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Abstract: In today's logistics and delivery landscape, mobile robot delivery systems have 
attracted considerable attention due to their efficiency and adaptability. Nevertheless, 
current robotic delivery solutions encounter various obstacles in complex and 
dynamically changing environments. Traditional algorithms, for instance, struggle with 
processing high-dimensional and unstructured data, resulting in inefficient adaptation to 
real-time environmental changes, which compromises accuracy and efficiency in path 
planning and task execution. Moreover, the lack of robust perception and decision-
making mechanisms limits the robots' ability to handle intricate scenarios and fluctuating 
delivery demands. To tackle these challenges, this paper proposes an optimization 
approach for mobile robot delivery systems that leverages deep learning. The study 
initially integrates a spatial attention mechanism within the model, enabling the robot to 
focus on critical environmental regions and dynamically adjust attention points, thus 
enhancing obstacle recognition and avoidance in complex settings, which improves 
navigation accuracy and path planning. Furthermore, the Deep Deterministic Policy 
Gradient (DDPG) algorithm is utilized to optimize policies, supporting efficient learning 
in high-dimensional continuous spaces and empowering robots to acquire effective 
delivery strategies in challenging environments. Finally, an end-to-end optimization 
approach allows the system to convert sensor inputs directly into control commands, 
reducing intermediate complexity and minimizing error accumulation, thereby 
streamlining the system’s structure. Experimental results confirm that the proposed 
method substantially boosts delivery system performance, excelling in key metrics like 
path planning accuracy, task efficiency, and system robustness. The successful 
integration of the spatial attention mechanism with the deep policy gradient algorithm 
demonstrates a valuable new approach for advancing future robot delivery system 
optimizations. 
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1 Introduction 

With the popularization of e-commerce and online shopping, there has been a rapid increase in 

logistics demand, driving the rapid development of delivery systems. These systems not only need 
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to efficiently manage and transport goods but also ensure timely and accurate delivery to consumers. 

Efficient logistics and delivery systems can not only reduce operating costs but also enhance 

customer satisfaction, thus improving the competitiveness of businesses (Gomes et al., 2023). As 

an innovative technology in the logistics industry, robot mobile delivery systems demonstrate 

tremendous application potential. Through automation and intelligence, robots can efficiently 

execute delivery tasks, reduce manual intervention, and improve work efficiency. At the same time, 

robots possess flexible path planning and navigation capabilities, enabling them to autonomously 

complete delivery tasks in different environments, further enhancing the adaptability and flexibility 

of the system. Especially in scenarios such as warehousing and urban delivery, robot delivery 

systems can significantly improve overall operational efficiency. Despite the significant advantages 

of robot delivery systems, they still face many challenges in complex and dynamic environments 

(Jiang & Huang, 2022). Traditional path planning algorithms exhibit increased computational 

complexity when dealing with high-dimensional and unstructured data. These algorithms may need 

to process a large number of nodes and edges in complex environments, resulting in significantly 

increased computation time, making it difficult to meet real-time requirements (Jones et al., 2023). 

In dynamically changing environments, it is difficult to adapt quickly to changes in the environment. 

Each time the environment changes, the path needs to be recalculated from scratch, leading to 

inefficiencies (Yan et al., 2020). For example, when new obstacles or blocked paths appear, it is 

necessary to recalculate from scratch, which cannot efficiently update existing paths. Furthermore, 

traditional algorithms typically rely on static maps and preset paths, lacking dynamic adjustment 

capabilities. Even if a feasible path is found, it is difficult to guarantee that it is the globally optimal 

path, especially in complex environments, where the algorithm may only find a local optimal 

solution and fail to discover a better global path (Chang et al., 2021). Additionally, these algorithms 

perform poorly in handling dynamic obstacles, typically based on predefined static maps, lacking 

real-time perception and processing capabilities for dynamic obstacles. When robots encounter 

moving obstacles in complex environments, they may not be able to adjust the path in time, leading 

to collisions or path planning failures (Wang et al., 2021). 

Deep learning continues to evolve, and the application of robot mobile delivery systems in 

modern logistics is becoming increasingly widespread. Faced with the many challenges of existing 

delivery systems in complex and dynamically changing environments, researchers are constantly 

exploring new methods and technologies. Spatial attention mechanism, as an advanced technology, 

significantly enhances the perception ability of robots by focusing on key areas in the environment 

(Zhou et al., 2022). This mechanism can dynamically adjust the focus, enabling robots to better 

identify and avoid obstacles in complex environments, thereby improving navigation and path 

planning accuracy. However, the spatial attention mechanism also faces certain challenges in the 

implementation process, including how to efficiently calculate attention weights and its application 

in high-dimensional data. Deep Deterministic Policy Gradient (DDPG) algorithm is a combination 

of policy gradient methods and deep learning algorithms, suitable for reinforcement learning tasks 

in continuous action spaces (Wu & Li, 2020). The DDPG algorithm models policies through deep 

neural networks and optimizes them using policy gradient methods, enabling efficient learning in 

high-dimensional continuous spaces. Although DDPG performs well in policy optimization in 

complex environments, it also has some limitations, such as stability and convergence speed issues 

in high-noise environments (Wang et al., 2020). End-to-end optimization is a holistic optimization 

solution from input to output, aimed at reducing the complexity of intermediate links and error 

accumulation. The design of end-to-end optimization allows the system to directly input sensor 

data to output control commands, not only simplifying the system structure but also improving 

overall response speed and reliability. However, end-to-end optimization also faces some 

challenges, such as the complexity of model training and the demand for large-scale data (Chen et 

al., 2023). To address these issues, this paper proposes a robot mobile delivery system optimization 
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method combining spatial attention mechanism, Deep Deterministic Policy Gradient algorithm, 

and end-to-end optimization, aiming to solve the main problems faced by existing systems in 

complex and dynamic environments. By introducing the spatial attention mechanism, we enhance 

the system's perception ability to dynamically changing environments; using the DDPG algorithm 

for policy optimization improves the efficiency and accuracy of path selection and task execution; 

through an end-to-end optimization solution, overall performance improvement from input to 

output is achieved. The model combines advanced deep learning computations to provide new ideas 

and methods for future optimization of robot delivery systems. 

The structure of this paper is arranged as follows: Part 1 introduces the background, motivation, 

and objectives of the research, emphasizing the importance of robot mobile delivery systems in 

modern logistics and the main challenges faced by existing systems in complex and dynamic 

environments. Part 2 introduces related work, including existing methods for optimizing robot 

delivery systems. A detailed review of path planning and navigation technology, as well as the 

application of deep reinforcement learning in robot control, is provided. Part 3 describes in detail 

the proposed method, including the implementation of spatial attention mechanism and DDPG 

algorithm. This section explains how to apply the spatial attention mechanism to robot perception, 

enhancing its adaptability to complex environments, and optimize delivery strategies through the 

DDPG algorithm to achieve efficient path planning and task execution. Part 4 describes the design 

process of the experiments, the selection of datasets, the setting of evaluation metrics, and the 

analysis of experimental results. The effectiveness of the proposed method in improving the overall 

performance of the delivery system is verified through experiments. Part 5 is the conclusion and 

future work, summarizing the main contributions and research results of this paper, and proposing 

future research directions and improvement suggestions, providing references for further 

optimization of robot mobile delivery systems. 

2 Relevant work 

Path planning and navigation are core components of robot mobile delivery systems. Traditional 

path planning algorithms include the A* algorithm (Erke et al., 2020), Dijkstra's algorithm 

(Mirahadi & McCabe, 2021), and the Rapidly-exploring Random Tree (RRT) algorithm (Wu et al., 

2021). These algorithms perform well in static environments, capable of finding the shortest path 

from the starting point to the target point. However, they have limitations in complex and dynamic 

environments. For example, A* and Dijkstra's algorithms exhibit high computational complexity 

when handling high-dimensional and unstructured data, making real-time applications challenging. 

Additionally, these algorithms typically rely on predefined static maps, lacking adaptability to 

environmental changes. To overcome these issues, researchers have proposed various improved 

methods. For instance, the Real-Time A* (RTA*) algorithm achieves real-time performance by 

limiting search depth and computation time per decision, considering only a limited number of 

future steps at each stage, making it suitable for resource-constrained embedded systems and robot 

navigation (Zhang et al., 2020). Lifelong Planning A* (LPA*) can quickly update the shortest path 

when the graph structure changes, updating only the affected parts when the environment changes, 

thereby improving path update efficiency (Segato et al., 2021). Focused D*, a further optimization 

of the D* algorithm, enhances efficiency and dynamic adaptability by concentrating the search on 

regions most likely to affect the path during planning (Qadir et al., 2021). However, these methods 

still face challenges in handling dynamic obstacles and high-dimensional data. In recent years, deep 

learning-based path planning methods have emerged, significantly improving the efficiency and 

accuracy of path planning by learning strategies in complex environments. For example, Deep Q-

Network (DQN) and Deep Deterministic Policy Gradient (DDPG) reinforcement learning 

algorithms have been successfully applied to robot navigation tasks. 
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Deep Reinforcement Learning (DRL) combines the advantages of deep learning and 

reinforcement learning, suitable for control tasks in high-dimensional continuous spaces. In the 

field of robot control, DRL has been widely applied to path planning, navigation, and task execution. 

DQN combines Q-learning with deep neural networks to address high-dimensional state space 

problems by approximating the Q-value function with neural networks, enabling effective learning 

in discrete action spaces. In warehouse automation, mobile robots use the DQN algorithm to 

achieve autonomous navigation, avoiding collisions and efficiently completing tasks (Lee & Yusuf, 

2022). However, DQN performs poorly in continuous action spaces, a limitation addressed by 

DDPG. By introducing policy and value networks, DDPG can optimize policies in high-

dimensional continuous action spaces. In the autonomous driving field, deep learning technologies 

are widely applied in perception, decision-making, and control systems. Perception systems 

typically use Convolutional Neural Networks (CNNs) to process sensor data from cameras, LiDAR, 

and radar. Tesla's autonomous driving system uses deep learning models to recognize road signs, 

lane markings, and pedestrians, making driving decisions accordingly. Waymo utilizes deep 

learning models for environmental perception and dynamic obstacle detection, ensuring vehicle 

safety (Gupta et al., 2021). Significant progress has also been made in controlling humanoid robots 

with deep learning. Boston Dynamics' Atlas robot uses deep reinforcement learning algorithms to 

perform complex actions and behaviors such as running, jumping, and balancing. By learning from 

sensor data, Atlas can adjust its action strategies to cope with various terrains and environmental 

changes (Neri & Dinarama, 2024). 

Additionally, Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) 

networks have notable advantages in handling time series data, making them suitable for path 

planning tasks in dynamic environments. By remembering and predicting environmental changes 

(Torres et al., 2021), RNNs and LSTMs can help mobile robots control paths more effectively in 

dynamic environments. LSTM networks are commonly used to predict the motion trajectories of 

dynamic obstacles and adjust the robot's path to avoid collisions. LSTM is also employed in multi-

robot systems for task scheduling and path optimization, improving system coordination and 

efficiency. Despite addressing the short-term memory issues of RNNs to some extent, LSTM can 

still suffer from information loss or forgetting over particularly long-time sequences. Additionally, 

the network's complex structure with numerous parameters can result in high computational 

overhead during inference and prediction stages. For real-time path planning tasks, excessive 

computational complexity can lead to response delays, failing to meet real-time requirements. 

Generative Adversarial Networks (GANs) can generate realistic environmental simulation data 

through adversarial training between the generator and the discriminator, assisting in the training 

of path planning algorithms (Zhao et al., 2022). GANs can be used to create virtual training 

environments, allowing mobile robots to learn and optimize their path planning strategies in 

simulated settings, thus reducing training costs and risks in real environments. In the field of 

autonomous driving, GANs are employed to generate various driving scenarios, aiding the training 

and testing of autonomous driving systems in diverse complex situations. However, the training 

process of GANs is often unstable and prone to mode collapse, where the generator produces only 

a limited variety of samples instead of covering the entire data distribution. This phenomenon can 

lead to a lack of diversity in the generated data, affecting the model's generalization ability and 

practical application effectiveness. Spatial attention mechanisms, which can dynamically adjust 

focus areas, are widely used in computer vision and natural language processing. In robot 

perception and control, spatial attention mechanisms significantly enhance perception and 

decision-making capabilities by focusing on key areas of the environment. Models combining 

CNNs and attention mechanisms can better identify obstacles and navigation targets in complex 

environments, improving path planning accuracy. Although spatial attention mechanisms can 

enhance perception capabilities in static environments, their adaptability and real-time performance 
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may still be insufficient in highly dynamic and rapidly changing environments, potentially failing 

to respond in real time to quickly changing obstacles and paths in practical applications. Therefore, 

this paper proposes a novel robot mobile delivery system optimization scheme combining spatial 

attention mechanisms, Deep Deterministic Policy Gradient (DDPG) algorithms, and end-to-end 

optimization methods. By introducing spatial attention mechanisms, the perception capability and 

decision accuracy of the robot are enhanced through dynamically adjusting the environmental focus 

areas. Additionally, the DDPG algorithm is adopted for optimizing delivery strategies. DDPG, 

combining policy gradient methods and deep learning techniques, achieves efficient learning in 

high-dimensional continuous action spaces through the mutual optimization of policy and value 

networks. Finally, this paper implements an end-to-end optimization scheme, directly inputting 

sensor data into control command output, simplifying the system structure, reducing the complexity 

and error accumulation of intermediate links, not only improving the system's response speed and 

reliability but also enhancing overall performance. 

3 Method 

Figure 1 shows the overall algorithm architecture of the robot delivery system used in this article. 

 

Figure 1. Overall algorithm architecture. 

3.1 Spatial Attention Mechanism 

The application of spatial attention mechanism in robot mobile delivery systems aims to enhance 

the perception capabilities of robots, enabling them to navigate and plan paths more accurately in 

complex environments. Its core lies in assigning different attention weights to different regions of 

the input feature map, focusing on key areas in the environment to improve the precision of 

perception and decision-making (Li et al., 2022). In this paper, the spatial attention mechanism is 

mainly divided into two steps: attention weight calculation and attention feature map generation. 

The architecture diagram of SAM is shown in Figure 2. 
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Figure 2. Structure diagram of SAM. 

 

Firstly, for a given input feature map F ∈ RC×H×W, where C, H, and W represent the number 

of channels, height, and width of the feature map, respectively, we need to calculate the attention 

weights for each spatial position. Representing the feature vector at each position of F as fi,j ∈ RC, 

where i and j represent the indices of height and width of the feature map, respectively, the 

calculation of attention weights can be achieved through a simple feedforward neural network, 

formalized as: 

, ,( )i j i j b  = +W f  (1) 

Here, Wα ∈ R𝟙×C and bα ∈ R represent the weight matrix and bias term, respectively, and σ 

denotes the activation function (such as the sigmoid function). The computed αi,j represents the 

attention weight at position (i, j) . To ensure that the sum of all attention weights equals 1, 

normalization can be applied:  

 

(2) 

 

With normalized attention weights, we can generate the attention feature map. The generation 

of the attention feature map is achieved by weighted summation of each position of the input feature 

map, formalized as: 

 

(3) 

 

Here, Fatt ∈ RC represents the attention feature map, which integrates the feature representations 

with attention weights. The generated attention feature map Fatt can be used for subsequent path 

planning and navigation decisions. In robot mobile delivery systems, the attention feature map 

serves as input to guide robots in making real-time decisions in complex environments. Specific 

applications include obstacle recognition, path selection, and adaptation to dynamic environments. 

The spatial attention mechanism significantly enhances the perception and decision-making 

capabilities of robots in complex environments, enabling them to perform mobile delivery tasks 

more efficiently. 
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3.2 DDPG Architecture 

Deep Deterministic Policy Gradient (DDPG) is a reinforcement learning algorithm that combines 

policy gradient methods with deep learning, suitable for tasks in high-dimensional continuous 

action spaces. By using deep neural networks to approximate the policy and value functions, the 

DDPG algorithm achieves efficient learning in complex environments (Wang et al., 2022). DDPG 

integrates the advantages of Deep Q-Learning (DQN) and policy gradient methods, employing two 

deep neural networks: the policy network (Actor) and the value network (Critic) for decision 

making and evaluation, respectively. These networks are optimized jointly to continuously improve 

the policy in high-dimensional continuous action spaces. The architecture diagram of DDPG is 

shown in Figure 3  

 

Figure 3. Structure diagram of DDPG. 

 

The policy network μ(s|θμ) takes the state s as input and outputs the corresponding action 

a. The parameters θμ of the policy network are optimized using policy gradients to maximize the 

expected cumulative reward for the actions chosen in a given state. The value network Q(s, a|θQ) 
takes the state s and action a as inputs and outputs the corresponding state-action value (Q-value). 

The parameters θQ of the value network are optimized by minimizing the Temporal Difference 

(TD) error, which evaluates the effectiveness of the policy. 

Initialization of Networks and Experience Replay Buffer: Initialize the policy network μ(s|θμ) 
and the value network Q(s, a|θQ), as well as their target networks μ′(s|θμ

′
) and Q′(s, a|θQ

′
). 

The target networks are used to stabilize the training process. Initialize the experience replay buffer 

𝒟 to store the agent's experiences. Experience Collection: Execute actions in the environment 

based on the current policy network, selecting actions at = μ(st|θ
μ) +𝒩𝓉 , where 𝒩𝓉  is the 

exploration noise. After executing an action, observe the next state st+1 and reward rt, and store 

the experience (st, at, rt, st+1) in the experience replay buffer 𝒟. 
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Experience Replay: Compute the expected cumulative reward for the future state using the 

target value network and target policy network. Randomly sample a minibatch (si, ai, ri, si+1) 
from the experience replay buffer. Calculate the target Q-value yi: 

                        (4) 

where γ is the discount factor representing the decay rate of future rewards. Update the Value 

Network: Minimize the Temporal Difference error to update the parameters θQ  of the value 

network: 

                                 
21

( ( , | ))Q

i i i

i

L y Q s a
N

= −                              (5) 

where N is the size of the minibatch. This loss function measures the error between the current 

value network's predicted Q-values and the target Q-values, guiding the parameter updates of the 

value network. 

Update the Policy Network: Using policy gradient methods, the update direction of the policy 

network parameters is determined by the gradient of the Q-values from the value network and the 

gradient of the actions from the policy network. Update the policy network parameters θμ via 

policy gradient: 

                       , ( )

1
( , | ) | ( | ) |

i i i

Q

a s s a s s s

i

J Q s a s
N

 



 
  = = =                (6) 

Soft Update of Target Networks: Soft update the parameters of the target policy network and target 

value network: 

                            (1 )Q Q Q    
 + −                             (7) 

                             (1 )     
 
 + −                             (8) 

where τ ≪ 1 is the step size for the soft update. 

3.3 End-to-End Optimization 

End-to-end optimization reduces the complexity and error accumulation in intermediate stages. By 

directly learning the mapping from raw sensor inputs to final control commands, end-to-end 

optimization significantly improves response speed and reliability in robotic systems. This 

approach uses a unified neural network model to directly map sensor inputs to control commands, 

simplifying the system structure and enhancing overall performance (Zhao et al., 2023). The 

architecture diagram of end-to-end optimization is shown in Figure 4. 

1 1( , ( | ) | )Q

i i i iy r Q s s    
 

+ +
 = +
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Figure 4. Structure diagram of end-to-end optimization. 

 

In end-to-end optimization, neural network models typically include convolutional layers (for 

processing image data), recurrent layers (for handling time-series data), and fully connected layers 

(for generating control commands). The input layer receives data from sensors such as camera 

images and LiDAR point clouds. Convolutional layers extract high-level features from the input 

data, capturing key information from the environment. Recurrent layers handle time-series data, 

capturing changes in the dynamic environment. Fully connected layers map the extracted features 

to specific control commands, such as the robot's speed and direction. 

The training process for end-to-end optimization is conducted through either reinforcement 

learning or supervised learning. The state st is defined as the robot's sensory information at time 

step t, such as camera images or LiDAR point clouds. The action at is the control command at 

time step t. The reward rt is the reward obtained after the robot executes the action at time step 

t, such as the reduction in distance to the target point. The loss function measures the discrepancy 

between the predicted control commands and the actual desired commands. Common loss functions 

include Mean Squared Error (MSE) and Policy Gradient Loss. The MSE loss function is given by: 

                                   2

MSE

1

1
ˆ( )

N

i i

i

L a a
N =

= −                            (9) 

where N is the number of samples, ai is the actual control command, and aî is the predicted 

control command. The policy gradient loss is given by: 

                                  PG [ log ( | )]t t tL R a s= −                         (10) 

where Rt is the cumulative reward and π(at|st) is the policy for selecting action at in state st. 

Gradient descent is used to optimize the neural network parameters by minimizing the loss function. 

The gradient descent update rule is: 

𝜃 ← 𝜃 − 𝛼∇𝜃𝐿  (11) 
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where θ represents the network parameters, α is the learning rate, and ∇θL is the gradient of the 

loss function. End-to-end optimization enables overall optimization from input to output, 

significantly improving the response speed and reliability of robotic systems. By directly generating 

control commands from sensor inputs, neural networks simplify the system structure, reducing the 

complexity and error accumulation in intermediate stages. 

4 Experiment 

The experimental flow chart of this paper is shown in Figure 5. 

 

Figure 5. Experimental flowchart. 

4.1 Experimental Environment 

In terms of hardware environment, our computing platform is configured with an Intel Core i9-

10900K CPU, suitable for parallel computing and handling complex tasks. The GPU is an NVIDIA 

GeForce RTX 3090, supporting accelerated training and inference of deep learning models. 

Additionally, it has 256GB of memory, supporting large-scale data processing and model training. 

As for the robot platform, we utilize the TurtleBot 3, an open-source platform designed for robot 

research and education, with support for ROS (Robot Operating System). Sensor configurations 

include the Intel RealSense D435i depth camera and Hokuyo URG-04LX laser rangefinder, which 

are high-precision sensors used for environment perception and navigation. This experiment is 

conducted on the Ubuntu 20.04 LTS operating system, known for its stability and wide range of 

applications, making it particularly suitable for machine learning and robotics development. Python 

3.8 is chosen as the programming language, which is a mainstream language in the fields of 

machine learning and deep learning, with rich library and tool support. 

4.2 Experimental Data 

• KITTI Dataset 

The KITTI dataset is a benchmark dataset widely used in autonomous driving and robotics research. 

It was jointly created by the Karlsruhe Institute of Technology and the Toyota Technological 
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Institute at Chicago, containing high-quality images and LiDAR data from real driving 

environments. The dataset is collected by mounting cameras and LiDAR sensors on the top of cars, 

covering various urban, rural, and highway scenes. Content of the KITTI dataset includes color and 

grayscale images, 3D point cloud data, GPS information, and IMU readings. Its diversity and 

richness make it an essential resource for evaluating the performance of visual deep learning and 

path planning algorithms. Researchers can utilize the KITTI dataset for tasks such as object 

detection, semantic segmentation, 3D reconstruction, path planning, and autonomous driving. By 

testing in complex and dynamic environments, the KITTI dataset provides a solid foundation for 

validating the robustness and effectiveness of algorithms. 

• COCO Dataset 

The COCO (Common Objects in Context) dataset is a widely used benchmark dataset for computer 

vision research, created by Microsoft. It consists of over 200,000 high-quality images, annotated 

with more than 2.5 million instance objects spanning 80 common object categories. Each image is 

annotated not only with bounding boxes for objects but also detailed segmentation masks, 

keypoints, and image-level labels. These annotations make the COCO dataset widely applicable in 

tasks such as object detection, semantic segmentation, instance segmentation, human pose 

estimation, and image captioning. The images in the COCO dataset are collected from various real-

life scenarios, including indoor and outdoor environments, featuring rich background information 

and complex object layouts, providing an ideal resource for training and testing algorithms in 

diverse and complex scenes. Its diversity and high-quality annotations make the COCO dataset an 

important tool for evaluating and driving the development of computer vision algorithms. 

• RobotCar Dataset 

The RobotCar dataset is a benchmark dataset for autonomous driving and robotics research created 

by the Mobile Robotics Group at the University of Oxford. This dataset comprises rich data 

collected under various time, weather, and seasonal conditions in the city of Oxford, covering 

diverse urban driving environments. Data collection in the RobotCar dataset is facilitated through 

multiple sensors mounted on vehicles, including stereo cameras, LiDAR, GPS, and Inertial 

Measurement Units (IMU). These sensors provide high-resolution images, 3D point cloud data, 

precise location information, and vehicle motion data. The diversity and detailed annotations of the 

RobotCar dataset make it a crucial resource for evaluating and developing tasks such as 

autonomous driving systems, 3D reconstruction, path planning, and environment perception. 

Researchers can utilize this dataset for robustness testing across different weather and seasonal 

variations, validating algorithms' adaptability and stability under various environmental conditions. 

• NuScenes Dataset 

The NuScenes dataset, created by Motional, is an advanced benchmark dataset for autonomous 

driving research. It collects real-world data from complex urban environments in Boston and 

Singapore, covering various weather and lighting conditions. The NuScenes dataset comprises data 

from multiple sensors, including panoramic images from six cameras, point cloud data from five 

LiDARs, millimeter-wave radar, GPS, and Inertial Measurement Units (IMU). These sensors 

provide comprehensive environmental perception information, aiding researchers in studying tasks 

such as multimodal perception, 3D object detection, tracking, semantic segmentation, and scene 

understanding. In addition to high-resolution sensor data, the NuScenes dataset also includes 

detailed annotation information such as object bounding boxes, category labels, and trajectories. 

These rich annotations make NuScenes an essential resource for evaluating the robustness and 

performance of autonomous driving algorithms. 
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4.3 Evaluation Metrics 

• Accuracy 

Accuracy represents the proportion of correct predictions made by a model out of all predictions. 

It is an intuitive metric for assessing the overall correctness of a model, particularly useful for 

evaluating the performance of tasks such as robot perception and environmental understanding. 

The formula for accuracy is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
(12) 

where TP is the number of instances in path planning where real obstacles are correctly detected. 

TN is the number of instances where non-existing obstacles are correctly recognized as non-

existing. FP is the number of instances where non-existing obstacles are incorrectly detected as 

existing. FN is the number of instances where real obstacles are not detected. 

• Precision： 

Precision represents the proportion of samples predicted as positive that are actually positive. 

Precision reflects the accuracy of a model, and particularly in dealing with imbalanced datasets, 

precision is a crucial performance metric. The mathematical definition of precision is as follows: 

𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(13) 

• Recall： 

Recall represents the proportion of all actual positive samples that are correctly predicted as 

positive. Recall reflects the detection capability of a model, particularly in cases where there are 

many missed detections. Recall evaluates the completeness of obstacle detection in the environment 

during robot path planning. High recall indicates that the robot can detect most of the actual 

obstacles, reducing missed detections and improving the safety of path planning. The mathematical 

definition of recall is as follows: 

𝑅𝑒 𝑐 𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(14) 

• F1-Score： 

The F1 score is a comprehensive metric for evaluating the performance of classification models, 

combining both precision and recall. It provides a more complete assessment of classification 

problems in imbalanced datasets. In dynamic environments, the F1 score evaluates the robot's 

overall capability to handle real-time changes in environmental information. A high F1 score 

indicates that the robot can accurately identify newly appearing obstacles while minimizing missed 

detections, thereby improving navigation efficiency and safety. The formula is as follows: 

                           
Precision Recall

1 2
Precision Recall

F


= 
+

                        (15) 

4.4 Experimental Comparison and Analysis 

In this section, we conduct a comprehensive comparison between six different path optimization 

algorithms and our proposed method. This evaluation utilizes four datasets: KITTI, COCO, 

RobotCar, and NuScenes. These datasets encompass various complex environments, including 

urban streets, indoor scenes, and challenging driving conditions. To thoroughly assess the 
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performance of each algorithm, we employ four key metrics: Accuracy, Precision, Recall, and F1 

Score. We will comparatively analyze the strengths and weaknesses of each algorithm and discuss 

their applicability in different environments and tasks. 

 

Table 1. Comparison of indicators of various models under KITTI Dataset and COCO Dataset. 

Model 
KITTI Dataset COCO Dataset 

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score 

Zhang L et al. (Zhang et al., 2020a) 85.89 86.09 88.82 87.43 82.81 92.54 89.65 91.07 

Aslan MF et al. (Aslan et al., 2022) 88.10 86.28 87.74 87.00 84.41 85.01 87.09 86.04 

Lee DH et al. (Lee & Liu, 2023) 91.00 84.81 86.59 85.69 87.19 85.59 88.39 86.97 

Gu Y et al. (Gu et al., 2023) 87.32 87.85 84.36 86.07 88.86 90.32 85.45 87.82 

Huang R et al. (Huang et al., 2023) 90.60 85.38 85.39 85.38 87.12 88.26 87.89 88.07 

Chen L et al. (Chen et al., 2022) 84.99 83.52 86.42 84.95 88.05 92.67 90.68 91.66 

Ours 93.46 92.54 94.43 93.48 92.73 94.61 92.43 93.51 

 

Table 1 presents the comparison results of six different path optimization algorithms and our 

proposed method on four key metrics (accuracy, precision, recall, and F1 score) across the KITTI 

and COCO datasets. It can be observed from the table that our proposed method performs 

excellently on both datasets, outperforming other methods across all metrics. Specifically, on the 

KITTI dataset, our method achieves an accuracy of 93.46%, precision of 92.54%, recall of 94.43%, 

and an F1 score of 93.48%; while on the COCO dataset, the accuracy is 92.73%, precision is 

94.61%, recall is 92.43%, and F1 score is 93.51%. In comparison, other methods show varied 

performance across different metrics, but overall none surpasses our method, particularly in the 

comprehensive metric of F1 score. This result indicates that our proposed method holds significant 

performance advantages in path planning tasks across diverse and complex environments, 

particularly in enhancing the accuracy and completeness of detection. At the same time, we show 

the visualization of various indicator comparisons in Figure 6. 

 

Figure 6. Comparative visualization of each model indicator under the KITTI Dataset and COCO 

Dataset. 
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Table 2. Comparison of indicators of various models under the RobotCar Dataset and NuScenes 

Dataset. 

Model 
RobotCar Dataset NuScenes Dataset 

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score 

Zhang L et al. (Zhang et al., 2020a) 83.39 81.20 82.47 81.83 87.58 85.42 90.98 88.11 

Aslan MF et al. (Aslan et al., 2022) 84.07 89.32 86.25 87.76 88.40 90.31 88.66 89.48 

Lee DH et al. (Lee & Liu, 2023) 83.87 81.91 89.41 85.50 90.53 91.18 91.53 91.35 

Gu Y et al. (Gu et al., 2023) 87.74 80.22 88.57 84.19 87.30 83.65 87.77 85.66 

Huang R et al. (Huang et al., 2023) 88.89 81.35 82.15 81.75 90.17 82.41 88.76 85.47 

Chen L et al. (Chen et al., 2022) 88.35 90.19 83.66 86.80 86.48 89.26 91.85 90.54 

Ours 91.43 93.43 92.43 92.93 94.24 93.76 95.63 94.69 

 

Table 2 presents the comparison results of algorithms on the RobotCar and NuScenes datasets. 

From the table, it is evident that our method significantly outperforms others in terms of accuracy 

(91.43%), precision (93.43%), recall (92.43%), and F1 score (92.93%) on the RobotCar dataset. 

Similarly, on the NuScenes dataset, our method demonstrates excellent performance in accuracy 

(94.24%), precision (93.76%), recall (95.63%), and F1 score (94.69%). In comparison, while some 

methods show better performance in certain metrics, such as Aslan MF et al.'s precision (89.32%) 

on the RobotCar dataset and Chen L et al.'s recall (91.85%) on the NuScenes dataset, none surpasses 

our method overall. This indicates that our proposed method holds significant performance 

advantages in path planning tasks across various complex driving environments. At the same time, 

we show the visualization of various indicator comparisons in Figure 7. 

 

Figure 7. Comparative visualization of each model indicator under the RobotCar Dataset and 

NuScenes Dataset. 
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Table 3. Metrics of multiple models on four datasets. 

KITTI Dataset COCO Dataset 

Model 

Paramet

ers 

(M) 

Inference 

Time(ms) 

Trainning 

Time(s) 

Paramet

ers 

(M) 

Inference 

Time(ms) 

Trainning 

Time(s) 

Zhang L et al. (Zhang et al., 

2020a) 
441.09 391.13 214.57 426.47 283.61 260.81 

Aslan MF et al. (Aslan et al., 

2022) 
525.52 339.68 260.42 497.47 385.35 278.70 

Lee DH et al. (Lee & Liu, 

2023) 
388.58 346.01 234.46 433.20 312.43 280.25 

Gu Y et al. (Gu et al., 2023) 492.10 398.87 229.25 397.64 274.91 211.57 

Huang R et al. (Huang et al., 

2023) 
405.60 314.69 241.51 472.63 290.25 242.96 

Chen L et al. (Chen et al., 

2022) 
422.81 295.16 220.05 442.68 324.70 204.36 

Ours 367.24 264.34 161.45 374.73 257.94 182.43 

RobotCar Dataset NuScenes Dataset 

Model 

Paramet

ers 

(M) 

Inference 

Time(ms) 

Trainning 

Time(s) 

Paramet

ers 

(M) 

Inference 

Time(ms) 

Trainning 

Time(s) 

Zhang L et al. (Zhang et al., 

2020a) 
477.26 379.27 213.06 465.14 342.26 229.57 

Aslan MF et al. (Aslan et al., 

2022) 
396.20 385.73 202.88 384.25 323.36 265.15 

Lee DH et al. (Lee & Liu, 

2023) 
387.62 315.08 195.18 471.66 297.13 249.15 

Gu Y et al. (Gu et al., 2023) 458.96 397.01 270.96 452.13 300.50 298.61 

Huang R et al. (Huang et al., 

2023) 
504.18 385.52 268.73 378.21 307.37 228.53 

Chen L et al. (Chen et al., 

2022) 
475.99 301.89 266.20 415.66 316.34 236.99 

Ours 362.94 261.84 178.02 356.64 279.71 193.41 

 

Table 3 presents a comparative analysis of the number of model parameters (Parameters), 

inference time (Inference Time), and training time (Training Time) for various path optimization 

algorithms across four datasets. In terms of the number of model parameters, our method 

consistently exhibits the lowest parameter count across all datasets (e.g., 367.24 M for the KITTI 

dataset and 374.73 M for the COCO dataset). This indicates that our method achieves efficient path 

optimization while maintaining a minimal parameter count. Regarding inference time, our method 

consistently demonstrates the fastest inference speed across all datasets (e.g., 264.34 ms for the 



 

16 

 

KITTI dataset and 257.94 ms for the COCO dataset). This suggests that our method has a significant 

speed advantage in real-time applications, enabling faster path planning and decision-making. In 

terms of training time, our method shows the shortest training time across all datasets (e.g., 161.45 

s for the KITTI dataset and 182.43 s for the COCO dataset). This indicates that our method is more 

efficient during model training, achieving faster convergence to the optimal state. On the other 

hand, Aslan MF et al. have longer inference and training times on certain datasets (e.g., 323.36 ms 

inference time and 265.15 s training time on the NuScenes dataset), while Gu Y et al. have a larger 

number of model parameters (e.g., 492.10 M on the KITTI dataset). Overall, our proposed method 

performs excellently on all key metrics across the four datasets, indicating significant performance 

advantages in path optimization tasks, particularly in model simplicity, inference speed, and 

training efficiency. At the same time, we show the visualization of various indicator comparisons 

in Figure 8. 

 

Figure 8. Visual comparison of indicators of multiple models on four datasets. 

 

Table 4. Ablation experiments of this model on the KITTI Dataset and COCO Dataset. 

Model 

Dataset 

KITTI Dataset COCO Dataset 

Precision Recall F1-Score Precision Recall F1-Score 

baseline 78.64 79.24 78.94 81.73 79.37 80.53 

+SAM 83.03 84.73 83.87 86.27 86.24 86.25 

＋DDPG 89.38 90.93 90.15 91.06 88.41 89.72 

+SAM-DDPG 92.54 94.43 93.48 94.61 92.43 93.51 

 

Table 4 presents the results of ablation experiments conducted on the KITTI dataset and COCO 

dataset. For the KITTI dataset, the baseline model achieves a precision of 78.64%, recall of 79.24%, 

and an F1-score of 78.94%. Introducing the SAM module significantly improves performance, with 

precision reaching 83.03%, recall at 84.73%, and an F1-score of 83.87%. Subsequently, 

incorporating the DDPG module on top of SAM further enhances performance, with precision, 

recall, and F1-score reaching 89.38%, 90.93%, and 90.15%, respectively. Finally, combining SAM 

and DDPG results in the best performance, with precision at 92.54%, recall at 94.43%, and an F1-

score of 93.48%. Similar trends are observed for the COCO dataset: as modules are introduced, 

performance steadily improves, with the SAM-DDPG combination achieving the best performance, 

with precision, recall, and F1-score at 94.61%, 92.43%, and 93.51%, respectively. These results 

show that the introduction of the spatial attention mechanism and the deep deterministic policy 

gradient algorithm significantly enhances the performance of the model. At the same time, we show 

the visualization of various indicator comparisons in Figure 9. 
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Figure 9. Comparative visualization of ablation experiments on KITTI Dataset and COCO 

Dataset. 

 

Table 5. Ablation experiments of this model on the RobotCar Dataset and NuScenes Dataset. 

Model 

Dataset 

RobotCar Dataset NuScenes Dataset 

Precision Recall F1-Score Precision Recall F1-Score 

baseline 79.24 80.61 79.92 81.68 82.46 82.07 

+FPN 87.71 86.04 86.87 85.72 88.62 87.15 

＋ViT 89.79 88.57 89.18 88.73 90.04 89.38 

+FPN ViT 93.43 92.43 92.93 93.76 95.63 94.69 

 

Table 5 illustrates the results of ablation experiments conducted on the RobotCar dataset and 

NuScenes dataset. For the RobotCar dataset, the baseline model achieves a precision of 79.24%, 

recall of 80.61%, and an F1-score of 79.92%. Introduction of the SAM module leads to significant 

performance enhancement, with precision reaching 87.71%, recall at 86.04%, and an F1-score of 

86.87%. Further incorporation of the DDPG module on top of SAM results in improved 

performance, with precision, recall, and F1-score reaching 89.79%, 88.57%, and 89.18%, 

respectively. Finally, combining SAM and DDPG yields the highest performance, with precision 

at 93.43%, recall at 92.43%, and an F1-score of 92.93%. Similar trends are observed for the 

NuScenes dataset. At the same time, we show the visualization of various indicator comparisons in 

Figure 10. 
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Figure 10. Comparative visualization of ablation experiments on RobotCar Dataset and NuScenes 

Dataset. 

5 Conclusion 

This article proposes a path optimization method that combines spatial attention mechanism with 

deep deterministic policy gradient algorithm. Its superior performance is validated through 

experiments on multiple complex datasets. In this path optimization model, a spatial attention 

mechanism is introduced to enhance the model's perception ability by dynamically adjusting the 

focus area. Experimental results show that after adding SAM, the precision, recall, and F1 score of 

the model significantly improve on KITTI and COCO datasets, verifying its effectiveness in 

complex environments. By integrating the DDPG algorithm to optimize the path planning strategy, 

the model can efficiently learn in high-dimensional continuous action spaces. The experiments 

demonstrate that adding DDPG leads to significant improvements in various metrics, particularly 

in real-time dynamic environments. Combining SAM and DDPG, a new path optimization method 

is proposed, which outperforms existing path optimization algorithms in key metrics such as 

accuracy, precision, recall, and F1 score, showcasing its significant performance advantages in 

various complex environments. Finally, our method not only excels in accuracy and recall but also 

demonstrates significant advantages in terms of model parameter count, inference time, and 

training time. Experimental results show that our method achieves efficient path optimization while 

maintaining fewer parameters, which is crucial for real-time performance and resource efficiency 

in practical applications. Although the proposed method demonstrates significant performance 

advantages in multiple complex environments, there are still many directions worth further 

exploration and improvement. Future research could focus on enhancing the model's generalization 

ability, optimizing computational efficiency, integrating multimodal perception, exploring adaptive 

strategies, and human-machine cooperative optimization. Through further research in these areas, 

we aim to enhance the performance and application value of path optimization methods, providing 

more solid technical support for the development of intelligent robots. 
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