

1

OPTIMIZATIONS IN APPLIED MACHINE LEARNING

Research Article | Volume 4 | Issue 4 | Dec 2024

Received: 14 Nov 2024 | Revised: 19 Nov 2024

Accepted: 1 Dec 2024 | Published Online: 4 December 2024

Deep Learning-Based Optimization for Mobile

Robotic Delivery Systems

Diwei Zhu1, Yunxiang Gan2, Xiaoyang Chen3*

1New York University, New York City, United States;

2Moloco, Redwood City, CA 94063, United States;

3*Radiawave Co., Ltd., Shen Zhen, China

*Corresponding Author, Email: chenxiaoyang@radiawave.com

Abstract: In today's logistics and delivery landscape, mobile robot delivery systems have
attracted considerable attention due to their efficiency and adaptability. Nevertheless,
current robotic delivery solutions encounter various obstacles in complex and
dynamically changing environments. Traditional algorithms, for instance, struggle with
processing high-dimensional and unstructured data, resulting in inefficient adaptation to
real-time environmental changes, which compromises accuracy and efficiency in path
planning and task execution. Moreover, the lack of robust perception and decision-
making mechanisms limits the robots' ability to handle intricate scenarios and fluctuating
delivery demands. To tackle these challenges, this paper proposes an optimization
approach for mobile robot delivery systems that leverages deep learning. The study
initially integrates a spatial attention mechanism within the model, enabling the robot to
focus on critical environmental regions and dynamically adjust attention points, thus
enhancing obstacle recognition and avoidance in complex settings, which improves
navigation accuracy and path planning. Furthermore, the Deep Deterministic Policy
Gradient (DDPG) algorithm is utilized to optimize policies, supporting efficient learning
in high-dimensional continuous spaces and empowering robots to acquire effective
delivery strategies in challenging environments. Finally, an end-to-end optimization
approach allows the system to convert sensor inputs directly into control commands,
reducing intermediate complexity and minimizing error accumulation, thereby
streamlining the system’s structure. Experimental results confirm that the proposed
method substantially boosts delivery system performance, excelling in key metrics like
path planning accuracy, task efficiency, and system robustness. The successful
integration of the spatial attention mechanism with the deep policy gradient algorithm
demonstrates a valuable new approach for advancing future robot delivery system
optimizations.

Keywords：Delivery system; deep learning; spatial attention mechanism; DDPG
algorithm; end-to-end optimization; path planning

1 Introduction

With the popularization of e-commerce and online shopping, there has been a rapid increase in

logistics demand, driving the rapid development of delivery systems. These systems not only need

2

to efficiently manage and transport goods but also ensure timely and accurate delivery to consumers.

Efficient logistics and delivery systems can not only reduce operating costs but also enhance

customer satisfaction, thus improving the competitiveness of businesses (Gomes et al., 2023). As

an innovative technology in the logistics industry, robot mobile delivery systems demonstrate

tremendous application potential. Through automation and intelligence, robots can efficiently

execute delivery tasks, reduce manual intervention, and improve work efficiency. At the same time,

robots possess flexible path planning and navigation capabilities, enabling them to autonomously

complete delivery tasks in different environments, further enhancing the adaptability and flexibility

of the system. Especially in scenarios such as warehousing and urban delivery, robot delivery

systems can significantly improve overall operational efficiency. Despite the significant advantages

of robot delivery systems, they still face many challenges in complex and dynamic environments

(Jiang & Huang, 2022). Traditional path planning algorithms exhibit increased computational

complexity when dealing with high-dimensional and unstructured data. These algorithms may need

to process a large number of nodes and edges in complex environments, resulting in significantly

increased computation time, making it difficult to meet real-time requirements (Jones et al., 2023).

In dynamically changing environments, it is difficult to adapt quickly to changes in the environment.

Each time the environment changes, the path needs to be recalculated from scratch, leading to

inefficiencies (Yan et al., 2020). For example, when new obstacles or blocked paths appear, it is

necessary to recalculate from scratch, which cannot efficiently update existing paths. Furthermore,

traditional algorithms typically rely on static maps and preset paths, lacking dynamic adjustment

capabilities. Even if a feasible path is found, it is difficult to guarantee that it is the globally optimal

path, especially in complex environments, where the algorithm may only find a local optimal

solution and fail to discover a better global path (Chang et al., 2021). Additionally, these algorithms

perform poorly in handling dynamic obstacles, typically based on predefined static maps, lacking

real-time perception and processing capabilities for dynamic obstacles. When robots encounter

moving obstacles in complex environments, they may not be able to adjust the path in time, leading

to collisions or path planning failures (Wang et al., 2021).

Deep learning continues to evolve, and the application of robot mobile delivery systems in

modern logistics is becoming increasingly widespread. Faced with the many challenges of existing

delivery systems in complex and dynamically changing environments, researchers are constantly

exploring new methods and technologies. Spatial attention mechanism, as an advanced technology,

significantly enhances the perception ability of robots by focusing on key areas in the environment

(Zhou et al., 2022). This mechanism can dynamically adjust the focus, enabling robots to better

identify and avoid obstacles in complex environments, thereby improving navigation and path

planning accuracy. However, the spatial attention mechanism also faces certain challenges in the

implementation process, including how to efficiently calculate attention weights and its application

in high-dimensional data. Deep Deterministic Policy Gradient (DDPG) algorithm is a combination

of policy gradient methods and deep learning algorithms, suitable for reinforcement learning tasks

in continuous action spaces (Wu & Li, 2020). The DDPG algorithm models policies through deep

neural networks and optimizes them using policy gradient methods, enabling efficient learning in

high-dimensional continuous spaces. Although DDPG performs well in policy optimization in

complex environments, it also has some limitations, such as stability and convergence speed issues

in high-noise environments (Wang et al., 2020). End-to-end optimization is a holistic optimization

solution from input to output, aimed at reducing the complexity of intermediate links and error

accumulation. The design of end-to-end optimization allows the system to directly input sensor

data to output control commands, not only simplifying the system structure but also improving

overall response speed and reliability. However, end-to-end optimization also faces some

challenges, such as the complexity of model training and the demand for large-scale data (Chen et

al., 2023). To address these issues, this paper proposes a robot mobile delivery system optimization

3

method combining spatial attention mechanism, Deep Deterministic Policy Gradient algorithm,

and end-to-end optimization, aiming to solve the main problems faced by existing systems in

complex and dynamic environments. By introducing the spatial attention mechanism, we enhance

the system's perception ability to dynamically changing environments; using the DDPG algorithm

for policy optimization improves the efficiency and accuracy of path selection and task execution;

through an end-to-end optimization solution, overall performance improvement from input to

output is achieved. The model combines advanced deep learning computations to provide new ideas

and methods for future optimization of robot delivery systems.

The structure of this paper is arranged as follows: Part 1 introduces the background, motivation,

and objectives of the research, emphasizing the importance of robot mobile delivery systems in

modern logistics and the main challenges faced by existing systems in complex and dynamic

environments. Part 2 introduces related work, including existing methods for optimizing robot

delivery systems. A detailed review of path planning and navigation technology, as well as the

application of deep reinforcement learning in robot control, is provided. Part 3 describes in detail

the proposed method, including the implementation of spatial attention mechanism and DDPG

algorithm. This section explains how to apply the spatial attention mechanism to robot perception,

enhancing its adaptability to complex environments, and optimize delivery strategies through the

DDPG algorithm to achieve efficient path planning and task execution. Part 4 describes the design

process of the experiments, the selection of datasets, the setting of evaluation metrics, and the

analysis of experimental results. The effectiveness of the proposed method in improving the overall

performance of the delivery system is verified through experiments. Part 5 is the conclusion and

future work, summarizing the main contributions and research results of this paper, and proposing

future research directions and improvement suggestions, providing references for further

optimization of robot mobile delivery systems.

2 Relevant work

Path planning and navigation are core components of robot mobile delivery systems. Traditional

path planning algorithms include the A* algorithm (Erke et al., 2020), Dijkstra's algorithm

(Mirahadi & McCabe, 2021), and the Rapidly-exploring Random Tree (RRT) algorithm (Wu et al.,

2021). These algorithms perform well in static environments, capable of finding the shortest path

from the starting point to the target point. However, they have limitations in complex and dynamic

environments. For example, A* and Dijkstra's algorithms exhibit high computational complexity

when handling high-dimensional and unstructured data, making real-time applications challenging.

Additionally, these algorithms typically rely on predefined static maps, lacking adaptability to

environmental changes. To overcome these issues, researchers have proposed various improved

methods. For instance, the Real-Time A* (RTA*) algorithm achieves real-time performance by

limiting search depth and computation time per decision, considering only a limited number of

future steps at each stage, making it suitable for resource-constrained embedded systems and robot

navigation (Zhang et al., 2020). Lifelong Planning A* (LPA*) can quickly update the shortest path

when the graph structure changes, updating only the affected parts when the environment changes,

thereby improving path update efficiency (Segato et al., 2021). Focused D*, a further optimization

of the D* algorithm, enhances efficiency and dynamic adaptability by concentrating the search on

regions most likely to affect the path during planning (Qadir et al., 2021). However, these methods

still face challenges in handling dynamic obstacles and high-dimensional data. In recent years, deep

learning-based path planning methods have emerged, significantly improving the efficiency and

accuracy of path planning by learning strategies in complex environments. For example, Deep Q-

Network (DQN) and Deep Deterministic Policy Gradient (DDPG) reinforcement learning

algorithms have been successfully applied to robot navigation tasks.

4

Deep Reinforcement Learning (DRL) combines the advantages of deep learning and

reinforcement learning, suitable for control tasks in high-dimensional continuous spaces. In the

field of robot control, DRL has been widely applied to path planning, navigation, and task execution.

DQN combines Q-learning with deep neural networks to address high-dimensional state space

problems by approximating the Q-value function with neural networks, enabling effective learning

in discrete action spaces. In warehouse automation, mobile robots use the DQN algorithm to

achieve autonomous navigation, avoiding collisions and efficiently completing tasks (Lee & Yusuf,

2022). However, DQN performs poorly in continuous action spaces, a limitation addressed by

DDPG. By introducing policy and value networks, DDPG can optimize policies in high-

dimensional continuous action spaces. In the autonomous driving field, deep learning technologies

are widely applied in perception, decision-making, and control systems. Perception systems

typically use Convolutional Neural Networks (CNNs) to process sensor data from cameras, LiDAR,

and radar. Tesla's autonomous driving system uses deep learning models to recognize road signs,

lane markings, and pedestrians, making driving decisions accordingly. Waymo utilizes deep

learning models for environmental perception and dynamic obstacle detection, ensuring vehicle

safety (Gupta et al., 2021). Significant progress has also been made in controlling humanoid robots

with deep learning. Boston Dynamics' Atlas robot uses deep reinforcement learning algorithms to

perform complex actions and behaviors such as running, jumping, and balancing. By learning from

sensor data, Atlas can adjust its action strategies to cope with various terrains and environmental

changes (Neri & Dinarama, 2024).

Additionally, Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM)

networks have notable advantages in handling time series data, making them suitable for path

planning tasks in dynamic environments. By remembering and predicting environmental changes

(Torres et al., 2021), RNNs and LSTMs can help mobile robots control paths more effectively in

dynamic environments. LSTM networks are commonly used to predict the motion trajectories of

dynamic obstacles and adjust the robot's path to avoid collisions. LSTM is also employed in multi-

robot systems for task scheduling and path optimization, improving system coordination and

efficiency. Despite addressing the short-term memory issues of RNNs to some extent, LSTM can

still suffer from information loss or forgetting over particularly long-time sequences. Additionally,

the network's complex structure with numerous parameters can result in high computational

overhead during inference and prediction stages. For real-time path planning tasks, excessive

computational complexity can lead to response delays, failing to meet real-time requirements.

Generative Adversarial Networks (GANs) can generate realistic environmental simulation data

through adversarial training between the generator and the discriminator, assisting in the training

of path planning algorithms (Zhao et al., 2022). GANs can be used to create virtual training

environments, allowing mobile robots to learn and optimize their path planning strategies in

simulated settings, thus reducing training costs and risks in real environments. In the field of

autonomous driving, GANs are employed to generate various driving scenarios, aiding the training

and testing of autonomous driving systems in diverse complex situations. However, the training

process of GANs is often unstable and prone to mode collapse, where the generator produces only

a limited variety of samples instead of covering the entire data distribution. This phenomenon can

lead to a lack of diversity in the generated data, affecting the model's generalization ability and

practical application effectiveness. Spatial attention mechanisms, which can dynamically adjust

focus areas, are widely used in computer vision and natural language processing. In robot

perception and control, spatial attention mechanisms significantly enhance perception and

decision-making capabilities by focusing on key areas of the environment. Models combining

CNNs and attention mechanisms can better identify obstacles and navigation targets in complex

environments, improving path planning accuracy. Although spatial attention mechanisms can

enhance perception capabilities in static environments, their adaptability and real-time performance

5

may still be insufficient in highly dynamic and rapidly changing environments, potentially failing

to respond in real time to quickly changing obstacles and paths in practical applications. Therefore,

this paper proposes a novel robot mobile delivery system optimization scheme combining spatial

attention mechanisms, Deep Deterministic Policy Gradient (DDPG) algorithms, and end-to-end

optimization methods. By introducing spatial attention mechanisms, the perception capability and

decision accuracy of the robot are enhanced through dynamically adjusting the environmental focus

areas. Additionally, the DDPG algorithm is adopted for optimizing delivery strategies. DDPG,

combining policy gradient methods and deep learning techniques, achieves efficient learning in

high-dimensional continuous action spaces through the mutual optimization of policy and value

networks. Finally, this paper implements an end-to-end optimization scheme, directly inputting

sensor data into control command output, simplifying the system structure, reducing the complexity

and error accumulation of intermediate links, not only improving the system's response speed and

reliability but also enhancing overall performance.

3 Method

Figure 1 shows the overall algorithm architecture of the robot delivery system used in this article.

Figure 1. Overall algorithm architecture.

3.1 Spatial Attention Mechanism

The application of spatial attention mechanism in robot mobile delivery systems aims to enhance

the perception capabilities of robots, enabling them to navigate and plan paths more accurately in

complex environments. Its core lies in assigning different attention weights to different regions of

the input feature map, focusing on key areas in the environment to improve the precision of

perception and decision-making (Li et al., 2022). In this paper, the spatial attention mechanism is

mainly divided into two steps: attention weight calculation and attention feature map generation.

The architecture diagram of SAM is shown in Figure 2.

6

Figure 2. Structure diagram of SAM.

Firstly, for a given input feature map F ∈ RC×H×W, where C, H, and W represent the number

of channels, height, and width of the feature map, respectively, we need to calculate the attention

weights for each spatial position. Representing the feature vector at each position of F as fi,j ∈ RC,

where i and j represent the indices of height and width of the feature map, respectively, the

calculation of attention weights can be achieved through a simple feedforward neural network,

formalized as:

, ,()i j i j b  = +W f (1)

Here, Wα ∈ R𝟙×C and bα ∈ R represent the weight matrix and bias term, respectively, and σ

denotes the activation function (such as the sigmoid function). The computed αi,j represents the

attention weight at position (i, j) . To ensure that the sum of all attention weights equals 1,

normalization can be applied:

(2)

With normalized attention weights, we can generate the attention feature map. The generation

of the attention feature map is achieved by weighted summation of each position of the input feature

map, formalized as:

(3)

Here, Fatt ∈ RC represents the attention feature map, which integrates the feature representations

with attention weights. The generated attention feature map Fatt can be used for subsequent path

planning and navigation decisions. In robot mobile delivery systems, the attention feature map

serves as input to guide robots in making real-time decisions in complex environments. Specific

applications include obstacle recognition, path selection, and adaptation to dynamic environments.

The spatial attention mechanism significantly enhances the perception and decision-making

capabilities of robots in complex environments, enabling them to perform mobile delivery tasks

more efficiently.

,

,

,

1 1

i j

i j H W

m n

m n





= =

=



att , ,

1 1

H W

i j i j

i j


= =

=F f

7

3.2 DDPG Architecture

Deep Deterministic Policy Gradient (DDPG) is a reinforcement learning algorithm that combines

policy gradient methods with deep learning, suitable for tasks in high-dimensional continuous

action spaces. By using deep neural networks to approximate the policy and value functions, the

DDPG algorithm achieves efficient learning in complex environments (Wang et al., 2022). DDPG

integrates the advantages of Deep Q-Learning (DQN) and policy gradient methods, employing two

deep neural networks: the policy network (Actor) and the value network (Critic) for decision

making and evaluation, respectively. These networks are optimized jointly to continuously improve

the policy in high-dimensional continuous action spaces. The architecture diagram of DDPG is

shown in Figure 3

Figure 3. Structure diagram of DDPG.

The policy network μ(s|θμ) takes the state s as input and outputs the corresponding action

a. The parameters θμ of the policy network are optimized using policy gradients to maximize the

expected cumulative reward for the actions chosen in a given state. The value network Q(s, a|θQ)
takes the state s and action a as inputs and outputs the corresponding state-action value (Q-value).

The parameters θQ of the value network are optimized by minimizing the Temporal Difference

(TD) error, which evaluates the effectiveness of the policy.

Initialization of Networks and Experience Replay Buffer: Initialize the policy network μ(s|θμ)
and the value network Q(s, a|θQ), as well as their target networks μ′(s|θμ

′
) and Q′(s, a|θQ

′
).

The target networks are used to stabilize the training process. Initialize the experience replay buffer

𝒟 to store the agent's experiences. Experience Collection: Execute actions in the environment

based on the current policy network, selecting actions at = μ(st|θ
μ) +𝒩𝓉 , where 𝒩𝓉 is the

exploration noise. After executing an action, observe the next state st+1 and reward rt, and store

the experience (st, at, rt, st+1) in the experience replay buffer 𝒟.

8

Experience Replay: Compute the expected cumulative reward for the future state using the

target value network and target policy network. Randomly sample a minibatch (si, ai, ri, si+1)
from the experience replay buffer. Calculate the target Q-value yi:

 (4)

where γ is the discount factor representing the decay rate of future rewards. Update the Value

Network: Minimize the Temporal Difference error to update the parameters θQ of the value

network:

21

((, |))Q

i i i

i

L y Q s a
N

= − (5)

where N is the size of the minibatch. This loss function measures the error between the current

value network's predicted Q-values and the target Q-values, guiding the parameter updates of the

value network.

Update the Policy Network: Using policy gradient methods, the update direction of the policy

network parameters is determined by the gradient of the Q-values from the value network and the

gradient of the actions from the policy network. Update the policy network parameters θμ via

policy gradient:

 , ()

1
(, |) | (|) |

i i i

Q

a s s a s s s

i

J Q s a s
N

 



 
  = = =    (6)

Soft Update of Target Networks: Soft update the parameters of the target policy network and target

value network:

 (1)Q Q Q    
 + − (7)

 (1)     
 
 + − (8)

where τ ≪ 1 is the step size for the soft update.

3.3 End-to-End Optimization

End-to-end optimization reduces the complexity and error accumulation in intermediate stages. By

directly learning the mapping from raw sensor inputs to final control commands, end-to-end

optimization significantly improves response speed and reliability in robotic systems. This

approach uses a unified neural network model to directly map sensor inputs to control commands,

simplifying the system structure and enhancing overall performance (Zhao et al., 2023). The

architecture diagram of end-to-end optimization is shown in Figure 4.

1 1(, (|) |)Q

i i i iy r Q s s    
 

+ +
 = +

9

Figure 4. Structure diagram of end-to-end optimization.

In end-to-end optimization, neural network models typically include convolutional layers (for

processing image data), recurrent layers (for handling time-series data), and fully connected layers

(for generating control commands). The input layer receives data from sensors such as camera

images and LiDAR point clouds. Convolutional layers extract high-level features from the input

data, capturing key information from the environment. Recurrent layers handle time-series data,

capturing changes in the dynamic environment. Fully connected layers map the extracted features

to specific control commands, such as the robot's speed and direction.

The training process for end-to-end optimization is conducted through either reinforcement

learning or supervised learning. The state st is defined as the robot's sensory information at time

step t, such as camera images or LiDAR point clouds. The action at is the control command at

time step t. The reward rt is the reward obtained after the robot executes the action at time step

t, such as the reduction in distance to the target point. The loss function measures the discrepancy

between the predicted control commands and the actual desired commands. Common loss functions

include Mean Squared Error (MSE) and Policy Gradient Loss. The MSE loss function is given by:

 2

MSE

1

1
ˆ()

N

i i

i

L a a
N =

= − (9)

where N is the number of samples, ai is the actual control command, and aî is the predicted

control command. The policy gradient loss is given by:

 PG [log (|)]t t tL R a s= − (10)

where Rt is the cumulative reward and π(at|st) is the policy for selecting action at in state st.

Gradient descent is used to optimize the neural network parameters by minimizing the loss function.

The gradient descent update rule is:

𝜃 ← 𝜃 − 𝛼∇𝜃𝐿 (11)

10

where θ represents the network parameters, α is the learning rate, and ∇θL is the gradient of the

loss function. End-to-end optimization enables overall optimization from input to output,

significantly improving the response speed and reliability of robotic systems. By directly generating

control commands from sensor inputs, neural networks simplify the system structure, reducing the

complexity and error accumulation in intermediate stages.

4 Experiment

The experimental flow chart of this paper is shown in Figure 5.

Figure 5. Experimental flowchart.

4.1 Experimental Environment

In terms of hardware environment, our computing platform is configured with an Intel Core i9-

10900K CPU, suitable for parallel computing and handling complex tasks. The GPU is an NVIDIA

GeForce RTX 3090, supporting accelerated training and inference of deep learning models.

Additionally, it has 256GB of memory, supporting large-scale data processing and model training.

As for the robot platform, we utilize the TurtleBot 3, an open-source platform designed for robot

research and education, with support for ROS (Robot Operating System). Sensor configurations

include the Intel RealSense D435i depth camera and Hokuyo URG-04LX laser rangefinder, which

are high-precision sensors used for environment perception and navigation. This experiment is

conducted on the Ubuntu 20.04 LTS operating system, known for its stability and wide range of

applications, making it particularly suitable for machine learning and robotics development. Python

3.8 is chosen as the programming language, which is a mainstream language in the fields of

machine learning and deep learning, with rich library and tool support.

4.2 Experimental Data

• KITTI Dataset

The KITTI dataset is a benchmark dataset widely used in autonomous driving and robotics research.

It was jointly created by the Karlsruhe Institute of Technology and the Toyota Technological

11

Institute at Chicago, containing high-quality images and LiDAR data from real driving

environments. The dataset is collected by mounting cameras and LiDAR sensors on the top of cars,

covering various urban, rural, and highway scenes. Content of the KITTI dataset includes color and

grayscale images, 3D point cloud data, GPS information, and IMU readings. Its diversity and

richness make it an essential resource for evaluating the performance of visual deep learning and

path planning algorithms. Researchers can utilize the KITTI dataset for tasks such as object

detection, semantic segmentation, 3D reconstruction, path planning, and autonomous driving. By

testing in complex and dynamic environments, the KITTI dataset provides a solid foundation for

validating the robustness and effectiveness of algorithms.

• COCO Dataset

The COCO (Common Objects in Context) dataset is a widely used benchmark dataset for computer

vision research, created by Microsoft. It consists of over 200,000 high-quality images, annotated

with more than 2.5 million instance objects spanning 80 common object categories. Each image is

annotated not only with bounding boxes for objects but also detailed segmentation masks,

keypoints, and image-level labels. These annotations make the COCO dataset widely applicable in

tasks such as object detection, semantic segmentation, instance segmentation, human pose

estimation, and image captioning. The images in the COCO dataset are collected from various real-

life scenarios, including indoor and outdoor environments, featuring rich background information

and complex object layouts, providing an ideal resource for training and testing algorithms in

diverse and complex scenes. Its diversity and high-quality annotations make the COCO dataset an

important tool for evaluating and driving the development of computer vision algorithms.

• RobotCar Dataset

The RobotCar dataset is a benchmark dataset for autonomous driving and robotics research created

by the Mobile Robotics Group at the University of Oxford. This dataset comprises rich data

collected under various time, weather, and seasonal conditions in the city of Oxford, covering

diverse urban driving environments. Data collection in the RobotCar dataset is facilitated through

multiple sensors mounted on vehicles, including stereo cameras, LiDAR, GPS, and Inertial

Measurement Units (IMU). These sensors provide high-resolution images, 3D point cloud data,

precise location information, and vehicle motion data. The diversity and detailed annotations of the

RobotCar dataset make it a crucial resource for evaluating and developing tasks such as

autonomous driving systems, 3D reconstruction, path planning, and environment perception.

Researchers can utilize this dataset for robustness testing across different weather and seasonal

variations, validating algorithms' adaptability and stability under various environmental conditions.

• NuScenes Dataset

The NuScenes dataset, created by Motional, is an advanced benchmark dataset for autonomous

driving research. It collects real-world data from complex urban environments in Boston and

Singapore, covering various weather and lighting conditions. The NuScenes dataset comprises data

from multiple sensors, including panoramic images from six cameras, point cloud data from five

LiDARs, millimeter-wave radar, GPS, and Inertial Measurement Units (IMU). These sensors

provide comprehensive environmental perception information, aiding researchers in studying tasks

such as multimodal perception, 3D object detection, tracking, semantic segmentation, and scene

understanding. In addition to high-resolution sensor data, the NuScenes dataset also includes

detailed annotation information such as object bounding boxes, category labels, and trajectories.

These rich annotations make NuScenes an essential resource for evaluating the robustness and

performance of autonomous driving algorithms.

12

4.3 Evaluation Metrics

• Accuracy

Accuracy represents the proportion of correct predictions made by a model out of all predictions.

It is an intuitive metric for assessing the overall correctness of a model, particularly useful for

evaluating the performance of tasks such as robot perception and environmental understanding.

The formula for accuracy is:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
(12)

where TP is the number of instances in path planning where real obstacles are correctly detected.

TN is the number of instances where non-existing obstacles are correctly recognized as non-

existing. FP is the number of instances where non-existing obstacles are incorrectly detected as

existing. FN is the number of instances where real obstacles are not detected.

• Precision：

Precision represents the proportion of samples predicted as positive that are actually positive.

Precision reflects the accuracy of a model, and particularly in dealing with imbalanced datasets,

precision is a crucial performance metric. The mathematical definition of precision is as follows:

𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(13)

• Recall：

Recall represents the proportion of all actual positive samples that are correctly predicted as

positive. Recall reflects the detection capability of a model, particularly in cases where there are

many missed detections. Recall evaluates the completeness of obstacle detection in the environment

during robot path planning. High recall indicates that the robot can detect most of the actual

obstacles, reducing missed detections and improving the safety of path planning. The mathematical

definition of recall is as follows:

𝑅𝑒 𝑐 𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(14)

• F1-Score：

The F1 score is a comprehensive metric for evaluating the performance of classification models,

combining both precision and recall. It provides a more complete assessment of classification

problems in imbalanced datasets. In dynamic environments, the F1 score evaluates the robot's

overall capability to handle real-time changes in environmental information. A high F1 score

indicates that the robot can accurately identify newly appearing obstacles while minimizing missed

detections, thereby improving navigation efficiency and safety. The formula is as follows:

Precision Recall

1 2
Precision Recall

F


= 
+

 (15)

4.4 Experimental Comparison and Analysis

In this section, we conduct a comprehensive comparison between six different path optimization

algorithms and our proposed method. This evaluation utilizes four datasets: KITTI, COCO,

RobotCar, and NuScenes. These datasets encompass various complex environments, including

urban streets, indoor scenes, and challenging driving conditions. To thoroughly assess the

13

performance of each algorithm, we employ four key metrics: Accuracy, Precision, Recall, and F1

Score. We will comparatively analyze the strengths and weaknesses of each algorithm and discuss

their applicability in different environments and tasks.

Table 1. Comparison of indicators of various models under KITTI Dataset and COCO Dataset.

Model
KITTI Dataset COCO Dataset

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Zhang L et al. (Zhang et al., 2020a) 85.89 86.09 88.82 87.43 82.81 92.54 89.65 91.07

Aslan MF et al. (Aslan et al., 2022) 88.10 86.28 87.74 87.00 84.41 85.01 87.09 86.04

Lee DH et al. (Lee & Liu, 2023) 91.00 84.81 86.59 85.69 87.19 85.59 88.39 86.97

Gu Y et al. (Gu et al., 2023) 87.32 87.85 84.36 86.07 88.86 90.32 85.45 87.82

Huang R et al. (Huang et al., 2023) 90.60 85.38 85.39 85.38 87.12 88.26 87.89 88.07

Chen L et al. (Chen et al., 2022) 84.99 83.52 86.42 84.95 88.05 92.67 90.68 91.66

Ours 93.46 92.54 94.43 93.48 92.73 94.61 92.43 93.51

Table 1 presents the comparison results of six different path optimization algorithms and our

proposed method on four key metrics (accuracy, precision, recall, and F1 score) across the KITTI

and COCO datasets. It can be observed from the table that our proposed method performs

excellently on both datasets, outperforming other methods across all metrics. Specifically, on the

KITTI dataset, our method achieves an accuracy of 93.46%, precision of 92.54%, recall of 94.43%,

and an F1 score of 93.48%; while on the COCO dataset, the accuracy is 92.73%, precision is

94.61%, recall is 92.43%, and F1 score is 93.51%. In comparison, other methods show varied

performance across different metrics, but overall none surpasses our method, particularly in the

comprehensive metric of F1 score. This result indicates that our proposed method holds significant

performance advantages in path planning tasks across diverse and complex environments,

particularly in enhancing the accuracy and completeness of detection. At the same time, we show

the visualization of various indicator comparisons in Figure 6.

Figure 6. Comparative visualization of each model indicator under the KITTI Dataset and COCO

Dataset.

14

Table 2. Comparison of indicators of various models under the RobotCar Dataset and NuScenes

Dataset.

Model
RobotCar Dataset NuScenes Dataset

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Zhang L et al. (Zhang et al., 2020a) 83.39 81.20 82.47 81.83 87.58 85.42 90.98 88.11

Aslan MF et al. (Aslan et al., 2022) 84.07 89.32 86.25 87.76 88.40 90.31 88.66 89.48

Lee DH et al. (Lee & Liu, 2023) 83.87 81.91 89.41 85.50 90.53 91.18 91.53 91.35

Gu Y et al. (Gu et al., 2023) 87.74 80.22 88.57 84.19 87.30 83.65 87.77 85.66

Huang R et al. (Huang et al., 2023) 88.89 81.35 82.15 81.75 90.17 82.41 88.76 85.47

Chen L et al. (Chen et al., 2022) 88.35 90.19 83.66 86.80 86.48 89.26 91.85 90.54

Ours 91.43 93.43 92.43 92.93 94.24 93.76 95.63 94.69

Table 2 presents the comparison results of algorithms on the RobotCar and NuScenes datasets.

From the table, it is evident that our method significantly outperforms others in terms of accuracy

(91.43%), precision (93.43%), recall (92.43%), and F1 score (92.93%) on the RobotCar dataset.

Similarly, on the NuScenes dataset, our method demonstrates excellent performance in accuracy

(94.24%), precision (93.76%), recall (95.63%), and F1 score (94.69%). In comparison, while some

methods show better performance in certain metrics, such as Aslan MF et al.'s precision (89.32%)

on the RobotCar dataset and Chen L et al.'s recall (91.85%) on the NuScenes dataset, none surpasses

our method overall. This indicates that our proposed method holds significant performance

advantages in path planning tasks across various complex driving environments. At the same time,

we show the visualization of various indicator comparisons in Figure 7.

Figure 7. Comparative visualization of each model indicator under the RobotCar Dataset and

NuScenes Dataset.

15

Table 3. Metrics of multiple models on four datasets.

KITTI Dataset COCO Dataset

Model

Paramet

ers

(M)

Inference

Time(ms)

Trainning

Time(s)

Paramet

ers

(M)

Inference

Time(ms)

Trainning

Time(s)

Zhang L et al. (Zhang et al.,

2020a)
441.09 391.13 214.57 426.47 283.61 260.81

Aslan MF et al. (Aslan et al.,

2022)
525.52 339.68 260.42 497.47 385.35 278.70

Lee DH et al. (Lee & Liu,

2023)
388.58 346.01 234.46 433.20 312.43 280.25

Gu Y et al. (Gu et al., 2023) 492.10 398.87 229.25 397.64 274.91 211.57

Huang R et al. (Huang et al.,

2023)
405.60 314.69 241.51 472.63 290.25 242.96

Chen L et al. (Chen et al.,

2022)
422.81 295.16 220.05 442.68 324.70 204.36

Ours 367.24 264.34 161.45 374.73 257.94 182.43

RobotCar Dataset NuScenes Dataset

Model

Paramet

ers

(M)

Inference

Time(ms)

Trainning

Time(s)

Paramet

ers

(M)

Inference

Time(ms)

Trainning

Time(s)

Zhang L et al. (Zhang et al.,

2020a)
477.26 379.27 213.06 465.14 342.26 229.57

Aslan MF et al. (Aslan et al.,

2022)
396.20 385.73 202.88 384.25 323.36 265.15

Lee DH et al. (Lee & Liu,

2023)
387.62 315.08 195.18 471.66 297.13 249.15

Gu Y et al. (Gu et al., 2023) 458.96 397.01 270.96 452.13 300.50 298.61

Huang R et al. (Huang et al.,

2023)
504.18 385.52 268.73 378.21 307.37 228.53

Chen L et al. (Chen et al.,

2022)
475.99 301.89 266.20 415.66 316.34 236.99

Ours 362.94 261.84 178.02 356.64 279.71 193.41

Table 3 presents a comparative analysis of the number of model parameters (Parameters),

inference time (Inference Time), and training time (Training Time) for various path optimization

algorithms across four datasets. In terms of the number of model parameters, our method

consistently exhibits the lowest parameter count across all datasets (e.g., 367.24 M for the KITTI

dataset and 374.73 M for the COCO dataset). This indicates that our method achieves efficient path

optimization while maintaining a minimal parameter count. Regarding inference time, our method

consistently demonstrates the fastest inference speed across all datasets (e.g., 264.34 ms for the

16

KITTI dataset and 257.94 ms for the COCO dataset). This suggests that our method has a significant

speed advantage in real-time applications, enabling faster path planning and decision-making. In

terms of training time, our method shows the shortest training time across all datasets (e.g., 161.45

s for the KITTI dataset and 182.43 s for the COCO dataset). This indicates that our method is more

efficient during model training, achieving faster convergence to the optimal state. On the other

hand, Aslan MF et al. have longer inference and training times on certain datasets (e.g., 323.36 ms

inference time and 265.15 s training time on the NuScenes dataset), while Gu Y et al. have a larger

number of model parameters (e.g., 492.10 M on the KITTI dataset). Overall, our proposed method

performs excellently on all key metrics across the four datasets, indicating significant performance

advantages in path optimization tasks, particularly in model simplicity, inference speed, and

training efficiency. At the same time, we show the visualization of various indicator comparisons

in Figure 8.

Figure 8. Visual comparison of indicators of multiple models on four datasets.

Table 4. Ablation experiments of this model on the KITTI Dataset and COCO Dataset.

Model

Dataset

KITTI Dataset COCO Dataset

Precision Recall F1-Score Precision Recall F1-Score

baseline 78.64 79.24 78.94 81.73 79.37 80.53

+SAM 83.03 84.73 83.87 86.27 86.24 86.25

＋DDPG 89.38 90.93 90.15 91.06 88.41 89.72

+SAM-DDPG 92.54 94.43 93.48 94.61 92.43 93.51

Table 4 presents the results of ablation experiments conducted on the KITTI dataset and COCO

dataset. For the KITTI dataset, the baseline model achieves a precision of 78.64%, recall of 79.24%,

and an F1-score of 78.94%. Introducing the SAM module significantly improves performance, with

precision reaching 83.03%, recall at 84.73%, and an F1-score of 83.87%. Subsequently,

incorporating the DDPG module on top of SAM further enhances performance, with precision,

recall, and F1-score reaching 89.38%, 90.93%, and 90.15%, respectively. Finally, combining SAM

and DDPG results in the best performance, with precision at 92.54%, recall at 94.43%, and an F1-

score of 93.48%. Similar trends are observed for the COCO dataset: as modules are introduced,

performance steadily improves, with the SAM-DDPG combination achieving the best performance,

with precision, recall, and F1-score at 94.61%, 92.43%, and 93.51%, respectively. These results

show that the introduction of the spatial attention mechanism and the deep deterministic policy

gradient algorithm significantly enhances the performance of the model. At the same time, we show

the visualization of various indicator comparisons in Figure 9.

17

Figure 9. Comparative visualization of ablation experiments on KITTI Dataset and COCO

Dataset.

Table 5. Ablation experiments of this model on the RobotCar Dataset and NuScenes Dataset.

Model

Dataset

RobotCar Dataset NuScenes Dataset

Precision Recall F1-Score Precision Recall F1-Score

baseline 79.24 80.61 79.92 81.68 82.46 82.07

+FPN 87.71 86.04 86.87 85.72 88.62 87.15

＋ViT 89.79 88.57 89.18 88.73 90.04 89.38

+FPN ViT 93.43 92.43 92.93 93.76 95.63 94.69

Table 5 illustrates the results of ablation experiments conducted on the RobotCar dataset and

NuScenes dataset. For the RobotCar dataset, the baseline model achieves a precision of 79.24%,

recall of 80.61%, and an F1-score of 79.92%. Introduction of the SAM module leads to significant

performance enhancement, with precision reaching 87.71%, recall at 86.04%, and an F1-score of

86.87%. Further incorporation of the DDPG module on top of SAM results in improved

performance, with precision, recall, and F1-score reaching 89.79%, 88.57%, and 89.18%,

respectively. Finally, combining SAM and DDPG yields the highest performance, with precision

at 93.43%, recall at 92.43%, and an F1-score of 92.93%. Similar trends are observed for the

NuScenes dataset. At the same time, we show the visualization of various indicator comparisons in

Figure 10.

18

Figure 10. Comparative visualization of ablation experiments on RobotCar Dataset and NuScenes

Dataset.

5 Conclusion

This article proposes a path optimization method that combines spatial attention mechanism with

deep deterministic policy gradient algorithm. Its superior performance is validated through

experiments on multiple complex datasets. In this path optimization model, a spatial attention

mechanism is introduced to enhance the model's perception ability by dynamically adjusting the

focus area. Experimental results show that after adding SAM, the precision, recall, and F1 score of

the model significantly improve on KITTI and COCO datasets, verifying its effectiveness in

complex environments. By integrating the DDPG algorithm to optimize the path planning strategy,

the model can efficiently learn in high-dimensional continuous action spaces. The experiments

demonstrate that adding DDPG leads to significant improvements in various metrics, particularly

in real-time dynamic environments. Combining SAM and DDPG, a new path optimization method

is proposed, which outperforms existing path optimization algorithms in key metrics such as

accuracy, precision, recall, and F1 score, showcasing its significant performance advantages in

various complex environments. Finally, our method not only excels in accuracy and recall but also

demonstrates significant advantages in terms of model parameter count, inference time, and

training time. Experimental results show that our method achieves efficient path optimization while

maintaining fewer parameters, which is crucial for real-time performance and resource efficiency

in practical applications. Although the proposed method demonstrates significant performance

advantages in multiple complex environments, there are still many directions worth further

exploration and improvement. Future research could focus on enhancing the model's generalization

ability, optimizing computational efficiency, integrating multimodal perception, exploring adaptive

strategies, and human-machine cooperative optimization. Through further research in these areas,

we aim to enhance the performance and application value of path optimization methods, providing

more solid technical support for the development of intelligent robots.

Funding

Not applicable

Author Contributions

19

Conceptualization, D. Z. and X. C.; writing—original draft preparation, D. Z. and Y. G.;

writing—review and editing, Y. G. and X. C.; All of the authors read and agreed to the

published the final manuscript.

Institutional Reviewer Board Statement

Not applicable

Informed Consent Statement

Not applicable

Data Availability Statement

Not applicable

Conflict of Interest

The authors declare no conflict of interest.

Reference

[1] Aslan, M. F., Durdu, A., and Sabanci, K. (2022). Visual-inertial image-odometry network

(viionet): A gaussian process regression-based deep architecture proposal for uav pose estimation.

Measurement 194, 111030

[2] Chang, L., Shan, L., Jiang, C., and Dai, Y. (2021). Reinforcement based mobile robot path

planning with improved dynamic window approach in unknown environment. Autonomous robots

45, 51–76

[3] Chen, L., Jiang, Z., Cheng, L., Knoll, A. C., and Zhou, M. (2022). Deep reinforcement learning

based trajectory planning under uncertain constraints. Frontiers in Neurorobotics 16, 883562

[4] Chen, L., Wu, P., Chitta, K., Jaeger, B., Geiger, A., and Li, H. (2023). End-to-end autonomous

driving: Challenges and frontiers. arXiv preprint arXiv:2306.16927

[5] Erke, S., Bin, D., Yiming, N., Qi, Z., Liang, X., and Dawei, Z. (2020). An improved a-star based

path planning algorithm for autonomous land vehicles. International Journal of Advanced Robotic

Systems 17, 1729881420962263

[6] Gomes, A. C., de Lima Junior, F. B., Soliani, R. D., de Souza Oliveira, P. R., de Oliveira, D.

A., Siqueira, R. M., et al. (2023). Logistics management in e-commerce: challenges and

opportunities. Revista de Gest ão e Secretariado 14, 7252–7272

[7] Gu, Y., Zhu, Z., Lv, J., Shi, L., Hou, Z., and Xu, S. (2023). Dm-dqn: Dueling munchausen deep

q network for robot path planning. Complex & Intelligent Systems 9, 4287–4300

20

[8] Gupta, A., Anpalagan, A., Guan, L., and Khwaja, A. S. (2021). Deep learning for object

detection and scene perception in self-driving cars: Survey, challenges, and open issues. Array 10,

100057

[9] Huang, R., Qin, C., Li, J. L., and Lan, X. (2023). Path planning of mobile robot in unknown

dynamic continuous environment using reward-modified deep q-network. Optimal Control

Applications and Methods 44, 1570–1587

[10] Jiang, M. and Huang, G. Q. (2022). Intralogistics synchronization in robotic forward-reserve

warehouses for e-commerce last-mile delivery. Transportation Research Part E: Logistics and

Transportation Review158, 102619

[11] Jones, M., Djahel, S., and Welsh, K. (2023). Path-planning for unmanned aerial vehicles with

environment complexity considerations: A survey. ACM Computing Surveys 55, 1–39

[12] Lee, D.-H. and Liu, J.-L. (2023). End-to-end deep learning of lane detection and path

prediction for real-time autonomous driving. Signal, Image and Video Processing 17, 199–205

[13] Lee, M.-F. R. and Yusuf, S. H. (2022). Mobile robot navigation using deep reinforcement

learning. Processes 10, 2748

[14] Li, J., Qiao, Y., Liu, S., Zhang, J., Yang, Z., and Wang, M. (2022). An improved yolov5-based

vegetable disease detection method. Computers and Electronics in Agriculture 202, 107345

[15] Mirahadi, F. and McCabe, B. Y. (2021). Evacusafe: A real-time model for building evacuation

based on dijkstra’s algorithm. Journal of Building Engineering 34, 101687

[16] Neri, I. and Dinarama, E. (2024). Cities’ match-making: Fostering international collaboration

for climate-resilient twins. In The Routledge Handbook on Greening High-Density Cities

(Routledge). 15–29

[17] Qadir, Z., Ullah, F., Munawar, H. S., and Al-Turjman, F. (2021). Addressing disasters in smart

cities through uavs path planning and 5g communications: A systematic review. Computer

Communications168, 114–135

[18] Segato, A., Di Marzo, M., Zucchelli, S., Galvan, S., Secoli, R., and De Momi, E. (2021).

Inverse reinforcement learning intra-operative path planning for steerable needle. IEEE

Transactions on Biomedical Engineering 69, 1995–2005

[19] Torres, J. F., Hadjout, D., Sebaa, A., Mart ́ınez- Álvarez, F., and Troncoso, A. (2021). Deep

learning for time series forecasting: a survey. Big Data 9, 3–21

[20] Wang, J., Liu, Y., and Li, B. (2020). Reinforcement learning with perturbed rewards. In

Proceedings of the AAAI conference on artificial intelligence. vol. 34, 6202–6209

21

[21] Wang, X., Wang, S., Liang, X., Zhao, D., Huang, J., Xu, X., et al. (2022). Deep reinforcement

learning: A survey. IEEE Transactions on Neural Networks and Learning Systems

[22] Wang, Y., Li, X., Zhang, J., Li, S., Xu, Z., and Zhou, X. (2021). Review of wheeled mobile

robot collision avoidance under unknown environment. Science Progress 104,

00368504211037771

[23] Wu, J. and Li, H. (2020). Deep ensemble reinforcement learning with multiple deep

deterministic policy gradient algorithm. Mathematical Problems in Engineering 2020, 1–12

[24] Wu, Z., Meng, Z., Zhao, W., and Wu, Z. (2021). Fast-rrt: A rrt-based optimal path finding

method. Applied sciences 11, 11777

[25] Yan, B., Chen, T., Zhu, X., Yue, Y., Xu, B., and Shi, K. (2020). A comprehensive survey and

analysis on path planning algorithms and heuristic functions. In Intelligent Computing: Proceedings

of the 2020

[26] Computing Conference, Volume 1 (Springer), 581–598

[27] Zhang, L., Zhang, Y., and Li, Y. (2020a). Path planning for indoor mobile robot based on deep

learning. Optik 219, 165096

[28] Zhang, Z., Wu, J., Dai, J., and He, C. (2020). A novel real-time penetration path planning

algorithm for stealth uav in 3d complex dynamic environment. Ieee Access 8, 122757–122771

[29] Zhao, C., Zhu, Y., Du, Y., Liao, F., and Chan, C.-Y. (2022). A novel direct trajectory planning

approach based on generative adversarial networks and rapidly-exploring random tree. IEEE

Transactions on

[30] Intelligent Transportation Systems 23, 17910–17921

[31] Zhao, J., Zhao, W., Deng, B., Wang, Z., Zhang, F., Zheng, W., et al. (2023). Autonomous

driving system: A comprehensive survey. Expert Systems with Applications , 122836

[32] Zhou, Y., Xiao, J., Zhou, Y., and Loianno, G. (2022). Multi-robot collaborative perception

with graph neural networks. IEEE Robotics and Automation Letters 7, 2289–2296

© The Author(s) 2024. Published by Hong Kong Multidisciplinary Research Institute (HKMRI).

This is an Open Access article distributed under the terms of the Creative

Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

