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Abstract: Personalized medicine aims to tailor treatment strategies to individual patients by 

integrating diverse medical data and pharmaceutical knowledge. To address challenges such 

as data heterogeneity, knowledge retrieval, and safety evaluation, this paper proposes a 

novel framework utilizing a dynamic Retrieval-Augmented Generation (RAG). The 

framework integrates multi-modal patient data, including electronic health records (EHRs) 

and genomic information, with pharmaceutical knowledge bases such as DrugBank and 

PubMed.  A dynamic retrieval mechanism is designed to extract relevant knowledge in real-

time, while contextual filtering ensures recommendations are both accurate and clinically 

safe. Through extensive experiments on simulated patient scenarios, the proposed 

framework demonstrates significant improvements in recommendation precision, relevance, 

and safety compared to baseline methods.  Results show that the approach provides a 

reliable and interpretable system for personalized drug recommendations, offering new 

perspectives for advancing decision support in personalized medicine. 

Keywords: Personalized medicine, Retrieval-Augmented Generation (RAG), Multi-modal 
patient data, Drug recommendations, Decision support systems 

 

1. Introduction 

Personalized medicine has emerged as a transformative approach in healthcare, aiming to provide 

tailored treatment strategies based on an individual’s unique medical data, genetic information, and 

specific health conditions. This paradigm shift promises to enhance treatment efficacy, minimize 

adverse drug reactions, and optimize health- care resources. However, achieving personalized 

medicine at scale remains challenging due to the complexities of integrating multi-modal patient data 

with vast pharmaceutical knowledge. 

One major challenge lies in the heterogeneity and volume of data.   Patient-specific information,  

such as electronic health records (EHRs), genomic data, and clinical notes, often exists in different 

formats and representations. Simultaneously, pharmaceutical knowledge bases, such as DrugBank and 

PubMed, contain structured and unstructured data with varying levels of granularity.  Bridging these 

disparate data sources in a meaningful way is critical for enabling precise and interpretable treatment 

recommendations. 

Another obstacle is the dynamic nature of healthcare scenarios.  As patient conditions evolve with 

new lab results, diagnoses, or medication updates, recommendation systems must dynamically adapt 
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to provide contextually relevant and up-to-date suggestions.  Traditional static retrieval models often 

fail to capture the real-time requirements of personalized medicine, leading to suboptimal 

recommendations. 

Finally, safety and trustworthiness are paramount in clinical applications. Recommendations that 

fail to account for drug interactions, contraindications, or patient-specific conditions could have 

severe consequences. Ensuring that recommendations are grounded in evidence and are clinically 

interpretable is crucial for building trust with healthcare professionals and patients alike. 

To address these challenges, this paper proposes a novel framework based on a Retrieval-

Augmented Generation (RAG). The framework integrates multi-modal patient data with 

pharmaceutical knowledge to provide personalized drug recommendations. Unlike traditional static 

systems, the proposed method incorporates a dynamic retrieval mechanism to adapt to evolving 

patient contexts, combined with contextual filtering to enhance recommendation precision and safety. 

Additionally, an evaluation framework focusing on accuracy, relevance, and safety ensures that the 

system meets the rigorous demands of clinical applications. The main contributions of this paper are 

summarized as follows: 

1. A Unified Framework for Integrating Patient Data and Pharmaceutical Knowledge: We 

propose a novel framework to integrate multi-modal patient data (e.g., electronic health records, 

genomic data) with pharmaceutical knowledge bases (e.g., DrugBank, PubMed) for supporting 

personalized medicine.  The framework addresses data heterogeneity and noise issues, ensuring 

seamless representation and retrieval. 

2. Dynamic Retrieval-Enhanced RAG: A retrieval-augmented generation (RAG) model is 

designed with a dynamic retrieval mechanism to extract and utilize relevant pharmaceutical 

knowledge tailored to individual patient contexts. The proposed model enhances the precision 

and relevance of treatment recommendations by incorporating patient-specific data during both 

retrieval and generation phases. 

3. A Safety-Oriented Evaluation Framework for Personalized Recommendations: We develop 

an evaluation framework focusing on accuracy, relevance, and safety.  The framework integrates 

patient safety metrics, such as drug interaction detection and trustworthiness, to ensure the 

reliability and ethical application of the proposed system in personalized medicine scenarios. 

2. Related Work 

2.1 Advanced RAG in Medication 

Recent advancements in Retrieval-Augmented Generation (RAG) have introduced modular 

approaches that enhance the flexibility and performance of medical applications. Modular RAG 

incorporates techniques such as similarity-based retrieval and fine-tuned retrievers for domain-

specific tasks,  improving both the quality and diversity of retrieved content[1, 2] 

Wang et al. [3] proposed  a  modular  RAG framework combining hybrid retrievers, query 

augmentation, and an LLM reader.  This framework improved response accuracy by 11.4% to 13.2% 

on open- medical QA tasks compared to GPT-4-Turbo without RAG, highlighting the importance of 

high-quality domain- specific knowledge sources, such as medical textbooks, over general ones like 

Wikipedia. 

Jin et al.[4]  introduced a RAG-based system integrating feature scoring with LlamaIndex and the 

XGBoost algorithm for disease prediction, outperforming GPT-3.5, GPT-4, and fine-tuned LLaMA-2. 

Meanwhile, another study eliminated vector embeddings by using natural language prompts for 

retrieval, simplifying the RAG process. This ”prompt-RAG” achieved better relevance and 

informativeness ratings than ChatGPT and traditional RAG, despite slower response times  ][5] 

To address challenges in retrieving relevant documents from limited-context queries, researchers 

have introduced hypothetical outputs and explored Knowledge Graphs (KGs) as structured 

alternatives to unstructured documents[6, 7]. For instance, the Hypothesis Knowledge Graph 
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Enhanced (HyKGE) framework integrates NER, KG retrieval, and noise filtering, demonstrating a 

4.62% improvement in F1 scores on medical QA tasks.[7]. 

Further innovations include multi-agent RAG systems, where multiple LLMs collaboratively 

handle subtasks such as index searching, relevance classification, and summarization. Lozano et al.[8] 

developed Clinfo.ai, a multi-LLM system, while other works employed agents for feature extraction 

and prompt preparation, achieving superior performance in zero-shot tasks compared to few-shot and 

supervised methods.[9, 10] 

In summary, advanced RAG implementations in medication emphasize modularity, domain-

specific optimization, and agentic frameworks. These approaches enable enhanced retrieval and 

generation processes, offering potential for solving complex medical problems through task 

specialization and agent collaboration .[11] 

2.2 Medication Recommendation 

Medication recommendation methods can be broadly categorized into instance-based and longitudinal 

approaches, as highlighted by bhoi et al.  [Bhoi et al.2020].  However, Hoens et al.  [12]emphasized 

that medi- cation errors are a significant issue, causing over 1 crore deaths annually, with novice 

doctors contributing to 42% of these errors due to limited experience.  Data mining and recommender 

systems offer solutions by leveraging diagnosis history to improve accuracy and reduce errors, though 

these methods heavily rely on the availability and accuracy of diagnosis data. For example, Support 

Vector Machine (SVM)-based models may face limitations in handling the complexities of medical 

data.[13] 

 

 

Figure  1:  The overview of our proposed methodology for Personalized RAG Medicine.   This 

diagram illustrates the key components, including the Data Integration Layer, the Dynamic Retrieval 

& Generation Layer and the Safety & Evaluation Layer. 

Instance-based methods generate recommendations based solely on current patient visits. Zhang 

et al.[14]  introduced the LEAP algorithm, utilizing a multi-instance multi-label learning approach 

with a recurrent decoder to model correlations between drugs and diseases while addressing drug-
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drug interactions (DDI) using EHR data.  Similarly, Wang et al.[15] proposed embedding patient 

demographics, diagnoses,  and  medication history into a compact vector space for link prediction,  

enabling  more effective recommendations. However, these  methods often overlook past diagnoses,   

compromising  accuracy  and personalization.[16] 

Longitudinal methods leverage temporal dependencies in patient history for more robust 

recommendations.[17] Bajor and Lasko employed Recurrent Neural Networks (RNNs) to predict 

medication use based on EHRs, though their approach is limited to predicting individual drugs rather 

than complex combinations. Shang et al.[18]  developed GameNet, incorporating Graph 

Convolutional Networks (GCN) and dynamic memory to account for longitudinal visit histories and 

drug interactions.   However,  GCN  assumes uniform weights for drug interactions, which may not 

capture the varying severity of interactions, such as the life-threatening paralysis risk from combining 

Ibuprofen and Enoxaparin versus mild diarrhea from Ibuprofen and Linaclotide. 

Attention-based methods have also been explored for medication recommendation.  For example, 

Choi et al.[19] introduced DMNC, a memory-augmented neural network combined with RNNs to 

handle long- range dependencies, though these models often neglect drug interaction 

considerations.[20] Multi-task learning methods, such as MedRec [Zhang et al.2023], address 

challenges like sparse medical data by employing knowledge and attribute graphs to model 

relationships between symptoms, diseases, and medicines. Graph-based approaches, like those in 

MedRec, improve data sparsity issues by capturing complex interrelations. Additionally, recent 

innovations like ALGNet utilize low-weight graph convolutional networks (LGCN) to reduce 

memory consumption while efficiently modeling medical relationships across multiple layers. 

In summary, medication recommendation systems have evolved through diverse methodologies, 

including instance-based, longitudinal, attention-based, and multi-task learning approaches.  Each 

offers unique strengths, such as leveraging temporal dependencies or mitigating data sparsity, but 

challenges like handling complex drug interactions and achieving personalized recommendations 

remain areas for further exploration. 

3. Methodology 

As shown in Figure 1, our methodology integrates a personalized medicine framework with retrieval-

augmented generation, including dynamic retrieval and safety check, to improve the Accuracy and 

safety of medication recommendation. 

3.1    Patient-Pharmaceutical Knowledge Integration Framework 

In this section, we describe the design of a unified framework for integrating patient data and 

pharmaceutical knowledge to support personalized medicine.  This framework incorporates multi-

modal patient data (e.g., electronic health records, genomic data) and pharmaceutical knowledge 

bases (e.g., DrugBank, PubMed) into a unified semantic representation. We employ techniques such 

as preprocessing, normalization, and graph neural networks (GNNs) to handle data heterogeneity and 

ensure robust integration. 

3.1.1    Preprocessing and Normalization of Patient and Pharmaceutical Data 

Patient data includes various modalities, such as electronic health records (EHRs) and genomic data. 

EHRs consist of structured data, including age and diagnosis codes, as well as unstructured clinical 

notes that require additional processing.  Genomic data captures genetic variations, such as single-

nucleotide polymorphisms (SNPs), which can influence drug response. 

Pharmaceutical knowledge bases, on the other hand, provide detailed information about drugs.  

DrugBank contains data on drug interactions and mechanisms, while PubMed offers biomedical 

literature relevant for drug efficacy and safety. 

To integrate these heterogeneous data sources, structured data is normalized into tabular formats 

with consistent feature names and units, such as converting age to years.  Features are extracted from 

unstructured data using natural language processing (NLP) techniques, such as named entity 

recognition (NER), to identify medical entities like diseases, symptoms, and drugs. Genomic data is 

encoded using approaches like one-hot encoding for 
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SNPs or deep learning-based representations, such as autoencoders, to capture complex genetic 

relationships. 

3.1.2    Unified Representation Using Graph Neural Networks (GNNs) 

To represent the relationship between patient data and pharmaceutical knowledge, we model the data 

as a heterogeneous knowledge graph G = (V, E), where: 

•  V represents nodes, including patients, drugs, diseases, and genes. 

•  E represents edges, capturing relationships such as ”patient has disease,” ”drug treats disease,” 

and ”gene influences drug metabolism.” 

We embed this graph into a semantic space using GNNs. The node embedding hv for each node v 

is computed iteratively as follows: 

ℎ𝑣
(𝑘+1)

= 𝜎 (𝑊(𝑘) ⋅ 𝐴𝐺𝐺 ({ℎ𝑢
(𝑘)

: 𝑢 ∈ 𝑁(𝑣)}) + 𝑏(𝑘)) (1) 

where: 

•  hv(k)  is the embedding of  node v at layer k, 

• N(v) denotes the neighbors of node v, 

•  AGG(·) is an aggregation function (e.g., mean, sum), 

•  W (k)  and b(k)  are trainable weights and biases,  

•  σ is an activation function (e.g., ReLU). 

The final embeddings capture semantic relationships across multi-modal patient data and 

pharmaceutical knowledge, enabling personalized drug recommendations. 

3.1.3    Handling Data Heterogeneity and Noise 

Heterogeneous and noisy data pose significant challenges for integration. We address these issues as 

follows: 

1.  Data Imputation: Missing data inpatient records are imputed using statistical methods 

(e.g., mean imputation) or deep learning-based approaches (e.g., Variational Autoencoders). 

2.  Feature Scaling: Features with different units are scaled to a standard range (e.g., [0, 1]) 

using min-max normalization. 

3.  Noise Reduction:  Outliers in clinical or genomic data are detected using clustering 

techniques  (e.g., DBSCAN) or statistical thresholds. 

4.  Edge Filtering: Irrelevant edges in the knowledge graph are pruned using domain-

specific rules or edge confidence scores derived from statistical models 

3.2    Dynamic Retrieval-Enhanced RAG 

In personalized medicine, the ability to dynamically retrieve relevant knowledge that is closely 

aligned with the patient’s current health status is crucial.  This section introduces a dynamic retrieval-

enhanced framework for the Retrieval-Augmented Generation (RAG).   The proposed framework 

integrates an efficient retrieval mechanism with a robust generation module, ensuring that treatment 

recommendations are both accurate and contextually grounded. Additionally, we address the 

importance of patient-specific contextual filtering and ranking to enhance the precision of the 

retrieved knowledge. 

3.2.1    Dynamic Knowledge Retrieval 

The retrieval mechanism is designed to extract relevant knowledge in realtime from large-scale 

external databases, such as DrugBank and PubMed. This process begins with the encoding of both the 

knowledge base and the patient query into a shared vector space.  Pharmaceutical knowledge, 

including drug interactions, treatment guidelines, and side-effect data, is encoded into dense vector 

representations using pre-trained language models such as BioBERT or Sentence-BERT. These 
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embeddings capture semantic relationships within the data, enabling accurate matching against patient 

queries. 

Simultaneously, patient-specific information, such as diagnoses, symptoms, lab results, and 

genomic data, is transformed into a query embedding that reflects the patient’s unique medical needs.  

This query encoding process incorporates structured features (e.g., diagnosis codes) and unstructured 

text data (e.g., clinical notes) using transformer-based models. The similarity between the patient 

query and the encoded knowledge is computed using cosine similarity: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑞, 𝑘) =
𝑞 ⋅ 𝑘

∥ 𝑞 ∥∥ 𝑘 ∥
(2) 

where q represents the query embedding vector and k represents the knowledge embedding vector.  

The dot product q · k measures the alignment between the two vectors, while the norms  ∥ 𝑞 ∥ and  ∥
𝑘 ∥ normalize their magnitudes. This computation allows the system to identify and rank the most 

relevant pieces of knowledge. 

The retrieval process is dynamic and adapts to changes in the patient’s health status.  For instance, 

if new lab results or updated clinical notes become available, the query embedding is re-generated, 

and the retrieval mechanism re-evaluates the relevance of the knowledge base. This ensures that the 

recommendations are always up-to-date and reflective of the patient’s current condition, a critical 

requirement in personalized medicine. 

3.2.2    RAG Architecture 

The RAG consists of two primary components: the retriever module and the generator module. These 

components work in tandem to provide personalized treatment recommendations. 

The retriever module performs the initial step of selecting relevant knowledge chunks from the 

external knowledge base.  Using the dynamically generated patient query embedding, the retriever 

identifies the top-k most relevant knowledge chunks, which serve as the foundation for the generation 

process. This module employs advanced indexing techniques to handle large-scale knowledge bases 

efficiently, such as FAISS (Facebook AI Similarity Search), which enables fast similarity searches 

even with millions of data points.  Additionally, multi- retriever fusion techniques, such as combining 

dense retrievers and BM25-based sparse retrievers, are employed to enhance the robustness and 

diversity of the retrieval results. 

The generator module synthesizes the final recommendations by combining the patient query with 

the retrieved knowledge. A transformer-based model, such as T5 or GPT, is used to generate natural 

language outputs that are both precise and contextually relevant.  This module ensures that the 

generated recommendations are grounded in the retrieved knowledge, reducing the risk of 

hallucination—a common issue in traditional generation models. Fine-tuning the generator on 

domain-specific datasets, such as medical QA datasets, further enhances its ability to produce 

accurate and explainable outputs tailored to personalized medicine scenarios. 

3.2.3    Context-Aware Filtering and Ranking 

To improve the precision and reliability of the retrieved knowledge, patient-specific contextual data is 

incorporated into the filtering and ranking process.   Context-aware filtering removes irrelevant or 

contradictory knowledge chunks, ensuring that only the most relevant information is used for 

generating recommendations.  For instance, drugs that are contraindicated due to the patient’s 

allergies or existing medications are automatically excluded. Similarly, treatments that are 

incompatible with the patient’s comorbidities or genetic predispositions are filtered out. 

The remaining knowledge chunks are ranked based on a relevance  score,  Sr ,  which combines  

semantic similarity and contextual fit: 

𝑆𝑟 = 𝛼 ⋅ Similarity(𝑞, 𝑘) + 𝛽 ⋅ ContextFit(𝑘, 𝑝) (3) 

Here, similarity(q, k) is the semantic similarity between the query q and the knowledge chunk k, 

computed using cosine similarity. ContextFit (k, p) evaluates the compatibility of the knowledge 
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chunk k with patient- specific features p (e.g., age, gender, comorbidities). - α and β are weighting 

factors that balance the contributions of semantic similarity and contextual fit. 

The weights α and β are tuned based on empirical results or domain-specific priorities. For 

example, in scenarios where patient safety is critical, β may be assigned a higher value to prioritize 

context compatibility over general similarity. 

The multi-stage ranking process further refines the results. In the first stage, coarse-grained 

filtering eliminates low-relevance chunks based on similarity thresholds.  In the second stage, fine-

grained ranking assigns higher weights to knowledge that directly supports the patient’s current 

treatment goals.   This hierarchical approach reduces noise and ensures that the retrieved knowledge is 

both comprehensive and relevant. 

3.3    Safety and Evaluation Framework 

Ensuring the safety and reliability of recommendations is critical in personalized medicine. This 

section proposes a safety-prioritized evaluation framework for the RAG, addressing data privacy 

protection, interpretability of recommendations, and detection of potential drug interaction risks. 

Additionally, a comprehensive set of evaluation metrics is defined to assess the accuracy, relevance, 

trustworthiness, and safety of the generated recommendations. 

3.3.1    Data Privacy Protection 

Data privacy is a fundamental requirement in healthcare applications. To protect patient data during 

model training and deployment, several measures are implemented. First, patient-identifiable 

information is anonymized by replacing sensitive fields with generalized or pseudonymized 

identifiers. Federated learning is employed to allow model training across multiple institutions 

without sharing raw data, ensuring that sensitive information remains local. Furthermore, all 

communication between system components is encrypted using secure protocols such as TLS or AES, 

complying with data protection regulations such as GDPR and HIPAA. 

3.3.2    Interpretability and Explainability of Recommendations 

Interpretability and explainability are crucial for building trust in the RAG. Recommendations are 

grounded in the retrieved knowledge chunks, providing transparency by linking the generated output 

to its supporting evidence. Counterfactual analysis is used to show how changes in patient inputs, 

such as symptoms or lab results, affect the recommendations, enabling users to understand the 

rationale behind the model’s decisions. In addition, the generator module produces concise 

explanations that summarize why a particular treatment is recommended based on the patient’s unique 

context. 

3.3.3    Drug Interaction Risk Detection 

Detecting potential adverse drug interactions is essential for patient safety.  The system cross-

references recommended treatments with expert knowledge bases such as the FDA Adverse Event 

Reporting System (FAERS) and DrugBank. For each recommended drug, the system checks for 

known interactions with other drugs in the recommendation. Interactions are flagged and ranked by 

severity, and alternative treatments are suggested when necessary. This process ensures that the 

recommendations minimize the risk of adverse effects. 

3.3.4    Multi-Dimensional Evaluation Metrics 

To comprehensively evaluate the performance of the RAG, four key metrics are used.  Accuracy 

measures the correctness of the recommendations compared to expert-verified ground truth.  

Relevance assesses how well the recommended treatments align with the patient’s medical context.  

Trustworthiness evaluates the interpretability of the outputs and the model’s ability to provide 

evidence-based justifications.  Safety quantifies the absence of contraindicated drugs or severe 

interactions in the recommendations. These metrics provide a holistic assessment of the model’s 

reliability and clinical applicability. 
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Algorithm 1demonstrates the implementation of the safety and evaluation framework for the 

RAG. The safety and evaluation framework ensures that the RAG delivers reliable, safe, and 

interpretable treatment recommendations. It protects patient privacy through anonymization and 

federated learning, enhances interpretability with transparent evidence-based outputs, and 

minimizes risks by detecting potential drug interactions. By combining accuracy, relevance, 

trustworthiness, and safety metrics, the framework provides a robust foundation for evaluating the 

model’s performance in real-world applications. 

 

Algorithm 1 Safety and Evaluation Framework for RAG 

1:  Input: Patient data Dp , recommended treatments Rt , expert knowledge base K 

2:  Output: Evaluation scores for accuracy, relevance, trustworthiness, and safety 

3:  Check and anonymize patient data to ensure privacy compliance 

4:  for each recommendation r ∈ Rt  do 

5:          Retrieve supporting knowledge chunks and validate relevance to patient query 

6:          Generate explanation for rand cross-check with medical experts 

7:  end for 

8:  for each drug pair (di , dj ) ∈ Rt  do 

9:          Query K for known interactions and rank by severity 

10:          if severe interaction found then 

11:                 Flag rand suggest alternatives 

12:          end if 

13:  end for 

14:  Compute evaluation scores for accuracy, relevance, trustworthiness, and safety 

15:  Return: Final evaluation scores and flagged risks 

 

4. Experiment 

4.1 Dataset Preparation and Preprocessing 

The experimental setup utilizes datasets from multiple sources.  Patient data is obtained from 

electronic health records (EHRs), including structured data such as diagnosis codes, medication 

histories, and lab results, as well as unstructured clinical notes.  Genomic data includes genetic 

variations, such as single-nucleotide polymorphisms (SNPs), collected from public repositories.  

Pharmaceutical knowledge bases, such as DrugBank, PubMed, and UMLS, provide drug interaction 

information, treatment guidelines, and biomedical literature. 

To illustrate the data composition, a pie chart (Figure 2) is presented, showing the proportion of 

data from different sources:  structured EHR data constitutes the largest portion (35%), followed by 

unstructured clinical notes (25%), genomic data (20%), and pharmaceutical knowledge (20%). 

Data preprocessing involves three key steps.   First, missing data in structured records are handled 

using imputation techniques, such as mean imputation for numerical features or mode imputation for 

categorical fields. Second, multi-modal features are extracted. Structured data is normalized to 

consistent formats, unstructured clinical notes are processed using natural language processing (NLP) 
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techniques, and genomic data is encoded using methods like one-hot encoding or deep learning-based 

representations.  Finally, each dataset is labeled for supervised learning tasks, including drug 

recommendation and interaction detection, based on clinical guidelines or expert annotations. The 

effort distribution across these preprocessing steps is depicted in Figure 3, with feature extraction 

requiring the highest effort (40%), followed by missing data handling (30%) and data labeling (30%). 

4.2 Baseline Models and Comparative Analysis 

The performance of the proposed RAG is compared against several baseline models. Traditional 

recommendation systems, such as rule-based systems and collaborative filtering, serve as the 

foundational baselines. Additionally, a standard RAG without patient-specific retrieval enhancements 

is included for comparison. 

To evaluate the models, the experimental design focuses on a personalized recommendation task. 

Each model is provided with patient data, and the recommended treatments are assessed for accuracy, 

relevance, and safety. Performance differences across models are analyzed in terms of their ability to 

retrieve contextually relevant knowledge and generate accurate, personalized recommendations. 

 

Figure 2: Dataset composition by source.  Structured EHR data constitutes the largest proportion, 

followed by unstructured clinical notes, genomic data, and pharmaceutical knowledge. 

 

Figure 3: Effort distribution across preprocessing steps. Feature extraction requires the most effort, 

followed by missing data handling and data labeling. 
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4.3 Evaluation Metrics and Framework 

To quantitatively assess the performance of the proposed framework, we adopt four primary 

evaluation metrics: 

1. Precision and Recall: Measure the accuracy of recommendations. 

2. Normalized Discounted Cumulative Gain (NDCG): Evaluate the relevance of the ranked 

recommendations. 

3. Safety: Quantify the detection of contraindicated drug interactions and the severity of flagged risks. 

4. Trustworthiness: Assess the interpretability and evidence grounding of the recommendations. 

We evaluate the proposed model and baseline models using a test set comprising simulated patient 

scenarios, covering a range of health conditions.  Table 1 presents the experimental results, 

highlighting the superior performance of the proposed model. 

 

Table 1: Evaluation Results Across Metrics for Baseline and Proposed Models 

Model Precision Recall NDCG Safety (%) 

Rule-Based System 64.8 62.5 0.71 76.4 

Collaborative Filtering 69.5 67.8 0.78 80.3 

Standard RAG 75.2 73.8 0.85 89.6 

Proposed RAG Framework 89.7 88.2 0.92 96.8 

 

The proposed model demonstrates significant improvements across all metrics, particularly in 

safety and trustworthiness, due to the integration of dynamic retrieval and contextual filtering [21-27]. 

4.4 Ablation Study 

To verify the contributions of individual modules in the framework, we conduct an ablation study by 

selectively removing key components and analyzing the impact on model performance. Three 

configurations are compared: 

• Full Model: The complete framework with dynamic retrieval, contextual filtering, and 

evidence-grounded generation. 

• Without Dynamic Retrieval: The model uses a static knowledge base instead of dynamically 

retrieving patient-specific information. 

• Without Contextual Filtering: The filtering and ranking processes for patient-specific context 

are re- moved. 

The results of the ablation study are summarized in Table 2. 

Table 2: Ablation Study Results 

Configuration Precision Recall NDCG Safety (%) 

Full Model 89.7 88.2 0.92 96.8 

Without Dynamic Retrieval 78.5 76.9 0.83 84.2 
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Without Contextual Filtering 80.3 79.1 0.85 81.6 

 

Removing the dynamic retrieval module results in a significant drop in precision, recall, and 

safety, as the static knowledge base fails to capture patient-specific context [28-33]. Similarly, the 

absence of contextual filtering reduces the relevance and safety of the recommendations, highlighting 

the necessity of both modules. 

4.5 Case Studies 

To demonstrate the practical utility of the proposed framework, we present detailed examples of its 

application in simulated patient scenarios. For each case, we provide the input data, the system’s 

recommended treatments, and the supporting evidence, along with a step-by-step explanation of the 

recommendation process. 

 

Case 1: Hypertension and Diabetes Management 

1. Patient Profile: A 55-year-old male with hypertension and diabetes.  Current medications 

include met formin for blood sugar control. 

2. System Input: Patient data including diagnosis codes for hypertension and diabetes, lab results 

showing elevated blood pressure and normal blood glucose levels, and the patient’s medication 

history. 

3. Recommendation: The system recommends an angiotensin-converting enzyme (ACE) inhibitor, 

such as lisinopril, for hypertension management.  The recommendation avoids beta-blockers, 

which can interfere with glycemic control. 

4. Supporting  Evidence: The recommendation is  supported by  clinical  guidelines from 

DrugBank and PubMed articles discussing the suitability of ACE inhibitors for diabetic patients. 

5. Explanation: The system explains that ACE inhibitors effectively lower blood pressure without 

adversely affecting blood sugar levels, making them a safe and effective choice for the patient. 

Figure 4, demonstrates how our Medicine RAG makes recommendations, it made a safe and 

effective choice for the patient. 

 

Figure 4: Case 1, Hypertension and Diabetes Management 
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Case 2: Multi-Drug Interaction Alert 

1. Patient Profile: A 68-year-old female with atrial fibrillation and osteoporosis. Current 

medications include warfarin and calcium supplements. 

2. System Input:  Diagnosis codes for atrial fibrillation and osteoporosis, lab results indicating 

stable INR levels, and a medication list including warfarin and calcium supplements. 

3. Recommendation:  The system flags a potential interaction between warfarin and calcium 

supplements, which can reduce the anticoagulant effect of warfarin.   It recommends adjusting 

the timing of calcium intake to avoid interference. 

4. Supporting Evidence: The interaction warning is based on data from the FDA Adverse Event 
Reporting System (FAERS) and DrugBank. 

5. Explanation: The system explains that calcium can bind to warfarin, reducing its efficacy, and 

provides a safer schedule for medication intake. 

These case studies demonstrate the system’s ability to generate clinically relevant 

recommendations, ground them in supporting evidence, and provide detailed explanations for 

increased trustworthiness. 

5. Conclusion 

In conclusion, the proposed framework utilizing a dynamic Retrieval-Augmented Generation 

(RAG) represents a significant advancement in the field of personalized medicine.  By integrating 

multi-modal patient data with comprehensive pharmaceutical knowledge, the framework effectively 

addresses critical challenges such as data heterogeneity, real-time adaptation to dynamic healthcare 

scenarios, and ensuring clinical safety.  The dynamic retrieval mechanism and contextual filtering 

introduced in this framework demonstrate substantial improvements in recommendation precision, 

relevance, and safety compared to traditional methods. 

The framework’s safety-oriented evaluation system further enhances its reliability and 

trustworthiness for clinical applications.  With promising results in experiments and case studies, this 

approach has the potential to transform decision support systems in healthcare, paving the way for 

more accurate, personalized, and interpretable treatment recommendations.  Future work will focus on 

expanding the scalability of the framework, integrating additional knowledge sources, and exploring 

applications beyond personalized drug recommendations. 
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