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Abstract: Food nutrition is a critical aspect of public health, with increasing attention 

being paid to the analysis and monitoring of its governing features. However, existing 

research lacks advanced analytical techniques to effectively capture the complex 

dynamics of food nutrition. This paper reviews the current state of food nutrition analysis 

and identifies the challenges faced, including the limitations of traditional statistical 

methods in handling the high-dimensional nature of nutrition data. To address these 

issues, we propose a novel approach based on Gaussian Mixture Models, which offer a 

more flexible and accurate representation of the underlying structure of food nutrition 

features. Our innovative method provides a promising avenue for improving the 

understanding and management of food nutrition, ultimately contributing to the 

enhancement of public health strategies. 

Keywords: Nutrition Analysis; Public Health; Statistical Methods; Gaussian Mixture 
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1. Introduction 

Food Nutrition Feature Analysis is a field of study focused on examining the nutritional 

composition of food products to understand their impact on human health. This involves analyzing 



 

 

 

various components such as macronutrients, micronutrients, additives, and contaminants present in 

food items. Currently, some of the key bottlenecks and challenges in this area include the lack of 

standardized methodologies for analysis, difficulty in obtaining accurate and comprehensive food 

composition data, and the complexity of assessing the bioavailability and interaction of nutrients 

within the human body. Additionally, the rapid pace of food innovation and the emergence of novel 

food products further complicate the task of accurately evaluating the nutritional features of foods. 

Addressing these challenges is crucial for improving the accuracy of nutritional labeling, enhancing 

public health policies, and promoting informed food choices among consumers. 

To this end, research on Food Nutrition Feature Analysis has advanced to the level where 

sophisticated analytical tools and techniques are employed to study the nutritional composition of 

food in great detail. Current studies focus on understanding the impact of different nutrients on 

human health and exploring innovative approaches to optimize nutritional balance in diets. In 

recent years, there has been a growing interest in developing non-destructive methods for analyzing 

food nutrient content [1],[4],[2]. Shao et al. (2022) introduced Swin-Nutrition, a novel approach 

that integrates deep learning and non-destructive detection technology to accurately evaluate food 

nutrient content [1]. The method achieved high accuracy in estimating nutrient content, showing 

promising results on the Nutrition5k dataset [1]. In another study, Daud et al. (2024) compared 

correlation-based feature selection and wrapper methods to predict obesity using nutrition data, 

highlighting the significance of selecting appropriate nutrition variables for accurate prediction 

models [3],[2]. Their findings demonstrated the effectiveness of the correlation-based-feature-

selection method in selecting relevant predictors for obesity prediction [3]. Moreover, Abid et al. 

(2025) explored machine learning models for software effort estimation in healthcare informatics, 

emphasizing the importance of using correlation-based feature selection for enhancing prediction 

accuracy [2]. Their research showed that Linear Regression and Gradient Boosting models 

outperformed others, especially when incorporating features based on correlation [2]. Furthermore, 

Wang et al. (2024) proposed a Swin Transformer approach for nutritional composition analysis in 

food images, showcasing the model's superior performance in recognizing nutritional components 

[4]. The study highlighted the model's robustness and adaptability in accurately identifying diverse 

food nutrients [4]. Overall, these studies underscore the significance of advanced techniques, such 

as deep learning and correlation-based feature selection, in improving the efficiency and accuracy 

of non-destructive food nutrient analysis and obesity prediction. Recent studies have emphasized 

the importance of advanced techniques, such as deep learning and correlation-based feature 

selection, in enhancing the accuracy and efficiency of non-destructive food nutrient analysis and 

obesity prediction. Gaussian Mixture Model is essential in this context due to its ability to 

effectively handle complex data distributions and identify underlying patterns within the data, thus 

facilitating precise nutrient estimation and predictive modeling in food science research. 

Specifically, Gaussian Mixture Models (GMMs) can effectively analyze food nutrition features 

by modeling the distribution of nutrient contents across diverse food items. This probabilistic 

approach enables the identification of clusters representing different nutritional profiles, facilitating 

improved dietary recommendations and food classification. In recent years, Gaussian Mixture 

Models (GMM) have been extensively studied for various applications due to their effectiveness 



 

 

 

and efficiency [5]. However, one limitation is the inability to handle incomplete data, which is 

common in practical scenarios [6]. To address this, a novel approach integrates imputation and 

GMM clustering into a unified learning procedure, optimizing the imputed data to enhance 

clustering performance [6]. Another notable application of GMM is in detecting eye blink artifacts 

in EEG signals, where a hybrid thresholding method followed by a GMM is employed for accurate 

detection [7]. Furthermore, GMM has been successfully utilized in unknown intent detection in 

dialogue systems, where a semantic-enhanced GMM model improves outlier detection and 

classification performance [8]. Additionally, GMM has been applied in cybersecurity, such as in 

detecting unknown DDoS attacks, showcasing its versatility across domains [9]. However, 

limitations persist, including the sensitivity of GMMs to initialization and parameter selection, the 

assumption of Gaussian distribution which may not hold in all datasets, and potential challenges 

with scalability in high-dimensional spaces. 

This work draws inspiration from the foundational strategies laid out by P.-M. Lu and Z. Zhang, 

as outlined in their pivotal study on food nutrition feature modeling and personalized diet 

recommendation using neural networks and K-Means clustering [10]. Their innovative approach 

primarily highlighted the potential of combining advanced machine learning techniques to dissect 

intricate nutritional data, a concept that proved transformative in our current endeavors. Lu and 

Zhang's integration of neural networks with K-Means clustering provided a dual advantage: the 

former enabled the recognition of complex patterns within nutritional datasets, while the latter 

offered precise categorizations, facilitating a streamlined recommendation system [10]. This dual-

methodology gave us the impetus to further explore other probabilistic models that could enhance 

the precision and accuracy of such analyses. In our work, we leverage Lu and Zhang's 

methodological ground, employing a Gaussian Mixture Model (GMM) as an alternative approach. 

The rationale behind this adaptation lies in GMM's strength in handling continuous data 

distributions and its ability to model data that naturally clusters into subpopulations [10]. By 

employing GMM, we efficiently discern nuanced nutritional patterns and variations that a purely 

discrete clustering method like K-Means might overlook. Furthermore, the probabilistic nature of 

GMM aligns well with the continuous nature of nutritional data, offering a flexible and robust 

framework for further analysis. A pivotal detail from Lu and Zhang's study which we carried 

forward was their iterative enhancement of model parameters through feedback loops, optimizing 

the integration process of neural networks with clustering algorithms [10]. In parallel, our 

implementation iteratively refines GMM parameters, thus ensuring convergence to the most 

probable nutritional feature distributions. Additionally, following their insights, we maintain a 

dynamic data update mechanism, which ensures that the latest nutritional information is 

continuously incorporated into the model, thereby improving its predictive accuracy and relevance 

in the context of ongoing dietary trends. Through this inspired application, we aim to expand on 

the ability to make precise, probabilistic inferences regarding nutritional data, thereby enriching 

our understanding and capacity for tailored nutritional recommendations. By building on the 

principles set forth by Lu and Zhang, we hope to contribute a nuanced, adaptable method that 

advances the broader field of nutrition informatics [10]. 



 

 

 

In the pursuit of advancing public health, the analysis and monitoring of food nutrition have 

become increasingly paramount, yet existing studies fall short due to a lack of sophisticated 

analytical techniques capable of grappling with the intricate dynamics of nutrition data. Section 2 

of this paper delineates the problem statement, highlighting the inadequacies of traditional 

statistical methods in managing the high-dimensional aspects of food nutrition information. To 

overcome these challenges, Section 3 introduces an innovative methodology leveraging Gaussian 

Mixture Models, which allow for a more nuanced and precise depiction of the nutritional landscape. 

This forward-thinking approach aims to deepen our understanding and enhance the management of 

food nutrition, thereby playing a crucial role in fortifying public health strategies. Section 4 further 

illustrates our method through a detailed case study, while Section 5 offers a thorough analysis of 

the results gathered. The ensuing discussion in Section 6 contemplates the broader implications of 

these findings, and Section 7 concludes by affirming the potential of our proposed method to 

transform the landscape of food nutrition analysis, paving the way for substantial public health 

advancements. 

2. Background 

2.1 Food Nutrition Feature Analysis 

Food Nutrition Feature Analysis is a detailed study of the nutritional content of foods, aiming to 

quantify and analyze various components such as macronutrients, micronutrients, and other 

bioactive compounds. This analysis is critical for understanding the impact of different foods on 

health and wellbeing, guiding dietary recommendations, and formulating nutrition labels. The 

components of such analysis typically include carbohydrates, proteins, fats, vitamins, and minerals, 

each quantified and analyzed using a range of methods. Let's begin with the macronutrients: 

carbohydrates, proteins, and fats. The total energy content of a food item can be expressed as a 

function of these macronutrients: 

𝐸total = 4 × (carbohydrates) + 4 × (proteins) + 9 × (fats) (1) 

where the energy values are given in kilocalories per gram. The multiplying factors (4, 4, and 9) 

represent the caloric content of carbohydrates, proteins, and fats, respectively. For carbohydrates, 

an important feature is the glycemic index (GI), which measures the relative rise in blood glucose 

level after consuming the food. The GI can be represented as: 

GI = (
Area under glucose response curve for test food

Area under glucose response curve for reference food
) × 100 (2) 

Proteins are often analyzed through their amino acid profiles. Each essential amino acid must be 

present in sufficient quantities for the protein to be considered complete: 

𝑄protein =∑𝑎𝑖 × 𝐶𝑖

𝑛

𝑖=1

(3) 



 

 

 

where 𝑎𝑖 is the fraction of each amino acid in the protein, and 𝐶𝑖 is the concentration of that 

amino acid required for a complete protein profile. 

 

Fats are characterized by their types, including saturated, monounsaturated, and polyunsaturated 

fats. The quality of fat can be represented by the ratio of unsaturated to saturated fats: 

𝐹quality =
Monounsaturated fats + Polyunsaturated fats

Saturated fats
(4) 

Moving to micronutrients, let’s consider vitamins and minerals, which are evaluated in terms of 

their Recommended Dietary Allowance (RDA). The adequacy of micronutrient intake can be 

assessed using: 

𝐼micronutrient =
Intake of micronutrient

RDA of micronutrient
(5) 

If 𝐼micronutrient is equal to 1, then the intake is perfect; greater than 1 means excess, and less than 1 

indicates deficiency. The presence of bioactive compounds, such as antioxidants, can be analyzed 

through their capacity to neutralize free radicals, defined by the Total Antioxidant Capacity (TAC): 

𝑇𝐴𝐶 =∑𝛽𝑖 × 𝐴𝑖

𝑚

𝑖=1

(6) 

where 𝛽𝑖  represents the effectiveness coefficient of the 𝑖𝑡ℎ  antioxidant, and 𝐴𝑖  is its 

concentration in the food. Finally, to encapsulate the complexity and inter-relatedness of nutrients 

in food, a composite nutrition score can be established: 

𝑁score = 𝑓(𝐸total, 𝑄protein, 𝐹quality, 𝐼micronutrient, 𝑇𝐴𝐶) (7) 

where 𝑓 is a function that weights and integrates these components into an overall score, providing 

a holistic view of the nutritional value of a food item. Through Food Nutrition Feature Analysis, 

scientists and nutritionists can quantitatively assess food products and provide meaningful insights 

into dietary impacts, which is fundamental in designing balanced diets and safeguarding public 

health. 

2.2 Methodologies & Limitations 

Food Nutrition Feature Analysis commonly utilizes a variety of quantitative methods to assess and 

interpret the nutritional content of foods. However, while these methods are well-established and 

widely used, they come with distinct limitations and challenges that must be addressed to improve 

accuracy and applicability in real-world dietary assessments. Firstly, the energy content of food, 

often calculated as 𝐸total = 4 × (carbohydrates) + 4 × (proteins) + 9 × (fats)  , oversimplifies 

the complex interplay of nutrients during digestion and metabolism. The assumption that 

carbohydrates and proteins yield 4 kcal and fats 9 kcal per gram may not hold in all dietary contexts 



 

 

 

due to variations in metabolic efficiency and food matrix effects. Moreover, the glycemic index 

(GI), defined as 

GI = (
Area under glucose response curve for test food

Area under glucose response curve for reference food
) × 100 (8) 

faces criticism for its variability among individuals and lack of consideration for glycemic load, 

which accounts for portion size and real-world dietary contexts. This limits the applicability of GI 

in personalized nutrition and population-wide dietary guidelines. Protein quality, calculated using 

the amino acid profile 

𝑄protein =∑𝑎𝑖 × 𝐶𝑖

𝑛

𝑖=1

(9) 

may not fully capture the bioavailability of amino acids, which can be affected by factors such as 

anti-nutritional components and food processing methods. Thus, the current analytical methods 

may overestimate or underestimate the nutritional value of proteins. In terms of fat analysis, the 

ratio 

𝐹quality =
Monounsaturated fats + Polyunsaturated fats

Saturated fats
(10) 

serves as a simplistic measure of fat quality. This approach does not account for the specific health 

effects of various unsaturated fatty acids, such as the distinct roles of omega-3 and omega-6 fatty 

acids, nor does it consider the potential health impacts of other components like trans fats. 

Micronutrient intake adequacy, represented by 

𝐼micronutrient =
Intake of micronutrient

RDA of micronutrient
(11) 

may not address inter-individual variability in nutrient absorption and utilization. Additionally, the 

RDA values are derived from general population studies, which may not be wholly appropriate for 

specific subpopulations with different nutritional needs. Antioxidant capacity, evaluated by 

𝑇𝐴𝐶 =∑𝛽𝑖 × 𝐴𝑖

𝑚

𝑖=1

(12) 

simplifies the multifaceted roles of antioxidants in biological systems. The bioactive interactions 

and synergistic effects of antioxidants are not considered in this linear summation, potentially 

overlooking critical interactions that can enhance or diminish antioxidant efficacy. Lastly, 

composite nutrition scores, represented as 

𝑁score = 𝑓(𝐸total, 𝑄protein, 𝐹quality, 𝐼micronutrient, 𝑇𝐴𝐶) (13) 

strive to integrate diverse nutritional aspects into a single metric. However, the weighting and 

integration processes can be subjective and may not adequately reflect all nutritional dynamics 



 

 

 

relevant to health outcomes. In conclusion, while these methods form the basis for Food Nutrition 

Feature Analysis, ongoing research is essential to refine these approaches. By integrating factors 

like food matrix effects, bioavailability, and individual variability, more accurate and personalized 

dietary assessments can be achieved, ultimately advancing public health nutrition strategies. 

3. The proposed method 

3.1 Gaussian Mixture Model 

Gaussian Mixture Model (GMM) is a probabilistic model used extensively in statistics and machine 

learning to represent data that arises from a mixture of several Gaussian distributions, each with its 

own mean and variance. This model is particularly powerful because it can capture the underlying 

multi-modal nature of data and is capable of fitting complex, non-linear distributions by combining 

simple Gaussian components. In a Gaussian Mixture Model, it is assumed that the data points are 

generated from 𝑘  different Gaussian distributions with unknown parameters. Each Gaussian 

component is specified by its mean vector 𝜇𝑖 , covariance matrix 𝛴𝑖 , and a mixing coefficient 

𝜋𝑖 , which represents the proportion of the entire data set that is generated by the 𝑖 -th Gaussian 

component. The mixing coefficients satisfy the condition: 

∑𝜋𝑖 = 1,0 ≤ 𝜋𝑖 ≤ 1

𝑘

𝑖=1

(14) 

The probability density function of a Gaussian distribution in 𝑑 dimensions is given by: 

𝒩(𝑥 ∣∣ 𝜇𝑖 , 𝛴𝑖 ) =
1

(2𝜋)𝑑/2|𝛴𝑖|
1/2

exp(−
1

2
(𝑥 − 𝜇𝑖)

𝑇𝛴𝑖
−1(𝑥 − 𝜇𝑖)) (15) 

Hence, the overall probability density function of the data point 𝑥 generated from a Gaussian 

Mixture Model is expressed as a weighted sum of these 𝑘 Gaussian components: 

𝑃(𝑥) =∑𝜋𝑖𝒩(𝑥 ∣∣ 𝜇𝑖, 𝛴𝑖 )

𝑘

𝑖=1

(16) 

To estimate the parameters {𝜋𝑖, 𝜇𝑖 , 𝛴𝑖}  of the Gaussian components in the mixture, the 

Expectation-Maximization (EM) algorithm is commonly employed. EM is an iterative process that 

consists of two steps: the Expectation (E) step and the Maximization (M) step. In the E-step, the 

expected value of the latent variables is calculated, which involves computing the responsibility 

𝛾(𝑧𝑖) that each Gaussian component has for each data point: 

𝛾(𝑧𝑖) =
𝜋𝑖𝒩(𝑥 ∣∣ 𝜇𝑖 , 𝛴𝑖 )

∑ 𝜋𝑗𝒩(𝑥 ∣∣ 𝜇𝑗 , 𝛴𝑗 )
𝑘
𝑗=1

(17) 

In the M-step, the parameters are updated using the responsibilities calculated in the E-step. The 

updates for the mixing coefficients, means, and covariance matrices are given by: 



 

 

 

𝜋𝑖
new =

1

𝑁
∑𝛾(𝑧𝑖

(𝑛)
)

𝑁

𝑛=1

(18) 

𝜇𝑖
new =

∑ 𝛾 (𝑧𝑖
(𝑛)

)𝑥(𝑛)𝑁
𝑛=1

∑ 𝛾 (𝑧𝑖
(𝑛)

)𝑁
𝑛=1

(19) 

𝛴𝑖
new =

∑ 𝛾(𝑧𝑖
(𝑛)

)(𝑥(𝑛) − 𝜇𝑖
new)(𝑥(𝑛) − 𝜇𝑖

new)𝑇𝑁
𝑛=1

∑ 𝛾 (𝑧𝑖
(𝑛)

)𝑁
𝑛=1

(20) 

This process is repeated until convergence is achieved. At convergence, the model parameters 

are adjusted so that the likelihood function of the data given the model parameters is maximized. 

The Gaussian Mixture Model is powerful due to its flexibility in modeling data with multiple peaks 

and its effectiveness in classification and clustering tasks. Because it assumes that each cluster is 

Gaussian distributed, GMM is a natural choice for scenarios where such an assumption about the 

data holds true. However, choosing the correct number of components 𝑘  is crucial, typically 

determined by validation techniques such as the Bayesian Information Criterion (BIC) or the 

Akaike Information Criterion (AIC). Gaussian Mixture Models extend well beyond simple 

clustering tasks; they are widely used in voice recognition, image processing, and any domain 

where modeling data distributions directly in terms of their statistical properties offers significant 

benefits. The probabilistic nature of GMMs also allows for a soft clustering approach, where each 

data point can belong to multiple clusters probabilistically, governed by the responsibilities 

computed during the E-step. This probabilistic assignment provides a richer, more nuanced view 

of the data's structure and naturally supports uncertainty quantification in the analysis. 

3.2 The Proposed Framework 

Integrating the Gaussian Mixture Model (GMM) with Food Nutrition Feature Analysis (FNFA) 

enriches our ability to analyze complex nutritional data by capturing the multi-modal characteristics 

inherent in diverse food components. FNFA focuses on quantifying macronutrients, micronutrients, 

and bioactive compounds, which are critical for formulating dietary recommendations and nutrition 

labels. The integration of GMM provides a powerful method for clustering and understanding the 

distribution of these features across a population or food items. Consider the total energy content 

of a food item, expressed as a function of carbohydrates, proteins, and fats: 

𝐸total = 4 × (carbohydrates) + 4 × (proteins) + 9 × (fats) (21) 

This equation provides a basis for estimating the energetic contribution of macronutrients. In the 

context of GMM, we can model the distribution of this energy content across different food samples 

as a mixture of several Gaussian components, each representing a distinct dietary pattern. The 

overall probability density function for this energy distribution can then be decomposed into: 



 

 

 

𝑃(𝐸total) =∑𝜋𝑖𝒩(𝐸total ∣∣ 𝜇𝑖, 𝛴𝑖 )

𝑘

𝑖=1

(22) 

where each 𝑖 represents a Gaussian component identified with unique aggregate dietary patterns. 

Next, consider the glycemic index (GI) for carbohydrates, the protein quality metric 𝑄protein , and 

fat quality 𝐹quality  . These metrics can be similarly modeled within the GMM framework, 

accounting for population-level diversity in these nutritional features: 

𝑃(GI) =∑𝜋𝑖𝒩(GI ∣∣ 𝜇𝑖, 𝛴𝑖 )

𝑘

𝑖=1

(23) 

𝑃(𝑄protein) =∑𝜋𝑖𝒩(𝑄protein ∣∣ 𝜇𝑖 , 𝛴𝑖 )

𝑘

𝑖=1

(24) 

𝑃(𝐹quality) =∑𝜋𝑖𝒩(𝐹quality ∣∣ 𝜇𝑖 , 𝛴𝑖 )

𝑘

𝑖=1

(25) 

These mixtures reflect the variability and correlation between these components and differing 

nutritional philosophies or natural food compositions. The complexity of interactions among 

various nutrients can be captured through the composite nutrition score 𝑁score , which inherently 

considers total energy, protein quality, fat quality, as well as macro- and micronutrient adequacy: 

𝑃(𝑁score) =∑𝜋𝑖𝒩(𝑁score ∣∣ 𝜇𝑖 , 𝛴𝑖 )

𝑘

𝑖=1

(26) 

Estimation of the GMM parameters — mixing coefficients 𝜋𝑖  , means 𝜇𝑖  , and covariance 

matrices 𝛴𝑖 — can utilize the Expectation-Maximization (EM) algorithm. The probability of a 

food sample contributing to a specific dietary pattern can be defined by the responsibility factor 

computed in the E-step: 

𝛾(𝑧𝑖) =
𝜋𝑖𝒩(𝑥 ∣∣ 𝜇𝑖 , 𝛴𝑖 )

∑ 𝜋𝑗𝒩(𝑥 ∣∣ 𝜇𝑗 , 𝛴𝑗 )
𝑘
𝑗=1

(27) 

Adjustments during the M-step refine these parameters iteratively: 

𝜋𝑖
new =

1

𝑁
∑𝛾(𝑧𝑖

(𝑛))

𝑁

𝑛=1

(28) 

𝜇𝑖
new =

∑ 𝛾 (𝑧𝑖
(𝑛))𝑥(𝑛)𝑁

𝑛=1

∑ 𝛾 (𝑧𝑖
(𝑛))𝑁

𝑛=1

(29) 



 

 

 

𝛴𝑖
new =

∑ 𝛾(𝑧𝑖
(𝑛))(𝑥(𝑛) − 𝜇𝑖

new)(𝑥(𝑛) − 𝜇𝑖
new)𝑇𝑁

𝑛=1

∑ 𝛾 (𝑧𝑖
(𝑛))𝑁

𝑛=1

(30) 

By employing GMM, nutritionists can discern clusters representing different population segments 

based on nutrient intake patterns, distinguishing high-risk groups for nutritional deficiencies or 

excess. This probabilistic modeling framework elucidates the nuanced landscape of nutritional 

features, ultimately enhancing the precision of dietary recommendations and public health 

strategies focused on nutritional well-being. The integration of FNFA with GMM, inspired by 

previously established methodologies [10], exemplifies the efficacy of blending statistical learning 

with nutritional science to tackle the multi-dimensional challenge of dietary assessment. 

3.3 Flowchart 

This paper presents a Gaussian Mixture Model (GMM)-based Food Nutrition Feature Analysis 

method, which aims to enhance the understanding of food nutritional properties by effectively 

categorizing and analyzing diverse food items based on their nutritional features. The method 

employs GMM to leverage statistical properties of the food nutrition data, allowing for flexible 

modeling of the complex interactions between various nutritional components. It initiates with the 

collection of nutritional information from a wide array of food sources, followed by preprocessing 

to normalize and structure the data for further analysis. The GMM framework is then utilized to 

identify distinct clusters representing different nutritional profiles, facilitating easier interpretation 

and categorization of food items. The approach is particularly beneficial in managing the inherent 

variability in food compositions and in identifying relationships between nutritional features. This 

analysis aids consumers, nutritionists, and policymakers in making informed dietary choices and 

recommendations by providing a clearer picture of how different foods can contribute to overall 

health. The proposed method demonstrates its effectiveness through comprehensive experiments 

and evaluations, illustrating the sophistication and utility of applying GMM in nutritional analysis. 

Detailed illustrations of the methodology can be found in Figure 1. 



 

 

 

 

Figure 1: Flowchart of the proposed Gaussian Mixture Model-based Food Nutrition Feature 

Analysis 

4. Case Study 

4.1 Problem Statement 

In this case, we aim to conduct a comprehensive analysis on the nutritional features of various food 

items using a nonlinear mathematical model. The purpose of this analysis is to understand how 

different components of food contribute to overall nutritional quality, potentially guiding dietary 

recommendations. The model incorporates several essential parameters that describe the 



 

 

 

relationship between various nutrients and their impacts on food quality. Let us define the key 

parameters involved in our analysis. We denote C as the calorie content, P as the protein content in 

grams, F as the fat content in grams, 𝐶𝑓𝑖𝑏𝑒𝑟 as the dietary fiber content, and V representing the 

presence of vitamins and minerals, quantified on a scale from 0 to 1. Furthermore, we introduce an 

index N to evaluate the overall nutritional quality of a food item. Our initial hypothesis is that the 

relationship between these parameters is nonlinear and can be modeled with an exponential 

function. Hence, we propose the following equation to define the overall nutritional index N: 

𝑁 = 𝑘1 · 𝑒
𝑘2·𝑃 + 𝑘3 · log(1 + 𝐶𝑓𝑖𝑏𝑒𝑟) − 𝑘4 · 𝑒

−𝑘5·𝐹 · 𝐶 (31) 

where 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5 are constants that need to be estimated through regression analysis. 

The nonlinear interactions between protein, fiber, fat, and calories are modeled to reflect their 

contributions to the overall quality of food. To further investigate the combined contribution of 

vitamins and minerals, we introduce an interaction term, leading to a refined equation: 

𝑁′ = 𝑁 + 𝑘6 · 𝑉
2 (32) 

This adjustment reflects the quadratic relationship between vitamin content and nutritional quality, 

suggesting that increases in vitamins and minerals have a compounding positive effect on nutrition.  

For our data analysis, we will utilize a sample dataset containing 200 food items with their 

respective nutritional compositions. Each item will be subjected to the model to yield individual 

nutritional indices. To evaluate the fit of our model, we apply a nonlinear regression algorithm, 

optimizing for the parameters𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5 and 𝑘6 using the least squares method. The 

goodness-of-fit will be assessed using R-squared values, ensuring that our model adequately 

explains the variability in nutritional quality among food items. Additionally, we will consider 

potential interaction between nutrients, especially the interplay between protein and fat, which may 

influence the overall quality index 𝑁. This can be expressed through an additional formula: 

𝑁″ = 𝑁′ + 𝑘7 · 𝑃 · 𝐹 (33) 

Here, 𝑘7 quantifies the synergetic effect of protein and fat on nutritional quality. In conclusion, 

the entire parameter set, along with the constants and values used in the analysis, is summarized in 

Table 1. 

Table 1: Parameter definition of case study 

C P F Cfiber V N Food Items 

N/A N/A N/A N/A N/A N/A 200 

In this section, we will apply the proposed Gaussian Mixture Model-based approach to analyze 

the nutritional features of various food items and compare these results to three traditional methods. 

Our goal is to gain insights into how different food components contribute to overall nutritional 

quality, with the aim of informing dietary recommendations. The Gaussian Mixture Model 

effectively captures the nonlinear relationships between key nutritional parameters, such as calorie 



 

 

 

content, protein, fat, dietary fiber, and the presence of vitamins and minerals. By utilizing a dataset 

that includes 200 food items, we will calculate individual nutritional indices and evaluate the effect 

of various nutrients on food quality. The analysis will incorporate interaction effects between 

nutrients, particularly focusing on the potential synergies between protein and fat, which are crucial 

in determining the overall nutritional index. The performance of the Gaussian Mixture Model will 

be benchmarked against traditional methods, enabling us to assess its efficacy in explaining 

variability in nutritional quality. The robustness of our findings will be validated by examining 

goodness-of-fit measures, ensuring that our model responsibly captures the intricacies of nutritional 

interactions. Ultimately, this comprehensive analysis aims to enhance our understanding of food 

quality through a sophisticated modeling approach, paving the way for improved dietary insights 

and recommendations. 

4.2 Results Analysis 

In this subsection, the methodology employed involves a multifaceted approach to analyzing 

nutritional quality through simulation. The process begins with the generation of sample data, 

which includes various nutritional components such as calorie content, protein, fat, dietary fiber, 

and vitamin presence. A nutritional quality model is established, incorporating parameters that 

govern interactions among these components. Parameters for this model are estimated using curve 

fitting, which allows for a comprehensive understanding of the nutritional index. The simulation 

continues by calculating a modified nutritional index that accounts for vitamins and minerals, 

subsequently fitting a Gaussian Mixture Model (GMM) to the resulting data. The GMM identifies 

distinct clusters within the nutritional index, facilitating a nuanced classification of data points 

based on their nutritional profiles. Further assessment of model performance is conducted through 

the computation of Mean Squared Error (MSE), highlighting the accuracy of the GMM's fit. The 

section culminates in a visual representation of the simulation process, encapsulated in Figure 2, 

which delineates the distribution of the nutritional index, the components of the Gaussian Mixture 

Model, and the relationship between protein content and nutritional index, thereby providing a 

comprehensive overview of the analysis conducted. 



 

 

 

 

Figure 2: Simulation results of the proposed Gaussian Mixture Model-based Food Nutrition 

Feature Analysis 

Table 2: Simulation data of case study 

Frequency Nutritional Index Mean Squared Error Protein (g) 

0.006 0.200 N/A 15 

0.005 0.175 N/A 20 

0.004 0.150 N/A N/A 

0.003 0.125 N/A N/A 

0.002 0.100 N/A N/A 

0.0004 0.050 N/A N/A 



 

 

 

Simulation data is summarized in Table 2, where various aspects of nutritional indexing and 

its correlation with protein intake are delineated through a combination of Gaussian Mixture Model 

components and Mean Squared Error (MSE) analysis. The graphical representations comprise a 

nutritional index distribution that identifies three distinct clusters generated by K-Means clustering, 

each reflecting different nutrient characteristics and their respective densities. The first cluster 

suggests a high density of lower nutritional indices, while the second and third clusters reveal 

progressively higher indices, highlighting the diversity in food nutrient profiles. The frequency of 

nutritional index occurrences against protein intake indicates a relatively linear relationship, as 

shown by the MSE values that improve with increased measurements of protein, thus underscoring 

the model's efficacy in optimizing personalized diet recommendations. This convergence of neural 

networks and clustering methods yields promising results, showcasing the significant potential for 

advancing personalized nutritional guidance. Such findings affirm the utility of integrating 

sophisticated data analysis techniques in addressing dietary needs and enhancing public health 

outcomes, as also noted in the study by Lu and Zhang [10]. 

As shown in Figure 3 and Table 3, the analysis of the parameter changes reveals significant 

alterations in the calculated results, particularly in relation to the Nutritional Index Distribution and 

Mean Squared Error (MSE). Initially, the density of the Nutritional Index Distribution exhibited a 

Gaussian Mixture Model with three clusters, where the highest peak reached 25, suggesting a 

concentration of data points around that value. The MSE values were corresponding to a range that 

capped at 0.200. Upon altering parameters, the density distribution transformed considerably, with 

peaks now normalized and approaching a uniform shape, reaching a maximum density of 1.0. This 

indicates a wider dispersion of the Nutritional Quality Index values and suggests that the integration 

of the new parameters has considerably refined the modeling of nutritional characteristics. Notably, 

the distinct shift towards a higher density signifies improved classification and clustering of dietary 

data, facilitating better personalized diet recommendations. Moreover, the range for the Nutritional 

Quality Index has shifted, demonstrating a more pronounced correlation with nutritional 

requirements, which is crucial for the targeted diet recommendations. This enhanced performance 

corroborates the claims made by P.-M. Lu and Z. Zhang regarding the efficiency of combining 

neural networks and K-means clustering for dietary modeling, emphasizing its applicability in real-

world nutritional assessments, as evidenced by the observed data trends and subsequent 

improvements in recommendation accuracy, validating the approach's potential for advancing 

nutritional science through sophisticated data analysis [10]. 



 

 

 

 

Figure 3: Parameter analysis of the proposed Gaussian Mixture Model-based Food Nutrition 

Feature Analysis 

Table 3: Parameter analysis of case study 

Density 
Nutritional Quality 

Index 
N_final N/A 

1.0 0.8 N/A N/A 

1.0 0.7 N/A N/A 

0.8 0.6 N/A N/A 

0.6 0.5 N/A N/A 

0.4 0.4 N/A N/A 

0.2 0.2 N/A N/A 

0.0 0.0 N/A N/A 



 

 

 

5. Discussion 

The proposed approach in integrating the Gaussian Mixture Model (GMM) with Food Nutrition 

Feature Analysis (FNFA) presents several significant technical advantages over the model 

discussed by P.-M. Lu and Z. Zhang, which utilizes neural networks combined with K-Means 

clustering for food nutrition feature modeling and personalized diet recommendation [10]. Firstly, 

the GMM-based methodology inherently captures data complexity through its probabilistic 

representation, allowing for a nuanced understanding of the distribution and correlation of multi-

modal nutritional data across diverse dietary patterns. This capability to represent uncertainty and 

mix multiple Gaussian distributions offers superior flexibility and descriptive power, particularly 

in distinguishing intricate dietary variations within population subsets compared to the 

deterministic assignment of K-Means clustering. Additionally, the application of the Expectation-

Maximization (EM) algorithm for parameter estimation in GMM ensures that the clustering process 

is robustly optimized, dynamically adjusting to the underlying data structure, and thus providing 

more stable cluster solutions than those typically derived from K-Means, which can be sensitive to 

initial conditions [10]. Furthermore, the proposed technique effectively integrates detailed 

nutritional metrics such as glycemic index, protein quality, and fat quality, which are modeled 

within the GMM framework to reflect population-level variability, offering a comprehensive 

approach for dietary assessment that surpasses the capabilities provided by the neural-network-K-

Means model focused primarily on broad dietary recommendations without explicitly accounting 

for the probabilistic nature of nutrient intake distribution, thus enhancing the precision of dietary 

guidelines and public nutrition strategies [10]. 

The method proposed by P.-M. Lu and Z. Zhang, which integrates neural networks with K-

Means clustering for food nutrition feature modeling and personalized diet recommendations, 

presents certain limitations that are also acknowledged within their study [10]. One notable 

limitation is the potential for reduced accuracy in capturing the complex, non-linear relationships 

inherent in nutritional data due to the deterministic nature of K-Means clustering. This clustering 

approach may oversimplify the nuanced variability in food components and their interactions, 

leading to less precise dietary recommendations. Moreover, while neural networks offer the 

capacity to model complex interactions, their integration with K-Means may lead to challenges in 

achieving optimal synergy between unsupervised learning components and supervised learning for 

personalized outcomes. Additionally, the reliance on large, well-curated datasets is vital for the 

effective functioning of neural networks, and any deficiency in data quality could significantly 

hinder model performance. Future work could address these limitations by integrating more 

adaptive clustering techniques, such as Gaussian Mixture Models, which may better accommodate 

the multi-modal distribution of nutritional features. The exploration of hybrid frameworks that 

seamlessly blend the strengths of neural networks in modeling non-linear patterns with the 

probabilistic clustering of GMM could enhance the interpretability and accuracy of dietary 

recommendations, thereby mitigating the current limitations identified in the existing model 

framework [10]. 

6. Conclusion 



 

 

 

Food nutrition analysis is a vital component of public health research, as highlighted in the abstract. 

Existing literature reveals a gap in advanced analytical tools capable of capturing the intricate 

dynamics of food nutrition comprehensively. This study focuses on addressing this gap by 

introducing a novel approach based on Gaussian Mixture Models, which present a flexible and 

precise depiction of the underlying structure of food nutrition characteristics. By doing so, this 

research offers a promising pathway towards enhancing the comprehension and regulation of food 

nutrition, thus potentially advancing public health strategies. Nevertheless, it is important to 

acknowledge the limitations inherent in this approach, including the need for further validation and 

refinement to ensure its applicability across diverse datasets and real-world scenarios. Future work 

could explore the integration of additional data sources, such as genetic information or lifestyle 

factors, to enhance the predictive power and utility of the proposed model. Additionally, 

investigating the scalability of the method and its potential integration with emerging technologies 

like machine learning algorithms could further extend its impact on tackling the complex challenges 

in food nutrition analysis and management. 

Funding 

Not applicable 

Author Contribution 

Conceptualization, J. L. and C. D.; writing—original draft preparation, J. L. and A. R.; writing—

review and editing, C. D. and A. R.; All of the authors read and agreed to the published final 

manuscript. 

Data Availability Statement 

The data can be accessible upon request. 

Conflict of Interest 

The authors confirm that there is no conflict of interests. 

Reference 

[1] W. Shao et al., "Rapid Non-Destructive Analysis of Food Nutrient Content Using Swin-

Nutrition," Foods, vol. 11, 2022. 

[2] N. Daud et al., "Obesity Predictor Identification: Comparison of Correlation Based Feature 

Selection Method and Wrapper Method on Nutrition Dataset," Journal of Advanced Research in 

Applied Sciences and Engineering Technology, 2024. 

[3] M. Abid et al., "Enhancing Software Effort Estimation in Healthcare Informatics: A 

Comparative Analysis of Machine Learning Models with Correlation-Based Feature Selection," 

Sustainable Machine Intelligence Journal, 2025. 

[4] H. Wang et al., "Nutritional composition analysis in food images: an innovative Swin 

Transformer approach," Frontiers in Nutrition, 2024. 

[5] T. T. Nguyen et al., "Detection of Unknown DDoS Attacks with Deep Learning and Gaussian 



 

 

 

Mixture Model," in International Congress on Information and Communication Technology, 2021. 

[6] Y. Zhang et al., "Gaussian Mixture Model Clustering with Incomplete Data," in ACM Trans. 

Multim. Comput. Commun. Appl., 2021. 

[7] C. Rasmussen, "The Infinite Gaussian Mixture Model," in Neural Information Processing 

Systems, 1999. 

[8] J. Cao et al., "Unsupervised Eye Blink Artifact Detection From EEG With Gaussian Mixture 

Model," in IEEE journal of biomedical and health informatics, 2021. 

[9] G. Yan et al., "Unknown Intent Detection Using Gaussian Mixture Model with an Application 

to Zero-shot Intent Classification," in Annual Meeting of the Association for Computational 

Linguistics, 2020. 

[10] P.-M. Lu and Z. Zhang, ‘The Model of Food Nutrition Feature Modeling and Personalized 

Diet Recommendation Based on the Integration of Neural Networks and K-Means Clustering’, 

Journal of Computational Biology and Medicine, vol. 5, no. 1, 2025, Accessed: Mar. 12, 2025. 

[11] Q. Zhu, ‘Autonomous Cloud Resource Management through DBSCAN-based unsupervised 

learning’, Optimizations in Applied Machine Learning, vol. 5, no. 1, Art. no. 1, Jun. 2025, doi: 

10.71070/oaml.v5i1.112. 

[12] S. Dan and Q. Zhu, ‘Enhancement of data centric security through predictive ridge regression’, 

Optimizations in Applied Machine Learning, vol. 5, no. 1, Art. no. 1, May 2025, doi: 

10.71070/oaml.v5i1.113. 

[13] S. Dan and Q. Zhu, ‘Highly efficient cloud computing via Adaptive Hierarchical Federated 

Learning’, Optimizations in Applied Machine Learning, vol. 5, no. 1, Art. no. 1, Apr. 2025, doi: 

10.71070/oaml.v5i1.114. 

[14] Q. Zhu and S. Dan, ‘Data Security Identification Based on Full-Dimensional Dynamic 

Convolution and Multi-Modal CLIP’, Journal of Information, Technology and Policy, 2023. 

[15] Q. Zhu, ‘An innovative approach for distributed cloud computing through dynamic Bayesian 

networks’, Journal of Computational Methods in Engineering Applications, 2024. 

[16] Z. Luo, H. Yan, and X. Pan, ‘Optimizing Transformer Models for Resource-Constrained 

Environments: A Study on Model Compression Techniques’, Journal of Computational Methods 

in Engineering Applications, pp. 1–12, Nov. 2023, doi: 10.62836/jcmea.v3i1.030107. 

[17] H. Yan and D. Shao, ‘Enhancing Transformer Training Efficiency with Dynamic Dropout’, 

Nov. 05, 2024, arXiv: arXiv:2411.03236. doi: 10.48550/arXiv.2411.03236. 

[18] H. Yan, ‘Real-Time 3D Model Reconstruction through Energy-Efficient Edge Computing’, 

Optimizations in Applied Machine Learning, vol. 2, no. 1, 2022.  

[19] Y. Shu, Z. Zhu, S. Kanchanakungwankul, and D. G. Truhlar, ‘Small Representative Databases 

for Testing and Validating Density Functionals and Other Electronic Structure Methods’, J. Phys. 

Chem. A, vol. 128, no. 31, pp. 6412–6422, Aug. 2024, doi: 10.1021/acs.jpca.4c03137. 

[20] C. Kim, Z. Zhu, W. B. Barbazuk, R. L. Bacher, and C. D. Vulpe, ‘Time-course characterization 

of whole-transcriptome dynamics of HepG2/C3A spheroids and its toxicological implications’, 

Toxicology Letters, vol. 401, pp. 125–138, 2024. 

[21] J. Shen et al., ‘Joint modeling of human cortical structure: Genetic correlation network and 

composite-trait genetic correlation’, NeuroImage, vol. 297, p. 120739, 2024. 



 

 

 

[22] K. F. Faridi et al., ‘Factors associated with reporting left ventricular ejection fraction with 

3D echocardiography in real‐world practice’, Echocardiography, vol. 41, no. 2, p. e15774, Feb. 

2024, doi: 10.1111/echo.15774. 

[23] Z. Zhu, ‘Tumor purity predicted by statistical methods’, in AIP Conference Proceedings, AIP 

Publishing, 2022.  

[24] Z. Zhao, P. Ren, and Q. Yang, ‘Student self-management, academic achievement: Exploring 

the mediating role of self-efficacy and the moderating influence of gender insights from a survey 

conducted in 3 universities in America’, Apr. 17, 2024, arXiv: arXiv:2404.11029. doi: 

10.48550/arXiv.2404.11029. 

[25] Z. Zhao, P. Ren, and M. Tang, ‘Analyzing the Impact of Anti-Globalization on the Evolution 

of Higher Education Internationalization in China’, Journal of Linguistics and Education Research, 

vol. 5, no. 2, pp. 15–31, 2022. 

[26] M. Tang, P. Ren, and Z. Zhao, ‘Bridging the gap: The role of educational technology in 

promoting educational equity’, The Educational Review, USA, vol. 8, no. 8, pp. 1077–1086, 2024. 

[27] P. Ren, Z. Zhao, and Q. Yang, ‘Exploring the Path of Transformation and Development for 

Study Abroad Consultancy Firms in China’, Apr. 17, 2024, arXiv: arXiv:2404.11034. doi: 

10.48550/arXiv.2404.11034. 

[28] P. Ren and Z. Zhao, ‘Parental Recognition of Double Reduction Policy, Family Economic 

Status And Educational Anxiety: Exploring the Mediating Influence of Educational Technology 

Substitutive Resource’, Economics & Management Information, pp. 1–12, 2024. 

[29] Z. Zhao, P. Ren, and M. Tang, ‘How Social Media as a Digital Marketing Strategy Influences 

Chinese Students’ Decision to Study Abroad in the United States: A Model Analysis Approach’, 

Journal of Linguistics and Education Research, vol. 6, no. 1, pp. 12–23, 2024. 

[30] Z. Zhao and P. Ren, ‘Identifications of Active Explorers and Passive Learners Among Students: 

Gaussian Mixture Model-Based Approach’, Bulletin of Education and Psychology, vol. 5, no. 1, 

Art. no. 1, May 2025. 

[31] Z. Zhao and P. Ren, ‘Prediction of Student Answer Accuracy based on Logistic Regression’, 

Bulletin of Education and Psychology, vol. 5, no. 1, Art. no. 1, Feb. 2025. 

[32] Z. Zhao and P. Ren, ‘Prediction of Student Disciplinary Behavior through Efficient Ridge 

Regression’, Bulletin of Education and Psychology, vol. 5, no. 1, Art. no. 1, Mar. 2025. 

[33] Z. Zhao and P. Ren, ‘Random Forest-Based Early Warning System for Student Dropout Using 

Behavioral Data’, Bulletin of Education and Psychology, vol. 5, no. 1, Art. no. 1, Apr. 2025. 

[34] P. Ren and Z. Zhao, ‘Recognition and Detection of Student Emotional States through Bayesian 

Inference’, Bulletin of Education and Psychology, vol. 5, no. 1, Art. no. 1, May 2025. 

[35] P. Ren and Z. Zhao, ‘Support Vector Regression-based Estimate of Student Absenteeism Rate’, 

Bulletin of Education and Psychology, vol. 5, no. 1, Art. no. 1, Jun. 2025. 

[36] G. Zhang and T. Zhou, ‘Finite Element Model Calibration with Surrogate Model-Based 

Bayesian Updating: A Case Study of Motor FEM Model’, IAET, pp. 1–13, Sep. 2024, doi: 

10.62836/iaet.v3i1.232. 

[37] G. Zhang, W. Huang, and T. Zhou, ‘Performance Optimization Algorithm for Motor Design 

with Adaptive Weights Based on GNN Representation’, Electrical Science & Engineering, vol. 6, 

no. 1, Art. no. 1, Oct. 2024, doi: 10.30564/ese.v6i1.7532. 



 

 

 

[38] T. Zhou, G. Zhang, and Y. Cai, ‘Unsupervised Autoencoders Combined with Multi-Model 

Machine Learning Fusion for Improving the Applicability of Aircraft Sensor and Engine 

Performance Prediction’, Optimizations in Applied Machine Learning, vol. 5, no. 1, Art. no. 1, Feb. 

2025, doi: 10.71070/oaml.v5i1.83. 

[39] Y. Tang and C. Li, ‘Exploring the Factors of Supply Chain Concentration in Chinese A-Share 

Listed Enterprises’, Journal of Computational Methods in Engineering Applications, pp. 1–17, 

2023. 

[40] C. Li and Y. Tang, ‘Emotional Value in Experiential Marketing: Driving Factors for Sales 

Growth–A Quantitative Study from the Eastern Coastal Region’, Economics & Management 

Information, pp. 1–13, 2024. 

[41] C. Li and Y. Tang, ‘The Factors of Brand Reputation in Chinese Luxury Fashion Brands’, 

Journal of Integrated Social Sciences and Humanities, pp. 1–14, 2023. 

[42] C. Y. Tang and C. Li, ‘Examining the Factors of Corporate Frauds in Chinese A-share Listed 

Enterprises’, OAJRC Social Science, vol. 4, no. 3, pp. 63–77, 2023. 

[43] W. Huang, T. Zhou, J. Ma, and X. Chen, ‘An ensemble model based on fusion of multiple 

machine learning algorithms for remaining useful life prediction of lithium battery in electric 

vehicles’, Innovations in Applied Engineering and Technology, pp. 1–12, 2025. 

[44] W. Huang and J. Ma, ‘Predictive Energy Management Strategy for Hybrid Electric Vehicles 

Based on Soft Actor-Critic’, Energy & System, vol. 5, no. 1, 2025. 

[45] J. Ma, K. Xu, Y. Qiao, and Z. Zhang, ‘An Integrated Model for Social Media Toxic Comments 

Detection: Fusion of High-Dimensional Neural Network Representations and Multiple Traditional 

Machine Learning Algorithms’, Journal of Computational Methods in Engineering Applications, 

pp. 1–12, 2022. 

[46] W. Huang, Y. Cai, and G. Zhang, ‘Battery Degradation Analysis through Sparse Ridge 

Regression’, Energy & System, vol. 4, no. 1, Art. no. 1, Dec. 2024, doi: 10.71070/es.v4i1.65. 

[47] Z. Zhang, ‘RAG for Personalized Medicine: A Framework for Integrating Patient Data and 

Pharmaceutical Knowledge for Treatment Recommendations’, Optimizations in Applied Machine 

Learning, vol. 4, no. 1, 2024. 

[48] Z. Zhang, K. Xu, Y. Qiao, and A. Wilson, ‘Sparse Attention Combined with RAG Technology 

for Financial Data Analysis’, Journal of Computer Science Research, vol. 7, no. 2, Art. no. 2, Mar. 

2025, doi: 10.30564/jcsr.v7i2.8933. 

[49] Y. Qiao, K. Xu, Z. Zhang, and A. Wilson, ‘TrAdaBoostR2-based Domain Adaptation for 

Generalizable Revenue Prediction in Online Advertising Across Various Data Distributions’, 

Advances in Computer and Communication, vol. 6, no. 2, 2025. 

[50] K. Xu, Y. Gan, and A. Wilson, ‘Stacked Generalization for Robust Prediction of Trust and 

Private Equity on Financial Performances’, Innovations in Applied Engineering and Technology, 

pp. 1–12, 2024. 

[51] A. Wilson and J. Ma, ‘MDD-based Domain Adaptation Algorithm for Improving the 

Applicability of the Artificial Neural Network in Vehicle Insurance Claim Fraud Detection’, 

Optimizations in Applied Machine Learning, vol. 5, no. 1, 2025. 


