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Abstract: Web-based medical services have expanded access to healthcare through 
remote consultations and streamlined scheduling, but personalized physician 
recommendations remain limited due to reliance on manual triage. This study developed 
and validated a Retrieval-Augmented Generation-Based Physician Recommendation 
(RAGPR) model to enhance triage performance. Using 646,383 consultation records 
from the Internet Hospital of the First Affiliated Hospital of Xiamen University, we 
evaluated embedding models (FastText, SBERT, OpenAI) for clustering and 
classification, as well as large language models (Mistral, GPT-4o-mini, GPT-4o). Three 
triage staff also assessed model efficiency via questionnaires. Results showed that 
FastText performed poorly (F1-score 46%), while SBERT and OpenAI achieved 95% 
and 96%. Among LLMs, GPT-4o reached the highest F1-score (95%) with a 
performance rating of 4.67, followed by Mistral (94%, 4.56) and GPT-4o-mini (92%, 
4.45). Considering accuracy, cost, and implementation, SBERT and Mistral were 
optimal. The RAGPR model offers a scalable approach to improving accuracy and 
personalization in online patient–physician matching. 

 

Keywords: large language models; mistral, SBERT; triage systems; retrieval-
augmented generation-based physician recommendation; RAGPR model 

1. Introduction 

Web-based medical services have significantly enhanced healthcare accessibility by improving 

convenience and efficiency through features such as remote consultations, streamlined scheduling, 

and enhanced access to medical information (1). Nevertheless, challenges persist, particularly in 

delivering personalized physician recommendations (2). The diverse array of medical 

professionals and the varying needs of patients complicate the effective identification of suitable 

physicians. Currently, most triage processes depend on manual recommendations made by 

schedulers to guide patients to the appropriate departments or practitioners (3). The increasing 

volume of consultations reveals the limitations of such manual methods in maintaining quality and 

professionalism in healthcare delivery (4). Moreover, the intermittent availability of schedulers 
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can disrupt patient access and continuity of care, underscoring the need for a sophisticated 

recommendation model. 

A substantial number of health-related websites now incorporate symptom checker tools (5) 

that offer preliminary assessments based on user inputs, employing decision trees (6) or rule-based 

methodologies (7, 8). Following this initial evaluation, the system proposes possible medical 

conditions and recommends relevant healthcare providers. Notably, machine learning algorithms, 

including collaborative filtering (9) and content-based filtering (10), have been investigated for 

their efficacy in recommending physicians by analyzing patient history, preferences, and 

demographic data. Advances in technology, particularly in natural language processing, present 

promising opportunities to utilize extensive datasets for generating tailored and precise 

recommendations. 

The Retrieval-Augmented Generation (RAG) (11) framework presents a promising strategy 

for enhancing the precision and personalization of medical recommendations. Originally designed 

for handling fact-based inquiries within conversational models (12), RAG comprises two key 

components: a retriever (13) that locates relevant documents and a generator (14) that synthesizes 

these documents into coherent outputs. Embedding models play a crucial role in this process by 

providing linguistic representations that encapsulate semantic meanings in the form of numerical 

vectors, which are essential for retrieval systems. Simultaneously, generators, such as OpenAI’s 

GPT series of large language models (LLMs) (15), have demonstrated significant proficiency in 

producing human-like text and understanding, influencing numerous natural language processing 

applications, including automated customer support and content generation. By integrating 

information retrieval with generative modeling, RAG allows systems to generate contextually rich 

responses that incorporate relevant external data sources (16), thus grounding responses in factual 

information and substantially. 

2. Abbreviations:  

RAG, Retrieval-Augmented Generation; LLMs, large language models; SBERT, Sentence 

Bidirectional Encoder Representations from Transformers; RAGPY, Retrieval-Augmented 

Generation-Based Physician Recommendation. improving accuracy while reducing the likelihood 

of misleading or erroneous outputs. 

3. Methods 

The Retrieval-Augmented Generation-Based Physician Recommendation (RAGPR) model, as 

illustrated in the accompanying figure, comprises two principal components: document retrieval 

and ingestion, and the generation of user queries and responses. A comprehensive account of the 

methodology is presented below (Figure 1). 

3.1 Data collection and preprocessing 

The research process commenced with the collation of medical documents pertaining to patients. 

The training dataset was comprised of 646,383 web-based medical documents, collected from the 

Internet Hospital of the First Affiliated Hospital of Xiamen University. The documents spanned 

the years 2016 to 2023. Subsequently, data preprocessing was conducted to ensure that the data 

were anonymized, structured, and formatted for efficient retrieval and analysis. Each document in 

this dataset includes the textual query, de-identified codes for the physician and the patient, as well 

as information on the physician’s department and response time. In contrast, the test dataset 

consisted of 965 web-based medical documents obtained from Hugging Face, each containing a 

disease label and a textual query. 
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3.2 Feature extraction and storage 

The process of document analysis employs an embedding model that utilizes a pretrained 

Sentence-BERT (SBERT) model (17), specifically “distilute-base-multilingual-cased, “to 

transform textual information into numerical embeddings. The resulting embeddings capture the 

semantic essence of the text (18). The embedding process reduces the dimensionality of the data 

while preserving semantic similarity, thereby facilitating efficient data storage and retrieval. The 

resulting document embeddings are stored in Chroma (19), a specialized vector database optimized 

for managing high-dimensional data. This optimization allows for the rapid execution of similarity 

searches and serves as a repository for all vector representations of the processed documents, 

ensuring their accessibility for future retrieval (Figure 2). 
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3.3 User query and response generation 

The system’s user interface is developed using the Vue framework (20) and connects to the 

backend service via a RESTful API (21). It is designed to help users clearly articulate their 

information needs, allowing the system to efficiently process requests. The user’s input query is 

then transformed into an embedding using the same embedding model employed in processing the 

documents. This ensures compatibility and comparability between the document embeddings and 

the query embedding. 

Maximal Marginal Relevance (MMR) is a technique employed in information retrieval to 

identify documents that are not only pertinent to a given query but also exhibit diversity in relation 

to those previously selected. The system implements MMR by comparing the embedding of the 

user query with the embeddings of each stored document. This method effectively reduces 

redundancy and enhances the coverage of various aspects of the query within the selected 

documents. To further improve the safety of post - retrieval recommendations, the self - reflective 

mechanism proposed by Zhang et al. (2024) could be referenced—this mechanism dynamically 

revises retrieval results through multi - dimensional validation (e.g., drug interactions, dosage 

limitations), providing insights for optimizing the rationality of the RAGPR model’s 

recommendations (Zhang et al., 2024). Subsequently, the system retrieves the top 6 closely 

matched queries along with the corresponding physician information for the next step. 

A locally constructed LLM was developed using the LLaMA(22) architecture, incorporating 

the Mistral-7B (23) model for pre-training parameters. This LLM is provided with a prompt that 

includes similar retrieved queries and related physician information. The prompt facilitates the 

LLM in generating coherent and contextually appropriate natural language responses. This 

generative capability ensures that users receive not only straightforward data retrieval but also 

insightful interpretations and explanations, thereby enhancing their understanding and aiding in 

the decision-making process. The prompt is as follows: “You are an assistant for question-

answering tasks. Use the following pieces of retrieved context to recommend a department and 
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physicians with the shorter response time. The output must be in JSON format and contain only 

department and physicians.” 

3.4 Evaluation 

The evaluation of the proposed RAGPR model’s effectiveness employed three key metrics: 

precision, recall, and F1-score. Precision is defined as the ratio of correctly identified positive 

samples to the total number of samples predicted as positive. This metric indicates the accuracy of 

the model in its positive predictions. In contrast, recall quantifies the proportion of actual positive 

samples that the model accurately identifies, thus highlighting the model’s ability to detect all 

pertinent instances. The F1-score is a balanced measure that calculates the harmonic mean of 

precision and recall, providing a comprehensive assessment of the model’s performance. The 

formulas for precision, recall, and F1-score are outlined in Equations 1–3, where TP denotes true 

positives, FP denotes false positives, and FN denotes false negatives: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2) 

F1− score =
2 × (Precision × Recall)

Precision + Recall
(3) 

3.5 Baseline experiments 

For the embedding models, FastText (“cc.zh.300”) (24), SBERT (“distiluse-base-multilingual-

cased”), and OpenAI’s “text- embedding-3-large” were used to examine their performance on the 

test dataset, which consisted of 965 web-based medical documents. Each document contained a 

disease label and a textual query. To facilitate visualization, t-distributed Stochastic Neighbor 

Embedding(25) was initially applied to reduce the dimensionality of the embeddings. The 

classification performance of these models was then assessed using precision, recall, and F1-score 

as evaluation metrics. 

For the LLMs comparison, GPT-4o, GPT-4o-mini, and Mistral were employed, focusing on 

their precision, recall, and F1-score on the test dataset. Furthermore, to evaluate the rationality of 

physician recommendations generated by these LLMs, a questionnaire was administered to three 

staff members involved in triaging. The participants were asked, “Based on your area of expertise, 

how would you rate the match between physician and the query?” Responses were measured using 

a 5-point Likert scale (26), with scores ranging from 1 (very inappropriate) to 5 (very appropriate). 

This evaluation did not involve relabeling the test dataset, but was used to assess whether the 

model’s predictions were consistent with the professional judgment of these human experts in a 

triage scenario. The Mann–Whitney U test(27) was employed to determine if these assessments 

revealed any statistically significant differences. 

4. Results 

This study investigates the potential of applying RAG to improve the accuracy, reliability, and 

contextual relevance of physician recommendations. Similarly, the self-reflective retrieval-

augmented framework proposed by Zhang et al. (2024) integrated a self-reflective correction 

mechanism, pharmacological memory bank, and RAG retrieval module, achieving an accuracy of 

92.3% in pharmacological recommendation tasks. This confirms the potential of RAG technology 

to enhance recommendation reliability in specialized medical scenarios (Zhang et al., 2024). The 
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objectives include analyzing the limitations of existing web-based medical services, evaluating the 

effectiveness of RAG in this context, and developing a framework for its implementation to 

enhance patient-physician matching. Ultimately, the research aims to provide insights that could 

markedly advance the personalization and efficacy of web-based medical services, thereby 

improving patient satisfaction. The study addresses the following research questions: How can 

RAG be utilized to effectively integrate extensive medical documents to provide personalized 

healthcare for patients? What impact do large language models and embedding models have on 

the quality of personalized recommendations? How effective is the RAG system in the context of 

medical services, particularly concerning the precision, recall, and F1-score of recommendations? 

4.1 Data set summary 

The dataset consists of 646,383 consultation records involving 193,675 patients and 858 physicians 

across 44 departments. According to Table 1, male patients constitute 32.95% (n = 212,983) of the 

records, while female patients make up 67.05% (n = 433,400). The age group most represented 

among patients is 20 to 39 years, accounting for 54.6% (n = 352,907) of the total consultations. 

Notably, senior physicians handled the majority of consultations, with 62.65% (n = 404,958) 

attributed to them. Additionally, the majority of response times were recorded at less than 90 min, 

comprising 38.13% (n = 246,472) of the total. 

4.2 Evaluating the performance of embedding models 

Figure 3 presents a comparative analysis of the clustering performance of three distinct embedding 

models using the test dataset. The models FastText, SBERT, and OpenAI were specifically 

developed for the purpose of labeling medical conditions. The evaluation focuses on the models’ 

efficacy in differentiatingconditions such as cervical spondylosis, urinary tract infection, allergy, 

and diabetes, which are represented with distinct color- coded labels. 

The initial plot illustrates the moderate capacity of the FastText model to differentiate between 

a numbers of medical conditions. Although the model is successful in creating clusters of similar 

labels, there is considerable overlap, indicating that there are challenges in effectively separating 

data points with identical labels. In contrast, the SBERT model demonstrates enhanced clustering 

capabilities, achieving a more distinct separation among different medical condition labels. This 

enhancement suggests SBERT’s increased proficiency in distinguishing between conditions. The 

final plot reveals the performance of the OpenAI model, which exhibits the most distinct clustering. 

It forms well- defined, tightly grouped clusters corresponding to individual medical conditions and 

shows minimal overlap between different labels. 

 Table 2 provides a comparative analysis of the classification performance of three distinct 

embedding models: FastText, SBERT, and OpenAI, specifically in the context of medical 

condition labels using the test dataset. The analysis employs a classification model to predict 

disease labels from the embeddings of disease description texts. For each model, the precision, 

recall, and F1-score metrics are presented. The FastText model yielded a precision of 0.52, a recall 

of 0.44, and an F1-score of 0.46. In contrast, SBERT and OpenAI exhibited markedly superior 

performance, with both attaining high precision (0.95 and 0.97, respectively), recall (0.95 and 0.96, 

respectively), and F1-scores (0.95 and 0.96, respectively). These findings suggest that SBERT and 

OpenAI are more efficacious in accurately classifying medical condition labels from textual 

descriptions than FastText. In light of these findings and additional considerations, such as 

affordability, data security, and ease of migration, the study ultimately determined that the SBERT 

was the optimal embedding model. 
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TABLE 1 Summary of the characteristics of the collected data records (N = 646,383). 

 

Characteristic Value, n (%) 

Gender 

 from Male 212,983 (32.95) 

 from Female 433,400 (67.05) 

Age of patient at consultation (years) 

 <20 118,484 (18.33) 

 20–39 352,907 (54.6) 

 40–59 125,957 (19.49) 

 >60 49,035 (7.58) 

Physicians’ professional title 

 Junior 10,766 (1.67) 

 Intermediate 45,892 (7.1) 

 Subsenior 184,767 (28.58) 

 Senior 404,958 (62.65) 

Physicians’ response time (minutes) 

 <90 246,472 (38.13) 

 91–180 65,732 (10.17) 

 181–270 41,033 (6.35) 

 271–360 28,845 (4.46) 

 >360 126,943 (19.64) 

 Not response 137,358 (21.25) 

4.3 Evaluating the performance of large language models (LLMs) 

Table 3 presents a comparative analysis of three LLMs—Mistral, GPT-4o-mini, and GPT-4o—

with a focus on their performance in terms of precision, recall, and F1-score in relation to physician 
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recommendations using the test dataset. The Mistral model demonstrated a precision of 0.95, a 

recall of 0.94, and an F1-score of 0.94, indicating a balanced and efficient performance across all 

metrics. The GPT-4o-mini exhibited a precision of 0.95, which was comparable to that of Mistral. 

However, it demonstrated a slightly lower recall of 0.90 and consequently a reduced F1-score of 

0.92. In contrast, the GPT-4o model exhibited a slightly lower precision (0.94) but a higher recall 

(0.97), resulting in the highest F1-score (0.95) among the models analyzed. Overall, the GPT-4o 

model demonstrated superior performance in synthesizing precision and recall, as reflected in its 

F1-score. 

4.4 Rationality evaluation of LLMs 

Table 4 presents a Mann–Whitney U test conducted on three pairs of LLMs using the test dataset. 

The Mistral model has been assigned a rating of 4.56, while the GPT-4o-mini has been rated 4.45 

and the GPT-4o has been rated 4.67. The comparison between the Mistral and the GPT-4o- mini 

yielded a p-value of 0.003, indicating a statistically significant difference. The p-value for the 

comparison between Mistral and GPT-4o is 0.01, indicating a notable difference. Furthermore, the 

comparison between GPT-4o-mini and GPT-4o yielded a p-value of 0.001, thereby affirming the 

statistical significance of the difference. Considering the study’s findings and additional factors 

such as affordability, data security, and ease of migration, the research ultimately concluded that 

the Mistral was the most suitable choice for implementation. 
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TABLE 2 Classification performance of FastText, SBERT, and OpenAI. 

 

Embedding models Precision Recall F1-score 

FastText 0.52 0.44 0.46 

SBERT 0.95 0.95 0.95 

OpenAI 0.97 0.96 0.96 

 

 

TABLE 3 Comparative analysis of Mistral, GPT-4o-mini and GPT-4o. 

 

LLMs Precision Recall F1-score 

Mistral 0.95 0.94 0.94 

GPT-4o-mini 0.95 0.90 0.92 

GPT-4o 0.94 0.97 0.95 

 

 

TABLE 4 The Mann–Whitney U test conducted on three pairs of LLMs. 

 

Comparison p value 

Mistral vs. GPT-4o-mini 0.003 

Mistral vs. GPT-4o 0.01 

GPT-4o-mini vs. GPT-4o 0.001 
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4.5 Case study 

As illustrated in Figure 4, the RAGPR model demonstrates the capability to accurately identify 

medical specialties and recommend corresponding medical departments and physicians, based on 

a randomly selected set of symptom descriptions from the test database. For instance, the model 

correctly associates dermatological symptoms with the dermatology department and 

gastrointestinal symptoms with the gastroenterology department. This demonstrates that the 

RAGPR model effectively processes natural language descriptions to provide relevant medical 

recommendations, highlighting its potential for application in medical diagnostic systems. 

5. Discussion 

5.1 Principal findings 

This study introduces an innovative physician triage algorithm called the RAGPR model, designed 

to enhance the accuracy and efficiency of web-based medical consultations. In our assessment, we 

evaluated various embedding and large language models to determine the most suitable options 

based on criteria such as cost- effectiveness, data security, and ease of migration. Consequently, 

the SBERT and Mistral models were selected as the optimal choices. The RAGPR model 

demonstrates an improved ability to accurately match patients’ queries with physicians’ specialties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4 

Performance of RAGPR model in mapping symptoms to medical departments and physicians. The layout of the image is divided into three sections: on the right are the human queries, on the 

left are the responses generated by the model, and in the middle are the interpretations of these interactions. 
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5.3 Reasons behind the performance achieved by the three algorithms 

The performance of FastText, SBERT, and OpenAI’s embedding models in the context of medical 

condition classification is reflective of their respective architectures and capabilities. FastText, 

although useful for capturing word representations, showed moderate clustering performance with 

noticeable overlap among medical conditions. This is primarily due to its focus on word-level 

embeddings without accounting for sentence-level semantics, limiting its effectiveness in 

distinguishing nuanced medical terms. 

SBERT, on the other hand, provided a substantial performance boost. Its architecture, designed 

to derive sentence-level embeddings, allowed for more refined semantic understanding, resulting 

in distinct clustering for different medical labels. The ability to capture the contextual meaning of 

sentences led to significantly higher precision,recall, and F1-scores, making it highly effective for 

classifying medical conditions based on textual descriptions. 

OpenAI’s embedding model exhibited the most pronounced clustering capabilities, indicating 

its superior understanding and representation of semantic content. Its advanced architecture, likely 

with larger training datasets and refined algorithms, contributed to tightly grouped clusters and 

minimal label overlap. However, when considering additional factors such as cost, SBERT was 

identified as the optimal choice for the application, balancing high performance with practical 

implementation advantages. 

5.4 Feasibility and potential extensions of the proposed model 

The successful implementation of the RAGPR model in healthcare is contingent upon the existence 

of a robust IT infrastructure that is capable of handling large volumes of data, facilitating real-time 

processing, and integrating seamlessly with existing systems such as electronic health records (28). 

This may require the upgrading of existing systems or the adoption of cloud-based solutions (29) 

that offer scalability and flexibility. For the model to be widely adopted, it is essential that 

healthcare professionals receive adequate training to ensure effective use and the development of 

trust in its capabilities. Such training should include an understanding of how the model generates 

recommendations and the interpretation of its results. Furthermore, a comprehensive cost–benefit 

analysis is essential to assess whether the long-term benefits, such as enhanced efficiency, accuracy, 

and patient outcomes, justify the initial investment. Clearly articulated value propositions, such as 

reducing diagnostic errors, optimizing physician workload, or improving patient satisfaction, are 

vital for garnering stakeholder support. 

One potential avenue for advancement within the field of healthcare is the integration of the 

RAGPR model into real-time decision support systems (30). Such systems could provide real-time 

recommendations during patient consultations, alerting physicians to potential problems such as 

drug interactions or abnormal test results, and suggesting next steps based on the latest clinical 

guidelines. This not only increases the efficiency of the visit, but also improves the quality of care 

by providing timely, evidence-based support. While current models focus on physician 

recommendations, future research could explore expanding these models to other areas, such as 

surgical recommendations, chronic disease management, or mental health support. Furthermore, 

the 'pharmacological memory bank' constructed by Zhang et al. (2024) demonstrates that 

accumulating historical recommendation cases and error-correction records can enhance the 

model’s long-term reasoning ability. This mechanism can be migrated to the RAGPR model to 

optimize recommendation efficiency in repeated consultation scenarios and reduce matching errors 

for similar cases (Zhang et al., 2024). In addition, models could be tailored to specialty areas, such 

as oncology, cardiology, or pediatrics, to support complex decision- making processes. Another 

promising extension is the development of personalized medicine frameworks using predictive 

analytics. By analyzing patient-specific data over time, the model could predict future health risks, 
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recommend preventive measures, and tailor treatment plans to a patient’s unique health profile. 

This shift from reactive to proactive healthcare could significantly improve long-term patient 

outcomes. 

5.5 Real-world application challenges 

The implementation of the RAGPR model in healthcare is confronted with a multitude of 

considerable challenges, one of the most pivotal being the protection of patient data. The utilization 

of such confidential data for training and deployment must adhere to rigorous privacy regulations, 

such as HIPAA (31) in the United States and GDPR (32) in the European Union. Breaches of 

patient confidentiality can have profound legal and ethical ramifications. It is, therefore, of 

paramount importance to implement robust data encryption, anonymisation techniques, and secure 

data handling protocols to maintain patient trust and regulatory compliance. 

A further significant challenge is the integration of the RAGPR model with existing healthcare 

IT infrastructure, such as electronic health records systems. This process can be hindered by a 

number of factors, including compatibility issues, inconsistencies in data format, and concerns 

regarding interoperability. It is not uncommon for the various systems utilized by healthcare 

institutions to lack the capacity to interact seamlessly with the model, necessitating substantial 

customization and development efforts. 

Another challenge is the potential for bias, particularly when trained on datasets that are not 

representative of the population under study. Such bias has the potential to perpetuate or even 

exacerbate existing disparities in healthcare access and outcomes. For example, if the training 

datasets predominantly reflect certain demographic groups, the model’s performance for 

underrepresented populations may be compromised, which could result in unequal treatment. To 

mitigate these biases, it is essential to employ diverse and representative training datasets and to 

incorporate fairness constraints during model development. This ensures that healthcare solutions 

are equitable. 

Furthermore, the RAGPR model must undergo continuous adaptation in order to remain 

relevant and accurate in the context of evolving medical knowledge and practice. This necessitates 

the implementation of continuous learning frameworks that permit the model to update its 

knowledge base in response to new medical evidence, guidelines, and emerging diseases. 

Continuous monitoring, retraining, and validation mechanisms are essential to guarantee that the 

model provides recommendations that are up-to-date and reliable. 

5.6 Limitations and future directions 

The study has several important limitations. Firstly, the study was conducted exclusively within a 

single hospital, potentially limiting the applicability of the results to other settings or populations. 

Secondly, the dataset included irrelevant questions, such as “Doctor, will you be available 

tomorrow? Where can I find you?” These questions could introduce bias into the analysis. Lastly, 

a significant limitation of deep neural networks is their opacity, which refers to their lack of 

transparency in providing explanations for predictive results. This opacity poses challenges in 

understanding the rationale behind the predictions for specific samples. 

Future research should seek to address the current limitations and explore potential avenues 

for improvement in patient-physician matching systems. A crucial objective is the development of 

sophisticated algorithms that enhance both the precision and responsiveness of this matching 

process. The incorporation of real- time data in conjunction with advanced machine learning 

models may facilitate the dynamic allocation of consultations based on physician availability, 

which could potentially reduce wait times and enhance patient satisfaction. Moreover, future 

studies should investigate the integration of multimodal data sources, including patient histories, 
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imaging data, and real-time physiological signals. Such integration could facilitate a more 

comprehensive understanding of patient conditions, thereby improving diagnostic accuracy and 

treatment recommendations. Additionally, there is a need to develop explainable models that not 

only provide accurate recommendations but also offer transparent justifications for their decisions. 

This transparency would facilitate more informed decision-making in clinical settings, enhancing 

trust and effectiveness in healthcare. 

 

6. Conclusion 

This paper presents the RAGPR model, which is designed to improve the performance of triage in 

web-based medical services. The primary function of this model is to efficiently filter and select 

appropriate physicians, thereby assisting patients in identifying medical professionals best suited 

to address their specific healthcare needs. The implementation of this method has significant 

practical implications, suggesting its potential integration into various healthcare website systems 

to enhance the quality of physician recommendations. 
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