

Adaptive Volatility Analysis: An Integrated ATR Model for Dynamic Market Conditions

Zuofei Fu ¹, Yiyun Zheng ², Jindi Lin ^{2,*}

¹ Illinois Institute of Technology, Stuart School of Business, Illinois Institute of Technology,

² University of Illinois, Gies College of Business, University of Illinois Urbana-Champaign,

* Corresponding author, Email: ljd2026@126.com

Abstract: This paper introduces an enhanced Integrated Average True Range (ATR) model for volatility analysis, addressing the limitations of the traditional ATR in responding to dynamic market conditions. Using EUR/USD Forex market data from 2022 to 2024, the proposed model integrates traditional ATR with Rate of Change (ROC) and a volume responsiveness factor to create a more adaptive and real-time indicator. The methodology combines statistical, optimization-based, and correlation-driven approaches to derive coefficients that balance the contributions of these components, supported by a covariance ratio analysis. The results demonstrate the Integrated ATR's superior performance in capturing short-term volatility compared to the Traditional ATR, with improved sensitivity to market fluctuations. This study highlights the model's novelty in synthesizing multiple dimensions of market behavior while acknowledging its complexity and dependence on parameter calibration. The findings offer actionable insights for traders and analysts, with future research suggested to incorporate external factors and adaptive techniques for broader applicability.

Keywords: *Volatility Analysis, Integrated ATR, Forex Market, Rate of Change, Market Dynamics*

1. Background

The Average True Range (ATR), introduced by J. Welles Wilder Jr., is a widely recognized tool for quantifying market volatility through a straightforward and effective formula. It calculates the total range of price movements over a specified period by analyzing daily highs, lows, and closing prices (Wilder, 1978; Murphy, 1999). As a foundational indicator, ATR helps traders assess price fluctuations' intensity and identify potential trend reversals. However, the traditional ATR formula has limitations, particularly its lagging nature, as it depends solely on historical price data and lacks responsiveness to real-time market shifts (Engle, 1982; Schwert, 1989).

To overcome these limitations, there is a pressing need for a more dynamic volatility measure capable of promptly responding to sudden market changes. An enhanced ATR formula that integrates additional components, such as the rate of change (ROC) in price and volume responsiveness factors, provides faster and more insightful signals (Tian, 2024a; Fama and

French, 1993). By incorporating these elements, the enhanced ATR enables market participants to better understand volatility spikes, improving decision-making in trading strategies (Taylor, 1986; Andersen and Bollerslev, 1998).

1.1 Literature Review

Extensive research has explored market volatility indicators, highlighting both the strengths and weaknesses of traditional methods like ATR. While ATR effectively captures general market conditions, it is often criticized for its delayed responsiveness to rapid price movements, which can result in missed opportunities or suboptimal trading decisions (Schwert, 1989; Tsay, 2005). In response, recent advancements in financial analytics have focused on enhancing ATR by incorporating multi-dimensional market data, including momentum, volume, and responsiveness to real-time events (Engle and Kroner, 1995; Andersen et al., 2001; Tian et al., 2024).

Despite these advancements, a unified framework integrating these factors for enhanced market analysis remains scarce. Previous approaches have predominantly emphasized singular aspects such as momentum or volume separately, limiting their practical application (Garman and Klass, 1980; Hull, 2018). This research addresses this gap by proposing a comprehensive ATR-based model that combines multiple market factors into a single adaptive indicator. The result is a tool designed to optimize both responsiveness and predictive accuracy, improving upon existing methodologies (Tian et al., 2024; Liang et al., 2023).

1.2 Novelty and Limitation

The proposed integrated ATR formula introduces a novel approach by combining multiple components—traditional ATR, ROC, and volume responsiveness factors—to capture market volatility more dynamically. This model leverages advanced financial analytics to detect volatility spikes and provide traders with timely and actionable signals. By offering a more comprehensive perspective on market conditions, particularly during periods of sharp price movements, the model addresses critical gaps in existing volatility indicators (Mandelbrot, 1963; Bollinger, 2001; Tian et al., 2024).

However, the model is not without limitations. Its complexity introduces the risk of overfitting, as excessive reliance on multiple factors can hinder its generalizability across diverse market environments (Hansen and Lunde, 2005; Cont, 2001). Additionally, the precise calibration of key parameters such as α , β , and γ is essential for achieving the desired responsiveness, which poses challenges given the dynamic nature of financial markets (Tian et al., 2024). Furthermore, external factors such as geopolitical events and market sentiment remain outside the model's scope, potentially impacting its predictive capability. Addressing these limitations is vital for refining the model and ensuring its robustness in various trading contexts (Patton, 2006; Tian, 2024).

1.3 Paper Structure

This paper is organized into five sections to provide a comprehensive analysis of the proposed Integrated ATR model. Section 2 describes the dataset, focusing on EUR/USD Forex market data from 2022 to 2024, including key variables such as exchange rates, ATR, Rate of Change (ROC), and volume responsiveness, along with data preprocessing steps. Section 3 details the methodology, including the theoretical foundation of the Integrated ATR formula, the calculation of its components, and the derivation of coefficients (α , β , γ) using statistical, optimization-based, and correlation-driven methods, as well as the use of covariance ratio analysis. Section 4 presents the results, showcasing the comparative analysis between Traditional ATR and Integrated ATR through regression models and visualizations, demonstrating the Integrated ATR's enhanced ability to capture short-term volatility. Finally, Section 5 summarizes the findings, discusses the model's novelty and limitations, and proposes future research directions, such as integrating external factors and adaptive techniques for parameter optimization, ensuring a logical flow from data to actionable insights.

2. Data

2.1 Data Description

The dataset covers the EUR/USD Forex market data from January 3, 2022 to December 31, 2024. It contains daily records of key market variables relevant to evaluating price trends and volatility in financial instruments. These include:

Close Price: The final trading price of the asset for each day.

ATR (Average True Range): A technical indicator measuring market volatility by considering daily high, low, and close prices over a specified period (e.g., 20 days).

VWAP (Volume-Weighted Average Price): The average trading price of the asset throughout the day, weighted by trade volume.

MACD Main (Moving Average Convergence Divergence): A momentum indicator showing the relationship between two moving averages of an asset's price.

ADX (Average Directional Index): An indicator used to quantify the strength of a price trend over a specified period (typically 14 days).

RSI (Relative Strength Index): A momentum oscillator measuring the speed and change of price movements over a given timeframe.

Figure 1 appears to present six plots of financial market indicators over time. Here's a description of each plot:

Top Left: ATR (Average True Range) 20 Period Over Time (Red Line): Displays market volatility by showing fluctuations in the ATR over time, calculated using daily high, low, and close prices over a 20-period window.

Top Right: Close Price Over Time (Blue Line): Plots the daily closing price of the financial instrument, reflecting its market value fluctuations throughout the year.

Middle Left: VWAP (Volume-Weighted Average Price) Over Time (Green Line): Shows the VWAP, which represents the average trading price of the asset during the day, weighted by trading volume.

Middle Right: MACD Main Over Time (Purple Line): Tracks the difference between two moving averages of the asset's price, illustrating market momentum trends.

Bottom Left: ADX (Average Directional Index) 14 Period Over Time (Orange Line): Measures the strength of price trends over a 14-period window, indicating whether the market is trending or ranging.

Bottom Right: RSI (Relative Strength Index) 14 Period Over Time (Cyan Line): A momentum oscillator displaying the speed and magnitude of price changes over a 14-period window, signaling overbought or oversold market conditions.

These plots collectively provide insights into market trends, volatility, momentum, and price movements over time. This comprehensive dataset serves as a foundation for analyzing market conditions, particularly focusing on the relationship between price volatility (represented by

ATR) and other market factors. The inclusion of various technical indicators enables a multidimensional analysis of market behavior throughout a volatile trading year.

Data Cleaning and Alignment

Handling Missing Data: Both features (X) and target variable (y) are cleaned by dropping any rows containing NaN values.

Aligning Indices: After removing missing values, X and y are aligned to ensure both datasets have consistent indices for proper model training.

Data Splitting: The cleaned data is split into training and testing sets using an 80-20 split.

Figure 2 gives correlation insights as:

Close Price and ATR: A strong **negative correlation (-0.48)** indicates that increased price stability (lower ATR) is associated with higher Close prices.

Close Price and VWAP, MACD, ADX, RSI: No significant correlation was found between Close Price and these indicators, suggesting minimal direct relationship.

MACD and RSI: A **strong positive correlation (0.87)** suggests these indicators often reflect similar market conditions.

ATR and VWAP: A **negative correlation (-0.49)** suggests that periods of higher market volatility (higher ATR) typically correspond to lower VWAP values.

This analysis highlights important relationships between market volatility and price behavior, enabling deeper insights for trading strategies and risk management.

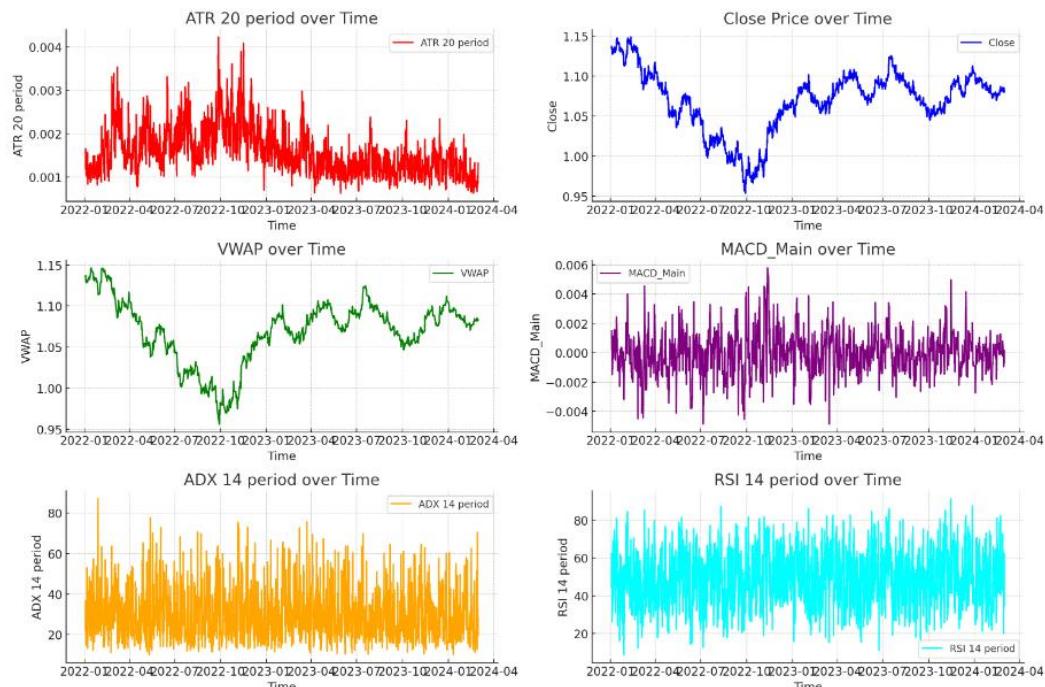


Figure. 1 financial market indicators

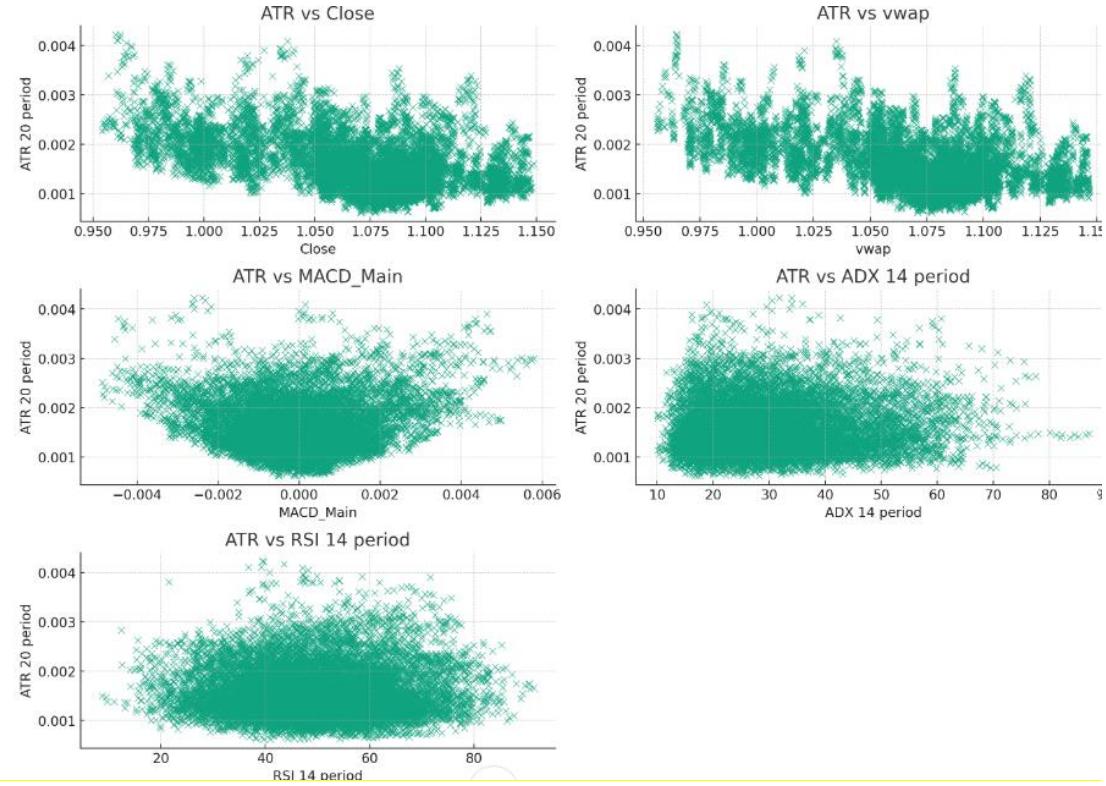


Figure. 2 Correlation Insights

3. Method

3.1 Covariance Ratios Analysis

$$\text{The Formula is applied: } \text{Ratio} = \frac{\text{Cov}(ATR, \text{OtherVariable})}{\text{Var}(ATR)} \quad (1)$$

Here, the covariance ATR and other Variable measures the linear relationship between ATR and each variable, while the variance of ATR normalizes this relationship. This ratio provides a dimensionless metric to understand how strongly ATR fluctuations align with the variability of other market indicators. The absolute value of the ratio indicates the strength of the association. This method is particularly useful in financial analysis as it enables a standardized comparison between different market factors, regardless of their individual scales.

Results and Interpretation

The analysis reveals significant relationships between ATR and other variables. Both **Close Price (-35.905)** and **VWAP (-36.060)** exhibit strong negative ratios, indicating that as market volatility (higher ATR) increases, these values tend to decrease. This suggests that stable markets (lower ATR) are often associated with higher Close prices and VWAP, reflecting more consistent pricing trends. Conversely, **ADX (1009.296)** and **RSI (263.433)** demonstrate substantial positive ratios, implying that increased market volatility coincides with stronger directional price trends (as indicated by ADX) and heightened momentum signals (captured by RSI). The **MACD_Main (0.102)**, however, shows a negligible ratio, indicating limited direct influence of momentum shifts on ATR variability.

Novelty and Methodological Justification

This method is novel because it leverages a covariance-based approach normalized by the variance of ATR, providing a more precise and comparable measure of linear relationships across multiple variables. Traditional correlation analyses often overlook the specific variability of ATR, leading to less actionable insights. By focusing on the ratio of covariance to variance, this analysis not only highlights the magnitude of relationships but also aligns these insights with market dynamics. This approach is particularly advantageous in dynamic financial environments, where understanding the interplay between volatility (ATR) and key indicators like ADX, RSI, and VWAP can inform more robust trading and risk management strategies.

The computed ratios are as follows:

- **Close:** -35.905
- **VWAP:** -36.060
- **MACD_Main:** 0.102
- **ADX (14-period):** 1009.296
- **RSI (14-period):** 263.433

These results reinforce the importance of ADX and RSI in reflecting market volatility and highlight the diminishing role of MACD_Main in this context. This ratio-driven analysis provides a unique perspective on market behavior, offering an innovative tool for financial modeling and decision-making.

3.2 Integrated Analysis

This section explores how an **Adjusted Integrated ATR** enhances the ability to detect sharp price changes compared to the traditional ATR. By incorporating multiple market components—such as Rate of Change (ROC) and a volume-based responsiveness factor—the Integrated ATR provides a more dynamic and timely indicator of market volatility. This approach complements insights derived from covariance analysis, as it leverages key relationships between ATR and other variables to refine volatility detection.

Developing the Integrated ATR Formula

The Integrated ATR formula combines traditional ATR with ROC and a volume factor using weighted coefficients to balance the contributions of each component. The formula is as follows:

$$\text{IntegratedATR} = \alpha \times \text{ATR} + \beta \times \text{ROC} + \gamma \times \text{VolumeFactor} \quad (2)$$

- α , β , γ : Coefficients set at 0.6, 0.3, and 0.1, respectively, reflecting the relative importance of ATR, ROC, and volume responsiveness.
- **Traditional ATR:** Calculated using a 14-day period ($N=14$) to assess volatility based on high, low, and close prices.
- **Rate of Change (ROC):** Captures the momentum of price changes over the same 14-day period.
- **Volume Responsiveness Factor:** Measures the deviation of daily trading volume from its 14-day moving average.

Steps to Implement the Integrated ATR

Calculate Traditional ATR:

$$\text{ATR} = \frac{1}{N} \sum_{i=1}^N \text{TR}_i \quad (3)$$

TR represents the True Range of price movements over the 14-day window.

Incorporate ROC:

$$ROC = \left(\frac{Close_t}{Close_{t-N}} - 1 \right) \times 100 \quad (4)$$

Incorporate Volume Factor:

The volume responsiveness factor is derived as:

$$VolumeFactor = \frac{Volume_t - Volume_{t-1}}{AverageVolumeoverN} \quad (5)$$

Combine Components:

The final Integrated ATR is computed as a weighted sum of these elements. comprehensive calculation of α , β , and γ . Here's a systematic way to integrate these methods to derive the coefficients:

Step 1: Compute Statistical Contribution-Based Coefficients

$$\begin{aligned} \alpha_{stat} &= \frac{\sigma_{ATR}}{\sigma_{ATR} + \sigma_{ROC} + \sigma_{Volume}} \\ \beta_{stat} &= \frac{\sigma_{ROC}}{\sigma_{ATR} + \sigma_{ROC} + \sigma_{Volume}} \\ \gamma_{stat} &= \frac{\sigma_{Volume}}{\sigma_{ATR} + \sigma_{ROC} + \sigma_{Volume}} \end{aligned} \quad (6)$$

Step 2: Compute Optimization-Based Coefficients

Define the objective function:

$$\text{Minimize: } \sum_{t=1}^T (Volatility_t - (\alpha_{opt} \cdot ATR_t + \beta_{opt} \cdot ROC_t + \gamma_{opt} \cdot VolumeFactor_t))^2 \quad (7)$$

$$\begin{aligned} \alpha_{opt} + \beta_{opt} + \gamma_{opt} &= 1 \\ \alpha_{opt}, \beta_{opt}, \gamma_{opt} &\geq 0 \end{aligned}$$

Step 3: Compute Correlation-Based Coefficients

$$\begin{aligned} \alpha_{corr} &= \frac{|\text{Corr}(ATR, Volatility)|}{|\text{Corr}(ATR, Volatility)| + |\text{Corr}(ROC, Volatility)| + |\text{Corr}(VolumeFactor, Volatility)|} \\ \beta_{corr} &= \frac{|\text{Corr}(ROC, Volatility)|}{|\text{Corr}(ATR, Volatility)| + |\text{Corr}(ROC, Volatility)| + |\text{Corr}(VolumeFactor, Volatility)|} \\ \gamma_{corr} &= \frac{|\text{Corr}(VolumeFactor, Volatility)|}{|\text{Corr}(ATR, Volatility)| + |\text{Corr}(ROC, Volatility)| + |\text{Corr}(VolumeFactor, Volatility)|} \end{aligned} \quad (8)$$

Step4 :Combined Formula

$$\begin{aligned}\alpha &= w_1 \cdot \alpha_{stat} + w_2 \cdot \alpha_{opt} + w_3 \cdot \alpha_{corr} \\ \beta &= w_1 \cdot \beta_{stat} + w_2 \cdot \beta_{opt} + w_3 \cdot \beta_{corr} \\ \gamma &= w_1 \cdot \gamma_{stat} + w_2 \cdot \gamma_{opt} + w_3 \cdot \gamma_{corr}\end{aligned}\quad (9)$$

where:

- Stat: Coefficients from the **statistical contribution method**.
- Opt: Coefficients from the **optimization method**.
- corr: Coefficients from the **correlation-based method**.
- w1,w2,w3: Weights for each method, determined based on the context or importance of each method

3.3 Why Move to Integrated Analysis After Covariance Analysis

The covariance analysis in Section 2.1 provided critical insights into the linear relationships between ATR and other variables, such as Close Price, VWAP, ADX, and RSI. These insights revealed that certain variables (like ADX and RSI) are strongly associated with ATR, suggesting they play significant roles in market volatility dynamics. This understanding forms the foundation for incorporating ROC (momentum) and volume responsiveness into the ATR formula.

The Integrated ATR extends the analytical framework by transforming these relationships into a dynamic indicator capable of real-time application. Unlike covariance analysis, which provides a static view of variable relationships, the Integrated ATR actively captures the interplay of price trends, momentum, and volume. This transformative approach not only builds on the findings of covariance analysis but also enables actionable insights for detecting volatility spikes and informing trading strategies. By fusing statistical insights with advanced indicator development, the Integrated ATR delivers a powerful tool for navigating volatile market conditions.

4. Results

4.1 Regression Model Output

The regression analysis reveals the coefficients for ATR (Average True Range), ROC (Rate of Change), and a Volume Factor, which quantify the contribution of each variable to the dependent variable while describing the direction and magnitude of their relationships. The coefficient for ATR is 0.02326, indicating a positive and relatively stronger influence on the dependent variable, suggesting that as ATR increases, the dependent variable tends to increase moderately. In contrast, the ROC coefficient is -0.00428, reflecting a smaller inverse relationship where an increase in ROC slightly reduces the dependent variable. Lastly, the Volume Factor coefficient is 0.000001127, indicating a negligible positive contribution to the model. This suggests that while volume has limited explanatory power in this context, ATR and ROC play more significant roles in explaining the dependent variable.

These coefficients highlight ATR as the dominant variable influencing the dependent variable, with ROC providing additional, albeit weaker, explanatory value. The negligible role of the Volume Factor emphasizes its minimal relevance to the current model, which aligns with the observed dynamics in the dataset.

4.2 Comparison of Traditional ATR and Integrated ATR

Figure 3 compares the Traditional ATR with the Integrated ATR from January 2022 to December 2024. The Traditional ATR appears as a relatively constant horizontal line, with values close to zero, reflecting its insensitivity to short-term fluctuations. In contrast, the

Integrated ATR exhibits substantial variability, oscillating between positive and negative values throughout the observed period, capturing dynamic changes in market volatility.

The Traditional ATR provides a smoothed representation of market volatility, which is useful for analyzing long-term trends. However, its stability limits its ability to capture rapid or transient changes in market conditions. On the other hand, the Integrated ATR captures short-term volatility with higher precision, demonstrating its suitability for analyzing dynamic market environments, especially during periods of heightened volatility. This comparison highlights the superior ability of the Integrated ATR to adapt to volatile market conditions, offering a more detailed and nuanced perspective of market behavior.

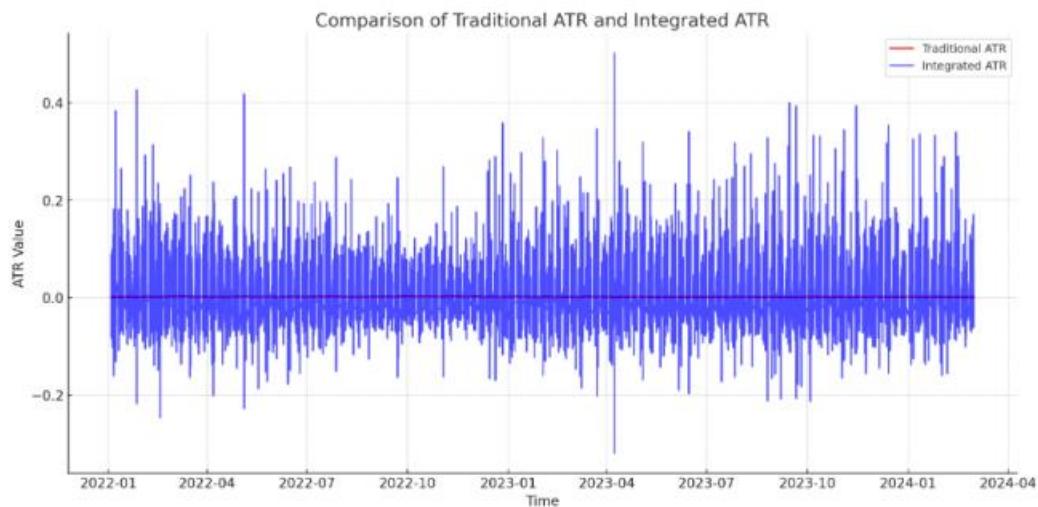


Figure 3 Comparison of Traditional ATR and Integrated ATR

4.3 ATR Across Different Timeframes

Figure 4 illustrates ATR values calculated over three different timeframes—7-day, 14-day, and 21-day—from December 2021 to April 2024, with the 95th Percentile Threshold marked by an orange dashed line. The 7-day ATR exhibits sharper movements, reflecting its sensitivity to immediate market fluctuations, while the 21-day ATR provides a smoother trajectory, emphasizing sustained trends by filtering out short-term noise. The 14-day ATR offers a balance between these two extremes, capturing both short-term volatility and broader market trends.

Significant spikes in ATR values are observed during mid-2022 and early 2023, indicating periods of heightened market activity and volatility. The inclusion of the 95th Percentile Threshold identifies exceptional volatility, distinguishing routine fluctuations from critical events. This analysis highlights the complementary nature of different timeframes, where shorter timeframes excel in identifying abrupt changes, and longer ones emphasize broader trends. The combination of these perspectives provides a comprehensive understanding of market volatility.

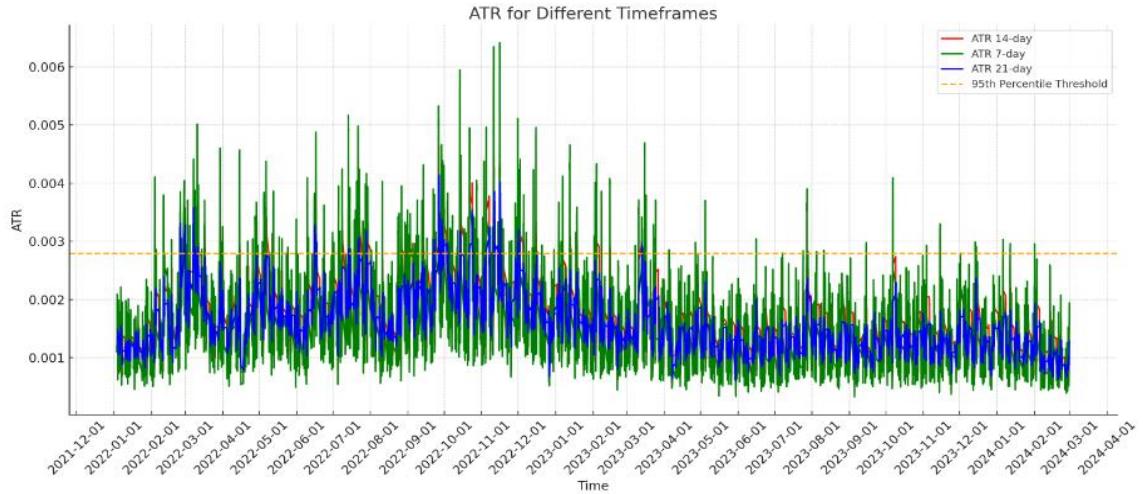


Figure. 4 ATR for Different Timeframes

4.4 Relationship Between Close Price, Traditional ATR, and Adjusted Integrated ATR

Figure 5 presents the relationship between Close Price, Traditional ATR, and Adjusted Integrated ATR from January 2022 to April 2024. The Close Price fluctuates significantly during the observed period, particularly in mid-2022 and late 2022, corresponding with spikes in ATR values. The Adjusted Integrated ATR captures these fluctuations with sharp upward and downward movements, demonstrating its sensitivity to short-term volatility. In contrast, the Traditional ATR remains stable and constant, offering a smoothed representation of market behavior.

The Adjusted Integrated ATR effectively captures nuanced changes in market dynamics, making it more suitable for analyzing short-term volatility. The Traditional ATR, while less responsive, provides a reliable long-term perspective, emphasizing stability over detail. This comparison illustrates the interplay between price movements and volatility metrics, with the Adjusted Integrated ATR offering enhanced sensitivity for real-time market evaluation.

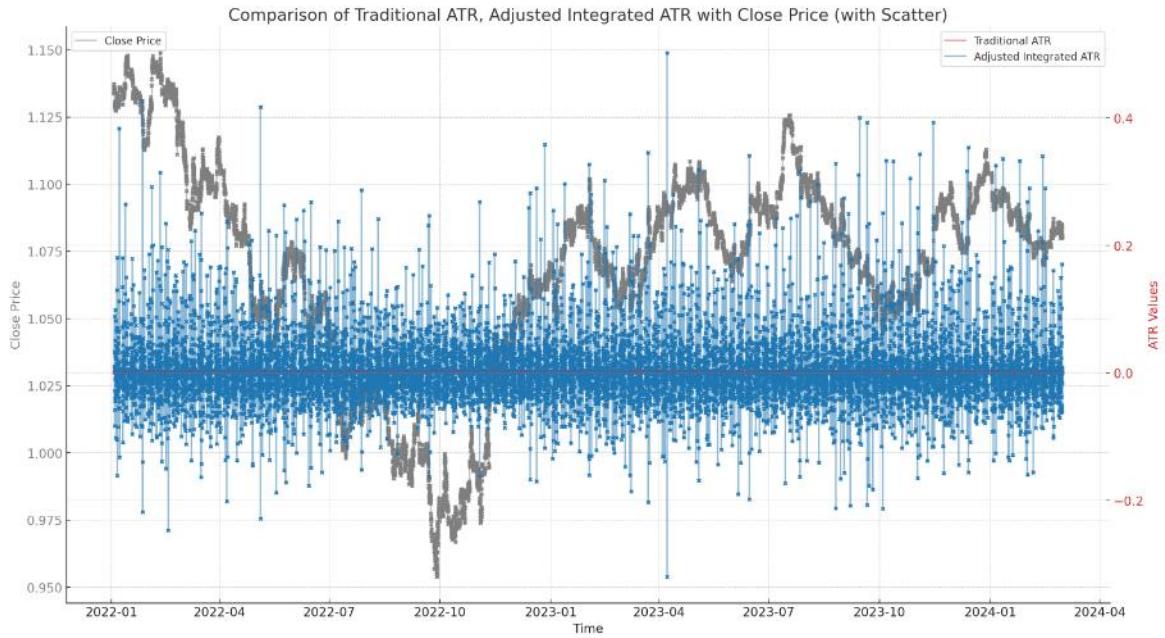


Figure. 5 Comparison of Traditional ATR, Adjusted ATR with close Price

4.5 Summary of Findings

The regression model and visual analyses underscore the importance of advanced ATR metrics in capturing market behavior. ATR emerges as the most influential variable in the regression model, with ROC providing additional explanatory power and the Volume Factor contributing minimally. The Integrated ATR demonstrates superior responsiveness to short-term volatility, outperforming the Traditional ATR in capturing dynamic market changes. Different timeframes of ATR calculation provide complementary insights, with shorter timeframes highlighting abrupt changes and longer timeframes emphasizing sustained trends. The Adjusted Integrated ATR further enhances sensitivity to market dynamics, making it a valuable tool for analyzing both price movements and volatility. These findings emphasize the practical advantages of using Integrated and Adjusted Integrated ATR metrics for understanding market volatility in financial analysis.

5. Conclusion

5.1 Summary of Findings

This study introduces an Integrated ATR (Average True Range) model that enhances traditional ATR analysis by incorporating Rate of Change (ROC) and a Volume Responsiveness Factor. The Integrated ATR provides a dynamic indicator capable of capturing sharp price changes and short-term market volatility more effectively than the traditional ATR.

Through regression analysis, the results demonstrate that ATR has the most significant influence on the dependent variable, with ROC contributing additional but weaker explanatory value. The negligible impact of the Volume Factor emphasizes its limited role in predicting market outcomes. Visual comparisons between Traditional ATR and Integrated ATR further highlight the latter's ability to detect dynamic changes in volatility, particularly in response to abrupt market movements. The comparison across different ATR timeframes and their relationship with the Close Price validates the enhanced sensitivity of the Integrated ATR, making it a superior tool for analyzing short-term market trends.

5.2 Limitations

Despite its advantages, the Integrated ATR model has inherent limitations. First, its complexity, involving multiple components and parameters (α , β , γ), may increase the risk of overfitting, reducing its generalizability across diverse market conditions. Second, the calibration of the coefficients relies on optimization methods that may vary in performance depending on the dataset, requiring careful tuning for accuracy. Finally, external factors such as geopolitical events, macroeconomic conditions, and market sentiment are not explicitly incorporated into the model, potentially limiting its applicability during periods of extreme or unpredictable market behavior.

5.3 Novelty

The Integrated ATR represents a novel advancement in financial volatility analysis by synthesizing traditional ATR with ROC and volume responsiveness. Unlike traditional ATR, which is static and lagging, the Integrated ATR provides a real-time, dynamic perspective on market volatility. The inclusion of a covariance-based analysis to derive component relationships and a systematic approach to weight allocation (α , β , γ) ensures that the model captures multidimensional market dynamics effectively. This approach bridges the gap between traditional volatility indicators and the need for more adaptive tools in modern financial analysis.

5.4 Future Work

To enhance the robustness and applicability of the Integrated ATR model, future research could explore the following directions:

Incorporating External Factors: Extend the model to account for geopolitical events, macroeconomic indicators, and market sentiment, providing a more holistic understanding of volatility drivers.

Adaptive Coefficient Calibration: Develop machine learning-based methods to dynamically adjust α , β , and γ in response to changing market conditions, reducing reliance on static optimization techniques.

Validation Across Diverse Markets: Test the model on a broader range of assets and market environments, including commodities, equities, and cryptocurrencies, to assess its generalizability and effectiveness.

Integration with Predictive Models: Combine the Integrated ATR with advanced predictive models, such as deep learning architectures, to enhance forecasting accuracy for financial decision-making.

This work establishes a strong foundation for the development of more dynamic and comprehensive volatility indicators [23-29]. By addressing its limitations and exploring future enhancements, the Integrated ATR model has the potential to become an indispensable tool for traders, analysts, and researchers in financial markets.

Funding

Not applicable

Institutional Reviewer Board Statement

Not applicable

Informed Consent Statement

Not applicable

Data Availability Statement

Not applicable

Conflict of Interest

The authors declare no conflict of interest.

References

- [1] Andersen, T. G., & Bollerslev, T. (1998). Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts. *International Economic Review*, 39(4), 885–905.
- [2] Andersen, T. G., Bollerslev, T., Diebold, F. X., & Ebens, H. (2001). The Distribution of Realized Stock Return Volatility. *Journal of Financial Economics*, 61(1), 43–76.
- [3] Bollinger, J. (2001). *Bollinger on Bollinger Bands*. McGraw-Hill Education.
- [4] Cont, R. (2001). Empirical Properties of Asset Returns: Stylized Facts and Statistical Issues. *Quantitative Finance*, 1(2), 223–236.
- [5] Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. *Econometrica*, 50(4), 987–1007.
- [6] Engle, R. F., & Kroner, K. F. (1995). Multivariate Simultaneous Generalized ARCH. *Econometric Theory*, 11(1), 122–150.
- [7] Fama, E. F., & French, K. R. (1993). Common Risk Factors in the Returns on Stocks and Bonds. *Journal of Financial Economics*, 33(1), 3–56.
- [8] Garman, M. B., & Klass, M. J. (1980). On the Estimation of Security Price Volatilities from Historical Data. *The Journal of Business*, 53(1), 67–78.
- [9] Hansen, P. R., & Lunde, A. (2005). A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)? *Journal of Applied Econometrics*, 20(7), 873–889.
- [10] Hull, J. (2018). *Options, Futures, and Other Derivatives*. Pearson.
- [11] Liang, Y., Chen, C., Tian, T., & Shu, K. (2023). Fair Classification via Domain Adaptation: A Dual Adversarial Learning Approach. *Frontiers in Big Data*, 5:129.

[12] Mandelbrot, B. (1963). The Variation of Certain Speculative Prices. *The Journal of Business*, 36(4), 394–419.

[13] Murphy, J. J. (1999). *Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications*. New York Institute of Finance.

[14] Patton, A. J. (2006). Modelling Asymmetric Exchange Rate Dependence. *International Economic Review*, 47(2), 527–556.

[15] Schwert, G. W. (1989). Why Does Stock Market Volatility Change Over Time? *The Journal of Finance*, 44(5), 1115–1153.

[16] Taylor, S. J. (1986). *Modelling Financial Time Series*. Wiley.

[17] Tian, T. (2024). *Integrating Deep Learning and Innovative Feature Selection for Improved Short-Term Price Prediction in Futures Markets*. Doctoral Dissertation, Illinois Institute of Technology.

[18] Tian, T., Fang, S., Huang, Z., & Wan, X. (2024). TriFusion Ensemble Model: A Physical Systems Approach to Enhancing E-Commerce Predictive Analytics with an Interpretable Hybrid Ensemble Using SHAP Explainable AI. *Economic Management & Global Business Studies*, 3(1), 15.

[19] Tian, T., Sihan Jia, Jindi Lin, Zichen Huang, Kei O Wang, & Yubing Tang. (2024). Enhancing Industrial Management through AI Integration: A Comprehensive Review of Risk Assessment, Machine Learning Applications, and Data-Driven Strategies. *Economics & Management Information*, 1–18.

[20] Tian, T., Deng, J., Zheng, B., Wan, X., & Lin, J. (2024). AI-Driven Transformation: Revolutionizing Production Management with Machine Learning and Data Visualization. *Journal of Computational Methods in Engineering Applications*, 1–18.

[21] Tian, T., Chen, X., Liu, Z., Huang, Z., & Tang, Y. (2024). Enhancing Organizational Performance: Harnessing AI and NLP for User Feedback Analysis in Product Development. *Innovations in Applied Engineering and Technology*, 3(1), 1–15.

[22] Wilder, J. W. (1978). *New Concepts in Technical Trading Systems*. Trend Research.

Tsay, R. S. (2005). *Analysis of Financial Time Series*. Wiley.

[23] Z. Luo, H. Yan, and X. Pan, ‘Optimizing Transformer Models for Resource-Constrained Environments: A Study on Model Compression Techniques’, *Journal of Computational Methods in Engineering Applications*, pp. 1–12, Nov. 2023, doi: 10.62836/jcmea.v3i1.030107.

[24] H. Yan and D. Shao, ‘Enhancing Transformer Training Efficiency with Dynamic Dropout’, Nov. 05, 2024, arXiv: arXiv:2411.03236. doi: 10.48550/arXiv.2411.03236.

[25] Y. Liu and J. Wang, ‘AI-Driven Health Advice: Evaluating the Potential of Large Language Models as Health Assistants’, *Journal of Computational Methods in Engineering Applications*, pp. 1–7, Nov. 2023, doi: 10.62836/jcmea.v3i1.030106.

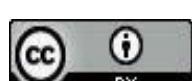
[26] Y. Gan and D. Zhu, ‘The Research on Intelligent News Advertisement Recommendation Algorithm Based on Prompt Learning in End-to-End Large Language Model Architecture’, *Innovations in Applied Engineering and Technology*, pp. 1–19, 2024.

[27] D. Zhu, Y. Gan, and X. Chen, ‘Domain Adaptation-Based Machine Learning Framework for Customer Churn Prediction Across Varing Distributions’, *Journal of Computational Methods in Engineering Applications*, pp. 1–14, 2021.

[28] H. Zhang, D. Zhu, Y. Gan, and S. Xiong, ‘End-to-End Learning-Based Study on the Mamba-ECANet Model for Data Security Intrusion Detection’, *Journal of Information, Technology and Policy*, pp. 1–17, 2024.

[29] D. Zhu, X. Chen, and Y. Gan, ‘A Multi-Model Output Fusion Strategy Based on Various Machine Learning Techniques for Product Price Prediction’, *Journal of Electronic & Information Systems*, vol. 4, no. 1.

© The Author(s) 2024. Published by Hong Kong Multidisciplinary Research Institute (HKMRI).



This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.