OPTIMIZATIONS IN APPLIED MACHINE LEARNING H ﬂ
Research Article | Volume 5 | Issue 5 | Mar 2025

Received: 16 Jan 2025 | Revised: 30 Jan 2025 %K/

Accepted: 25 Feb 2025 | Published Online: 5 Mar 2025

Retrieval-augmented generation for personalized
physician recommendations in online medical
services: model development study

Yingbin Zheng!, Yiwei Yan!, Sai Chen?, Yunping Cai?, Kun Ren?, Yishan Liu?, Jiaying
Zhuang! and Min Zhao"

'Biomedical Big Data Center, The First Affiliated Hospital of Xiamen University, School of
Medicine, Xiamen University, Xiamen, China,

2Meteorological Disaster Prevention Technology Center, Xiamen Meteorological Bureau,
Xiamen, China,

3School of Software Engineering, Taiyuan University of Technology, Taiyuan, China

Abstract: Web-based medical services have expanded access to healthcare through
remote consultations and streamlined scheduling, but personalized physician
recommendations remain limited due to reliance on manual triage. This study developed
and validated a Retrieval-Augmented Generation-Based Physician Recommendation
§RAGPR) model to enhance triage performance. Using 646,383 consultation records
rom the Internet Hospital of the First Affiliated Hospital of Xiamen University, we
evaluated embedding models (FastText, SBERT, OpenAl) for clustering and
classification, as well as large language models (Mistral, GPT-40-mini, GPT-40). Three
triage staff also assessed model ef%ciency via questionnaires. Results showed that
FastText performed poorly (F1-score 46%), while SBERT and OpenAl achieved 95%
and 96%. Among LLMs, GPT-40 reached the highest Fl-score (95%) with a
performance rating of 4.67, followed by Mistral (94%, 4.56) and GPT-40-mini (92%,
4.45). Considering accuracy, cost, and implementation, SBERT and Mistral were
optimal. The RAGPR model offers a scalable approach to improving accuracy and
personalization in online patient - physician matching.

Keywords: /large language models; mistral, SBERT; triage systems; retrieval-
augmented generation-based physician recommendation, RAGPR model

1. Introduction

Web-based medical services have significantly enhanced healthcare accessibility by improving
convenience and efficiency through features such as remote consultations, streamlined scheduling,
and enhanced access to medical information (1). Nevertheless, challenges persist, particularly in
delivering personalized physician recommendations (2). The diverse array of medical
professionals and the varying needs of patients complicate the effective identification of suitable
physicians. Currently, most triage processes depend on manual recommendations made by
schedulers to guide patients to the appropriate departments or practitioners (3). The increasing
volume of consultations reveals the limitations of such manual methods in maintaining quality and
professionalism in healthcare delivery (4). Moreover, the intermittent availability of schedulers



can disrupt patient access and continuity of care, underscoring the need for a sophisticated
recommendation model.

A substantial number of health-related websites now incorporate symptom checker tools (5)
that offer preliminary assessments based on user inputs, employing decision trees (6) or rule-based
methodologies (7, 8). Following this initial evaluation, the system proposes possible medical
conditions and recommends relevant healthcare providers. Notably, machine learning algorithms,
including collaborative filtering (9) and content-based filtering (10), have been investigated for
their efficacy in recommending physicians by analyzing patient history, preferences, and
demographic data. Advances in technology, particularly in natural language processing, present
promising opportunities to utilize extensive datasets for generating tailored and precise
recommendations.

The Retrieval-Augmented Generation (RAG) (11) framework presents a promising strategy
for enhancing the precision and personalization of medical recommendations. Originally designed
for handling fact-based inquiries within conversational models (12), RAG comprises two key
components: a retriever (13) that locates relevant documents and a generator (14) that synthesizes
these documents into coherent outputs. Embedding models play a crucial role in this process by
providing linguistic representations that encapsulate semantic meanings in the form of numerical
vectors, which are essential for retrieval systems. Simultaneously, generators, such as OpenAl’s
GPT series of large language models (LLMs) (15), have demonstrated significant proficiency in
producing human-like text and understanding, influencing numerous natural language processing
applications, including automated customer support and content generation. By integrating
information retrieval with generative modeling, RAG allows systems to generate contextually rich
responses that incorporate relevant external data sources (16), thus grounding responses in factual
information and substantially.

2. Abbreviations:

RAG, Retrieval-Augmented Generation; LLMs, large language models; SBERT, Sentence
Bidirectional Encoder Representations from Transformers; RAGPY, Retrieval-Augmented
Generation-Based Physician Recommendation. improving accuracy while reducing the likelihood
of misleading or erroneous outputs.

3. Methods

The Retrieval-Augmented Generation-Based Physician Recommendation (RAGPR) model, as
illustrated in the accompanying figure, comprises two principal components: document retrieval
and ingestion, and the generation of user queries and responses. A comprehensive account of the
methodology is presented below (Figure 1).

3.1 Data collection and preprocessing

The research process commenced with the collation of medical documents pertaining to patients.
The training dataset was comprised of 646,383 web-based medical documents, collected from the
Internet Hospital of the First Affiliated Hospital of Xiamen University. The documents spanned
the years 2016 to 2023. Subsequently, data preprocessing was conducted to ensure that the data
were anonymized, structured, and formatted for efficient retrieval and analysis. Each document in
this dataset includes the textual query, de-identified codes for the physician and the patient, as well
as information on the physician’s department and response time. In contrast, the test dataset
consisted of 965 web-based medical documents obtained from Hugging Face, each containing a
disease label and a textual query.



3.2 Feature extraction and storage

The process of document analysis employs an embedding model that utilizes a pretrained
Sentence-BERT (SBERT) model (17), specifically “distilute-base-multilingual-cased, “to
transform textual information into numerical embeddings. The resulting embeddings capture the
semantic essence of the text (18). The embedding process reduces the dimensionality of the data
while preserving semantic similarity, thereby facilitating efficient data storage and retrieval. The
resulting document embeddings are stored in Chroma (19), a specialized vector database optimized
for managing high-dimensional data. This optimization allows for the rapid execution of similarity
searches and serves as a repository for all vector representations of the processed documents,

ensuring their accessibility for future retrieval (Figure 2).
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3.3 User query and response generation

The system’s user interface is developed using the Vue framework (20) and connects to the
backend service via a RESTful API (21). It is designed to help users clearly articulate their
information needs, allowing the system to efficiently process requests. The user’s input query is
then transformed into an embedding using the same embedding model employed in processing the
documents. This ensures compatibility and comparability between the document embeddings and
the query embedding.

Maximal Marginal Relevance (MMR) is a technique employed in information retrieval to
identify documents that are not only pertinent to a given query but also exhibit diversity in relation
to those previously selected. The system implements MMR by comparing the embedding of the
user query with the embeddings of each stored document. This method effectively reduces
redundancy and enhances the coverage of various aspects of the query within the selected
documents. To further improve the safety of post - retrieval recommendations, the self - reflective
mechanism proposed by Zhang et al. (2024) could be referenced—this mechanism dynamically
revises retrieval results through multi - dimensional validation (e.g., drug interactions, dosage
limitations), providing insights for optimizing the rationality of the RAGPR model’s
recommendations (Zhang et al., 2024). Subsequently, the system retrieves the top 6 closely
matched queries along with the corresponding physician information for the next step.

A locally constructed LLM was developed using the LLaMA(22) architecture, incorporating
the Mistral-7B (23) model for pre-training parameters. This LLM is provided with a prompt that
includes similar retrieved queries and related physician information. The prompt facilitates the
LLM in generating coherent and contextually appropriate natural language responses. This
generative capability ensures that users receive not only straightforward data retrieval but also
insightful interpretations and explanations, thereby enhancing their understanding and aiding in
the decision-making process. The prompt is as follows: “You are an assistant for question-
answering tasks. Use the following pieces of retrieved context to recommend a department and




physicians with the shorter response time. The output must be in JSON format and contain only
department and physicians.”

3.4 Evaluation

The evaluation of the proposed RAGPR model’s effectiveness employed three key metrics:
precision, recall, and F1-score. Precision is defined as the ratio of correctly identified positive
samples to the total number of samples predicted as positive. This metric indicates the accuracy of
the model in its positive predictions. In contrast, recall quantifies the proportion of actual positive
samples that the model accurately identifies, thus highlighting the model’s ability to detect all
pertinent instances. The Fl-score is a balanced measure that calculates the harmonic mean of
precision and recall, providing a comprehensive assessment of the model’s performance. The
formulas for precision, recall, and F1-score are outlined in Equations 1-3, where TP denotes true
positives, FP denotes false positives, and FN denotes false negatives:

Precision = —— 1
recision = T FP @9
Recall = TP 2
ecall = 757N @

2 X (Precision x Recall
F1 — score = ( ) 3)

Precision + Recall

3.5 Baseline experiments

For the embedding models, FastText (“cc.zh.3007”) (24), SBERT (“distiluse-base-multilingual-
cased”), and OpenAl’s “text- embedding-3-large” were used to examine their performance on the
test dataset, which consisted of 965 web-based medical documents. Each document contained a
disease label and a textual query. To facilitate visualization, t-distributed Stochastic Neighbor
Embedding(25) was initially applied to reduce the dimensionality of the embeddings. The
classification performance of these models was then assessed using precision, recall, and F1-score
as evaluation metrics.

For the LLMs comparison, GPT-40, GPT-40-mini, and Mistral were employed, focusing on
their precision, recall, and F1-score on the test dataset. Furthermore, to evaluate the rationality of
physician recommendations generated by these LLMs, a questionnaire was administered to three
staff members involved in triaging. The participants were asked, “Based on your area of expertise,
how would you rate the match between physician and the query?” Responses were measured using
a 5-point Likert scale (26), with scores ranging from 1 (very inappropriate) to 5 (very appropriate).
This evaluation did not involve relabeling the test dataset, but was used to assess whether the
model’s predictions were consistent with the professional judgment of these human experts in a
triage scenario. The Mann—Whitney U test(27) was employed to determine if these assessments
revealed any statistically significant differences.

4. Results

This study investigates the potential of applying RAG to improve the accuracy, reliability, and
contextual relevance of physician recommendations. Similarly, the self-reflective retrieval-
augmented framework proposed by Zhang et al. (2024) integrated a self-reflective correction
mechanism, pharmacological memory bank, and RAG retrieval module, achieving an accuracy of
92.3% in pharmacological recommendation tasks. This confirms the potential of RAG technology
to enhance recommendation reliability in specialized medical scenarios (Zhang et al., 2024). The
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objectives include analyzing the limitations of existing web-based medical services, evaluating the
effectiveness of RAG in this context, and developing a framework for its implementation to
enhance patient-physician matching. Ultimately, the research aims to provide insights that could
markedly advance the personalization and efficacy of web-based medical services, thereby
improving patient satisfaction. The study addresses the following research questions: How can
RAG be utilized to effectively integrate extensive medical documents to provide personalized
healthcare for patients? What impact do large language models and embedding models have on
the quality of personalized recommendations? How effective is the RAG system in the context of
medical services, particularly concerning the precision, recall, and F1-score of recommendations?

4.1 Data set summary

The dataset consists of 646,383 consultation records involving 193,675 patients and 858 physicians
across 44 departments. According to Table 1, male patients constitute 32.95% (n=212,983) of the
records, while female patients make up 67.05% (n = 433,400). The age group most represented
among patients is 20 to 39 years, accounting for 54.6% (n = 352,907) of the total consultations.
Notably, senior physicians handled the majority of consultations, with 62.65% (n = 404,958)
attributed to them. Additionally, the majority of response times were recorded at less than 90 min,
comprising 38.13% (n = 246,472) of the total.

4.2 Evaluating the performance of embedding models

Figure 3 presents a comparative analysis of the clustering performance of three distinct embedding
models using the test dataset. The models FastText, SBERT, and OpenAl were specifically
developed for the purpose of labeling medical conditions. The evaluation focuses on the models’
efficacy in differentiatingconditions such as cervical spondylosis, urinary tract infection, allergy,
and diabetes, which are represented with distinct color- coded labels.

The initial plot illustrates the moderate capacity of the FastText model to differentiate between
a numbers of medical conditions. Although the model is successful in creating clusters of similar
labels, there is considerable overlap, indicating that there are challenges in effectively separating
data points with identical labels. In contrast, the SBERT model demonstrates enhanced clustering
capabilities, achieving a more distinct separation among different medical condition labels. This
enhancement suggests SBERT’s increased proficiency in distinguishing between conditions. The
final plot reveals the performance of the OpenAl model, which exhibits the most distinct clustering.
It forms well- defined, tightly grouped clusters corresponding to individual medical conditions and
shows minimal overlap between different labels.

Table 2 provides a comparative analysis of the classification performance of three distinct
embedding models: FastText, SBERT, and OpenAl, specifically in the context of medical
condition labels using the test dataset. The analysis employs a classification model to predict
disease labels from the embeddings of disease description texts. For each model, the precision,
recall, and F1-score metrics are presented. The FastText model yielded a precision of 0.52, a recall
of 0.44, and an F1-score of 0.46. In contrast, SBERT and OpenAl exhibited markedly superior
performance, with both attaining high precision (0.95 and 0.97, respectively), recall (0.95 and 0.96,
respectively), and F1-scores (0.95 and 0.96, respectively). These findings suggest that SBERT and
OpenAl are more efficacious in accurately classifying medical condition labels from textual
descriptions than FastText. In light of these findings and additional considerations, such as
affordability, data security, and ease of migration, the study ultimately determined that the SBERT
was the optimal embedding model.



TABLE 1 Summary of the characteristics of the collected data records (N = 646,383).

Characteristic Value, n (%)

Gender
from Male 212,983 (32.95)
from Female 433,400 (67.05)
Age of patient at consultation (years)
<20 118,484 (18.33)
20-39 352,907 (54.6)
40-59 125,957 (19.49)
>60 49,035 (7.58)
Physicians’ professional title
Junior 10,766 (1.67)
Intermediate 45,892 (7.1)
Subsenior 184,767 (28.58)
Senior 404,958 (62.65)
Physicians’ response time (minutes)
<90 246,472 (38.13)
91-180 65,732 (10.17)
181-270 41,033 (6.35)
271-360 28,845 (4.46)
>360 126,943 (19.64)
Not response 137,358 (21.25)

4.3 Evaluating the performance of large language models (LLMs)

Table 3 presents a comparative analysis of three LLMs—M istral, GPT-40-mini, and GPT-40—
with a focus on their performance in terms of precision, recall, and F1-score in relation to physician



recommendations using the test dataset. The Mistral model demonstrated a precision of 0.95, a
recall of 0.94, and an F1-score of 0.94, indicating a balanced and efficient performance across all
metrics. The GPT-40-mini exhibited a precision of 0.95, which was comparable to that of Mistral.
However, it demonstrated a slightly lower recall of 0.90 and consequently a reduced F1-score of
0.92. In contrast, the GPT-40 model exhibited a slightly lower precision (0.94) but a higher recall
(0.97), resulting in the highest F1-score (0.95) among the models analyzed. Overall, the GPT-40
model demonstrated superior performance in synthesizing precision and recall, as reflected in its
F1-score.

4.4 Rationality evaluation of LLMs

Table 4 presents a Mann—Whitney U test conducted on three pairs of LLMs using the test dataset.
The Mistral model has been assigned a rating of 4.56, while the GPT-40-mini has been rated 4.45
and the GPT-40 has been rated 4.67. The comparison between the Mistral and the GPT-40- mini
yielded a p-value of 0.003, indicating a statistically significant difference. The p-value for the
comparison between Mistral and GPT-40 is 0.01, indicating a notable difference. Furthermore, the
comparison between GPT-40-mini and GPT-40 yielded a p-value of 0.001, thereby affirming the
statistical significance of the difference. Considering the study’s findings and additional factors
such as affordability, data security, and ease of migration, the research ultimately concluded that
the Mistral was the most suitable choice for implementation.
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TABLE 2 Classification performance of FastText, SBERT, and OpenAl.

Embedding models Precision Recall

FastText 0.52 0.44 0.46
SBERT 0.95 0.95 0.95
OpenAl 0.97 0.96 0.96

TABLE 3 Comparative analysis of Mistral, GPT-40-mini and GPT-4o.

LLMs Precision Recall Fi-score
Mistral 0.95 0.94 0.94
GPT-40-mini 0.95 0.90 0.92
GPT-40 0.94 0.97 0.95

TABLE 4 The Mann—Whitney U test conducted on three pairs of LLMs.

Mistral vs. GPT-40-mini 0.003
Mistral vs. GPT-40 0.01
GPT-40-mini vs. GPT-40 0.001
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FIGURE 4

Performance of RAGPR model in mapping symptoms to medical departments and physicians. The layout of the image is divided into three sections: on the right are the human queries, on the
left are the responses generated by the model, and in the middle are the interpretations of these interactions.

4.5 Case study

As illustrated in Figure 4, the RAGPR model demonstrates the capability to accurately identify
medical specialties and recommend corresponding medical departments and physicians, based on
a randomly selected set of symptom descriptions from the test database. For instance, the model
correctly associates dermatological symptoms with the dermatology department and
gastrointestinal symptoms with the gastroenterology department. This demonstrates that the
RAGPR model effectively processes natural language descriptions to provide relevant medical
recommendations, highlighting its potential for application in medical diagnostic systems.

5. Discussion

5.1 Principal findings

This study introduces an innovative physician triage algorithm called the RAGPR model, designed
to enhance the accuracy and efficiency of web-based medical consultations. In our assessment, we
evaluated various embedding and large language models to determine the most suitable options
based on criteria such as cost- effectiveness, data security, and ease of migration. Consequently,
the SBERT and Mistral models were selected as the optimal choices. The RAGPR model
demonstrates an improved ability to accurately match patients’ queries with physicians’ specialties.
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5.3 Reasons behind the performance achieved by the three algorithms

The performance of FastText, SBERT, and OpenAI’s embedding models in the context of medical
condition classification is reflective of their respective architectures and capabilities. FastText,
although useful for capturing word representations, showed moderate clustering performance with
noticeable overlap among medical conditions. This is primarily due to its focus on word-level
embeddings without accounting for sentence-level semantics, limiting its effectiveness in
distinguishing nuanced medical terms.

SBERT, on the other hand, provided a substantial performance boost. Its architecture, designed
to derive sentence-level embeddings, allowed for more refined semantic understanding, resulting
in distinct clustering for different medical labels. The ability to capture the contextual meaning of
sentences led to significantly higher precision,recall, and F1-scores, making it highly effective for
classifying medical conditions based on textual descriptions.

OpenAl’s embedding model exhibited the most pronounced clustering capabilities, indicating
its superior understanding and representation of semantic content. Its advanced architecture, likely
with larger training datasets and refined algorithms, contributed to tightly grouped clusters and
minimal label overlap. However, when considering additional factors such as cost, SBERT was
identified as the optimal choice for the application, balancing high performance with practical
implementation advantages.

5.4 Feasibility and potential extensions of the proposed model

The successful implementation of the RAGPR model in healthcare is contingent upon the existence
of a robust IT infrastructure that is capable of handling large volumes of data, facilitating real-time
processing, and integrating seamlessly with existing systems such as electronic health records (28).
This may require the upgrading of existing systems or the adoption of cloud-based solutions (29)
that offer scalability and flexibility. For the model to be widely adopted, it is essential that
healthcare professionals receive adequate training to ensure effective use and the development of
trust in its capabilities. Such training should include an understanding of how the model generates
recommendations and the interpretation of its results. Furthermore, a comprehensive cost—benefit
analysis is essential to assess whether the long-term benefits, such as enhanced efficiency, accuracy,
and patient outcomes, justify the initial investment. Clearly articulated value propositions, such as
reducing diagnostic errors, optimizing physician workload, or improving patient satisfaction, are
vital for garnering stakeholder support.

One potential avenue for advancement within the field of healthcare is the integration of the
RAGPR model into real-time decision support systems (30). Such systems could provide real-time
recommendations during patient consultations, alerting physicians to potential problems such as
drug interactions or abnormal test results, and suggesting next steps based on the latest clinical
guidelines. This not only increases the efficiency of the visit, but also improves the quality of care
by providing timely, evidence-based support. While current models focus on physician
recommendations, future research could explore expanding these models to other areas, such as
surgical recommendations, chronic disease management, or mental health support. Furthermore,
the 'pharmacological memory bank' constructed by Zhang et al. (2024) demonstrates that
accumulating historical recommendation cases and error-correction records can enhance the
model’s long-term reasoning ability. This mechanism can be migrated to the RAGPR model to
optimize recommendation efficiency in repeated consultation scenarios and reduce matching errors
for similar cases (Zhang et al., 2024). In addition, models could be tailored to specialty areas, such
as oncology, cardiology, or pediatrics, to support complex decision- making processes. Another
promising extension is the development of personalized medicine frameworks using predictive
analytics. By analyzing patient-specific data over time, the model could predict future health risks,
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recommend preventive measures, and tailor treatment plans to a patient’s unique health profile.
This shift from reactive to proactive healthcare could significantly improve long-term patient
outcomes.

5.5 Real-world application challenges

The implementation of the RAGPR model in healthcare is confronted with a multitude of
considerable challenges, one of the most pivotal being the protection of patient data. The utilization
of such confidential data for training and deployment must adhere to rigorous privacy regulations,
such as HIPAA (31) in the United States and GDPR (32) in the European Union. Breaches of
patient confidentiality can have profound legal and ethical ramifications. It is, therefore, of
paramount importance to implement robust data encryption, anonymisation techniques, and secure
data handling protocols to maintain patient trust and regulatory compliance.

A further significant challenge is the integration of the RAGPR model with existing healthcare
IT infrastructure, such as electronic health records systems. This process can be hindered by a
number of factors, including compatibility issues, inconsistencies in data format, and concerns
regarding interoperability. It is not uncommon for the various systems utilized by healthcare
institutions to lack the capacity to interact seamlessly with the model, necessitating substantial
customization and development efforts.

Another challenge is the potential for bias, particularly when trained on datasets that are not
representative of the population under study. Such bias has the potential to perpetuate or even
exacerbate existing disparities in healthcare access and outcomes. For example, if the training
datasets predominantly reflect certain demographic groups, the model’s performance for
underrepresented populations may be compromised, which could result in unequal treatment. To
mitigate these biases, it is essential to employ diverse and representative training datasets and to
incorporate fairness constraints during model development. This ensures that healthcare solutions
are equitable.

Furthermore, the RAGPR model must undergo continuous adaptation in order to remain
relevant and accurate in the context of evolving medical knowledge and practice. This necessitates
the implementation of continuous learning frameworks that permit the model to update its
knowledge base in response to new medical evidence, guidelines, and emerging diseases.
Continuous monitoring, retraining, and validation mechanisms are essential to guarantee that the
model provides recommendations that are up-to-date and reliable.

5.6 Limitations and future directions

The study has several important limitations. Firstly, the study was conducted exclusively within a
single hospital, potentially limiting the applicability of the results to other settings or populations.
Secondly, the dataset included irrelevant questions, such as “Doctor, will you be available
tomorrow? Where can I find you?” These questions could introduce bias into the analysis. Lastly,
a significant limitation of deep neural networks is their opacity, which refers to their lack of
transparency in providing explanations for predictive results. This opacity poses challenges in
understanding the rationale behind the predictions for specific samples.

Future research should seek to address the current limitations and explore potential avenues
for improvement in patient-physician matching systems. A crucial objective is the development of
sophisticated algorithms that enhance both the precision and responsiveness of this matching
process. The incorporation of real- time data in conjunction with advanced machine learning
models may facilitate the dynamic allocation of consultations based on physician availability,
which could potentially reduce wait times and enhance patient satisfaction. Moreover, future
studies should investigate the integration of multimodal data sources, including patient histories,
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imaging data, and real-time physiological signals. Such integration could facilitate a more
comprehensive understanding of patient conditions, thereby improving diagnostic accuracy and
treatment recommendations. Additionally, there is a need to develop explainable models that not
only provide accurate recommendations but also offer transparent justifications for their decisions.
This transparency would facilitate more informed decision-making in clinical settings, enhancing
trust and effectiveness in healthcare.

6. Conclusion

This paper presents the RAGPR model, which is designed to improve the performance of triage in
web-based medical services. The primary function of this model is to efficiently filter and select
appropriate physicians, thereby assisting patients in identifying medical professionals best suited
to address their specific healthcare needs. The implementation of this method has significant
practical implications, suggesting its potential integration into various healthcare website systems
to enhance the quality of physician recommendations.
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