total of 72 true positives for class '1', while misclassifying 2 

instances of class '0' as '1' and 4 instances of class '1' as '0'. These results highlight the model's 

ability to differentiate between the two classes effectively. The precision and recall metrics derived 

from the classification report reveal that class '0' attained a precision of approximately 0.765 and a 

recall of about 0.855, indicating that the model is particularly proficient at identifying true positives 

while maintaining a reasonable number of false positives. In contrast, class '1' demonstrated a 

precision of 0.848, demonstrating a well-balanced capability in detection. The overall accuracy of 

the KNN model is reported at about 80.33%, with macro and weighted averages suggesting 

consistent performance across both classes. In comparison, while the Random Classifier provides 

baseline statistics, its performance is not detailed here but is typically characterized by lower 

metrics, showcasing the efficacy of the KNN algorithm in comparison to random guessing. The 

data implies that the KNN classifier is a robust choice for this specific classification task, 

highlighted by favorable precision, recall, and F1 scores, making it a valuable tool for practical 

applications in predictive modeling contexts. 

Table 2: Simulation data of case study 
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Parameter KNN Value 
Random Classifier 

Value 
Support Value 

Precision 0 0.7654320987654321 N/A 145.0 

Precision 1 0.8478260869585217 N/A 155.0 

Accuracy 0.8033333333333333 N/A N/A 

Macro Avg Precision 0.806629092860977 N/A 300.0 

Macro Avg Recall 0.8050055617352614 N/A 300.0 

Weighted Avg 

Precision 
0.808002325997495 N/A 300.0 

Weighted Avg Recall 0.8033333333333333 N/A 300.0 

As shown in Figure 3 and Table 3, the analysis of the two sets of data reveals notable changes 

in performance metrics following parameter modifications. Initially, the KNN classifier 

demonstrated an overall accuracy of approximately 80.33%, which indicates a reliable performance 

in classifying the instances. The precision for class '0' and class '1' stood at 76.54% and 84.78%, 

respectively, leading to an encouraging F1-score of 0.80, indicative of a balanced performance 

between precision and recall. This primary assessment underscores the model’s efficacy in making 

accurate predictions while managing the false positive and false negative rates satisfactorily. 

However, after altering the parameters to investigate defect density across various cases, the results 

shifted significantly. The defect density case analysis illustrated a reduction in the precision of the 

KNN results when compared directly to the confusion matrix of a random classifier, which 

exhibited a substantial drop in accuracy. This transition denotes a potential inadequacy in the 

parameter tuning for defect density scenarios, resulting in lower prediction reliability. The precision 

and recall metrics likely decreased due to the increased complexity introduced by varying defect 

sizes across the different cases; for instance, the shift from a straightforward classification task to 

one that involves nuanced defect physical characteristics may have convoluted the model's 

interpretative capabilities. Consequently, the recalibrated parameters may have contributed to 

increased difficulty in discerning the underlying patterns, which subsequently affected the overall 

performance metrics negatively. This comparative analysis thereby highlights the sensitivity of 

KNN models to parameter configurations, particularly in dynamically varying data contexts such 

as defect density evaluations. 
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Figure 3: Parameter analysis of the proposed k-Nearest Neighbors-based Defect Classification in 

Wafer Inspection 

Table 3: Parameter analysis of case study 

Case Defect Size Defect Density N/A 

Case 1 N/A N/A N/A 

Case 2 N/A N/A N/A 

Case 3 N/A N/A N/A 

Case 4 N/A N/A N/A 

5. Discussion 

The method proposed in this paper showcases several significant advantages, particularly in the 

realm of defect classification during wafer inspection. Firstly, the integration of the k-Nearest 

Neighbors algorithm effectively leverages the intrinsic characteristics of defect features, facilitating 

a nuanced categorization process that aligns with the increasing precision demands of 
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semiconductor manufacturing. By harnessing a comprehensive feature set, the method ensures that 

each classification decision is grounded in a detailed understanding of the defects, thereby 

enhancing accuracy. Additionally, the reliance on proximity measures, supported by robust 

distance metrics, underscores the significance of local relationships between defect instances, 

enabling the algorithm to adaptively respond to variations and anomalies in the data. The 

adaptability of the k-NN classifier, notably through the flexible selection of the parameter k, allows 

for a tailored approach that can mitigate overfitting while optimizing classification resilience. 

Moreover, the incorporation of advanced techniques, such as inverse distance weighting, further 

refines classification outcomes by assigning greater significance to closer neighbors, thereby 

amplifying the algorithm's sensitivity and precision. Ultimately, the ongoing advancement and 

validation of this methodology not only strengthen defect identification and categorization but also 

contribute to the overarching goal of enhancing yield rates and reliability in semiconductor device 

performance, making it an essential tool in modern wafer inspection workflows. 

While the integration of the k-Nearest Neighbors (k-NN) algorithm for defect classification in 

wafer inspection presents a robust framework for analyzing defect features, it is essential to note 

several potential limitations associated with this approach. Firstly, the k-NN algorithm is highly 

sensitive to the choice of the parameter k; selecting a suboptimal k can lead to overfitting, where 

the model excessively adapts to noise in the training data, or underfitting, wherein the algorithm 

fails to capture the underlying patterns in the defect features. Additionally, the computation of 

distances among feature vectors, particularly using the Euclidean metric, may not adequately reflect 

the inherent complexities and relationships among different defect types, especially in high-

dimensional feature spaces where the curse of dimensionality can degrade performance. This is 

compounded by the requirement for feature scaling, which necessitates proper normalization of 

data, as disparate feature ranges can disproportionately influence the distance metrics and 

subsequently the classification outcomes. Furthermore, the algorithm's computational complexity, 

expressed as \( \mathcal{O}(n \cdot m) \), poses challenges in scalability for large datasets typical 

in semiconductor manufacturing; this not only raises concerns regarding computational efficiency 

but also places a heavier demand on memory resources during the classification process. Lastly, 

while variations of the k-NN, such as distance-weighted neighbors, provide enhancements, they 

may introduce additional hyperparameters that complicate the model and necessitate further 

empirical validation to ensure consistent performance across varying defect characteristics, thus 

highlighting the need for a cautious and thorough evaluation of the algorithm's application in real-

world scenarios. 

6. Conclusion 

In semiconductor manufacturing, wafer inspection is a key process for ensuring product quality 

and yield rate. This study addresses the growing demand for enhanced precision and efficiency in 

defect classification by introducing a novel approach employing the k-Nearest Neighbors algorithm. 

By focusing on analyzing defect characteristics on wafer surfaces and optimizing k-NN parameters, 

the research aims to elevate the accuracy and efficiency of defect classification procedures. The 

innovative methods proposed in this work offer promising prospects for improving defect 

classification performance in wafer inspection, thereby contributing to the progression of quality 

control in semiconductor manufacturing. Despite the advancements made, limitations such as the 
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need for further validation and generalization of results exist. To address these constraints, future 

research could focus on conducting rigorous validation studies across diverse datasets and 

exploring the integration of other machine learning techniques to enhance the robustness of defect 

classification systems in semiconductor manufacturing. Such endeavors hold the potential to propel 

the field towards achieving more reliable and efficient defect classification processes, thereby 

meeting the increasing demands for higher quality standards in semiconductor manufacturing. 
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