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Abstract: In the era of globalized trade, the management of network supply chains is 

crucial for the efficiency and competitiveness of business operations. However, existing 

research has identified significant gaps in modeling and analyzing the dynamic behavior 

of network supply chains, leading to suboptimal decision-making processes. This paper 

addresses this challenge by proposing a novel approach utilizing Dynamic Bayesian 

Networks to model the complex interactions and uncertainties within network supply 

chains. By integrating probabilistic graphical modeling techniques with dynamic system 

analysis, our research aims to provide a comprehensive framework for optimizing 

network supply chain operations. Through a series of case studies and simulations, we 

demonstrate the effectiveness and potential impact of our proposed methodology in 

enhancing the resilience and adaptability of network supply chains in the face of 

uncertainties and disruptions. 
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1. Introduction 

The Network Supply Chain field focuses on optimizing the flow of goods, information, and 

finances among various interconnected organizations involved in the production and distribution 

of products. This includes suppliers, manufacturers, distributors, and retailers. Currently, some of 

the major bottlenecks and challenges in the Network Supply Chain include the lack of real-time 

visibility and transparency across the entire supply chain, resulting in inefficiencies and delays. 



 

 

 

Moreover, the increasing complexity of global supply chains, along with the rising customer 

expectations for faster delivery and personalized products, are adding further pressure. Additionally, 

issues related to sustainability, such as reducing carbon footprint and minimizing waste, are 

becoming increasingly important in the Network Supply Chain field. Overcoming these challenges 

requires innovative technologies, collaborative partnerships, and data-driven decision-making 

processes to achieve a more agile, responsive, and sustainable supply chain network. 

To this end, research on Network Supply Chain has advanced to encompass areas such as 

network optimization, collaborative decision-making, and risk management. Scholars have 

explored the impact of digital technologies and sustainability on network design and operation, 

shaping the current state of knowledge in this field. The literature review encompasses various 

facets of supply chain management (SCM) through the lens of recent research articles. Shukla and 

Singh [1] propose a pioneering approach utilizing Kafka and Akka technologies to enhance supply 

chain visibility and agility. Cheng et al. [2] examine the vulnerabilities of electric vehicle battery 

supply chains, emphasizing the impact of battery chemistry on disruptions. Abbasi et al. [3] present 

a model for designing a green closed-loop supply chain network during the COVID-19 pandemic, 

highlighting the trade-offs between environmental and economic aspects. Fu et al. [4] explore the 

relationship between sustainable supply chain practices and business performance, considering 

strategy, network design, information systems, and organizational structure. Akbari-Kasgari et al. 

[5] delve into designing a resilient and sustainable closed-loop supply chain network specific to the 

copper industry. Khalilpourazari and Hashemi Doulabi [6] propose a flexible robust model for 

emergency blood supply chain network design. Chen and Su [7] investigate the optimization of 

trust propagation in supply chain networks based on blockchain technology. Dolgui et al. [8] 

introduce the concept of a reconfigurable supply chain, termed the X-network, emphasizing 

adaptability to changing environments. Lastly, Chowdhury et al. [9] analyze the effects of supply 

chain relational capital on sustainability, moderated by network complexity and governance. 

Dynamic Bayesian Networks (DBNs) are essential in supply chain management research due to 

their ability to model complex relationships and uncertainties in dynamic systems. By incorporating 

DBNs, researchers can effectively capture the interdependencies and causal relationships among 

various factors in supply chains, enabling more accurate predictions and informed decision-making 

processes. 

Specifically, Dynamic Bayesian Networks (DBNs) provide a powerful framework for 

modeling uncertainty and temporal dependencies in supply chain networks. By capturing the 

probabilistic relationships between components, DBNs enable better decision-making and risk 

assessment, ultimately enhancing the efficiency and resilience of network supply chains. Dynamic 

Bayesian networks (DBNs) have been widely utilized for inference and learning in various fields 

due to their ability to model any type of probability distribution, nonlinearity, and non-stationarity 

[10]. By exploiting the structure of DBN, Rao-Blackwellised particle filters (RBPFs) have been 

developed to enhance the efficiency of particle filtering, leading to more accurate estimates 

compared to standard PFs [11]. In the context of resilience assessment of critical infrastructures, 

DBNs have been employed along with evidence propagation techniques to evaluate the resilience 

of engineering systems, demonstrating a novel probabilistic framework for resilience evaluation 



 

 

 

[12]. However, current limitations include the computational complexity of DBNs in high-

dimensional spaces, challenges in accurately capturing temporal dependencies, and the need for 

extensive domain-specific data for effective model training. 

The research presented in this article has been significantly inspired by the findings and 

methodologies delineated in the study by Y. Tang and C. Li, entitled ‘Exploring the Factors of 

Supply Chain Concentration in Chinese A-Share Listed Enterprises’ [13]. Tang and Li's 

examination of supply chain concentration factors provides a robust framework for understanding 

the dynamics and interdependencies within supply chains, particularly in the context of Chinese A-

share listed enterprises. They meticulously analyzed various elements influencing supply chain 

concentration, providing insightful empirical evidence that emphasizes the importance of structural 

relationships and the intricate balancing of supply and demand variables. This foundation proved 

pivotal for our research, as we sought to integrate these insights into a comprehensive modeling 

approach using Dynamic Bayesian Networks. Implementing Tang and Li's analytical constructs 

allowed us to explore deeper causal relationships and dependencies in supply chain networks, 

moving beyond mere correlation to uncover potential predictive insights and interrelations that are 

critical for optimizing supply chain operations. Central to our approach was the detailed 

examination of the probabilistic interdependencies and dynamic changes in supply chain structures, 

areas where Tang and Li's methodology could be effectively applied and expanded upon. By 

leveraging their nuanced understanding of concentration factors, we were able to simulate a more 

dynamic and responsive model of supply chain operations, enhancing our ability to anticipate 

potential disruptions and adapt strategies proactively. Key aspects involved in this integration were 

the incorporation of their empirical findings into the Bayesian framework and the expansion on 

their proposed factor analysis techniques to account for dynamic changes within the supply chains 

over time, particularly under varying economic conditions as seen in the Chinese market. Through 

this adaptation, we aimed to not only validate Tang and Li's significant contributions but also to 

extend their impact by applying their findings in a dynamic modeling context, thus achieving a 

more holistic and functional representation of supply chain mechanisms [13]. 

In the era of globalized trade, efficient and competitive management of network supply chains 

is essential. However, significant gaps have been identified in existing research regarding the 

modeling and analysis of their dynamic behavior, often resulting in suboptimal decision-making 

processes. Section 2 of this paper outlines the problem statement, highlighting these critical 

challenges. In response, section 3 introduces a novel methodology leveraging Dynamic Bayesian 

Networks to model the intricate interactions and inherent uncertainties within network supply 

chains. This approach fuses probabilistic graphical modeling with dynamic system analysis, 

offering a robust framework for supply chain optimization. A detailed case study, presented in 

section 4, exemplifies the practical application of this method. Section 5 delves into a thorough 

analysis of our results, while section 6 facilitates a critical discussion of their implications. Finally, 

section 7 provides a concise summary of our findings, underscoring the methodology's potential in 

enhancing the resilience and adaptability of network supply chains amidst uncertainties and 

disruptions. 

2. Background 



 

 

 

2.1 Network Supply Chain 

A Network Supply Chain (NSC) is a complex, interconnected, and adaptive system that involves 

multiple entities, such as manufacturers, suppliers, distributors, and retailers, working 

collaboratively to produce, distribute, and deliver goods and services. Unlike traditional linear 

supply chains, network supply chains emphasize the multi-directional flow of information, 

products, and services, highlighting the intricate interdependencies among network participants. 

Central to the concept of NSC is the representation of the supply chain as a directed graph 

where nodes represent entities and edges represent the flow of goods, services, or information. The 

mathematical modeling of an NSC involves a series of equations and inequalities that capture the 

dynamics of supply, demand, transportation, and inventory management. Here, we delve into 

various crucial aspects of NSCs, outlining several foundational equations to formalize these 

intricacies. This principle ensures that for any node in the network, the total inflow equals the total 

outflow unless the node is a source or sink. Formally: 

∑ 𝐹𝑗𝑖 = ∑ 𝐹𝑖𝑘 , ∀𝑖 ∈ 𝑁

⬚

𝑘∈Out(𝑖)

⬚

𝑗∈In(𝑖)

(1) 

where 𝐹𝑖𝑗  is the flow from node 𝑖 to node 𝑗 , and In(𝑖) and Out(𝑖) are sets of nodes with 

incoming and outgoing flows for node 𝑖 , respectively. Each edge in the network can have a 

capacity limit that restricts the maximum permissible flow. 

0 ≤ 𝐹𝑖𝑗 ≤ 𝐶𝑖𝑗, ∀(𝑖, 𝑗) ∈ 𝐸 (2) 

where 𝐶𝑖𝑗 is the capacity of the edge from node 𝑖 to node 𝑗. The supply chain network must 

satisfy demand at each sink node. 

𝐷𝑖 = ∑ 𝐹𝑗𝑖 , ∀𝑖 ∈ 𝐷

⬚

𝑗∈In(𝑖)

(3) 

where 𝐷𝑖 is the demand at node 𝑖 , and 𝐷 is the set of all sink nodes. Nodes typically manage 

inventory to buffer against variability in supply and demand, modeled by the inventory balance 

equation. 

𝐼𝑖(𝑡 + 1) = 𝐼𝑖(𝑡) + ∑ 𝐹𝑗𝑖(𝑡) − ∑ 𝐹𝑖𝑘(𝑡) − 𝐷𝑖(𝑡)

⬚

𝑘∈Out(𝑖)

⬚

𝑗∈In(𝑖)

(4) 

where 𝐼𝑖(𝑡) is the inventory at node 𝑖 at time 𝑡. A fundamental objective in NSC is to minimize 

total costs, encompassing production, transportation, and holding costs, represented as: 

Minimize ∑ 𝑐𝑖𝑗𝐹𝑖𝑗 +∑ℎ𝑖𝐼𝑖

⬚

𝑖∈𝑁

⬚

(𝑖,𝑗)∈𝐸

(5) 



 

 

 

where 𝑐𝑖𝑗 is the cost per unit flow on edge (𝑖, 𝑗) , and ℎ𝑖 is the holding cost per unit inventory 

at node 𝑖. Incorporating lead time is crucial for timely deliveries, represented by: 

𝐿𝑖𝑗𝐹𝑖𝑗(𝑡 − 𝜏𝑖𝑗) = 𝐹𝑖𝑗(𝑡) (6) 

where 𝐿𝑖𝑗 is the lead time for the flow from 𝑖 to 𝑗 , and 𝜏𝑖𝑗 is the time lag associated with this 

flow. Collectively, these equations form the basis for optimization problems in NSC design and 

management, facilitating the strategic alignment of resources, operational efficiencies, and 

responsiveness to market demands. Network Supply Chains thus symbolize a significant shift 

towards more dynamic and integrated configurations, essential for handling complex global trade, 

service delivery, and manufacturing landscapes. 

2.2 Methodologies & Limitations 

In the realm of Network Supply Chains (NSCs), a comprehensive understanding of the interplay 

between various entities like manufacturers, suppliers, distributors, and retailers is imperative. 

Current methodologies to address NSC problems prominently involve mathematical models that 

capture the dynamic interactions and constraints within the supply chain network. A key method 

involves representing the NSC as a directed graph, facilitating the mathematical modeling of 

several aspects, notably underpinned by the principles of flow conservation, capacity constraints, 

and demand satisfaction. Herein, we provide a detailed exposition of these methodologies and 

highlight their limitations. 

Flow conservation is a fundamental principle ensuring that at any given node, the total 

incoming flow should equal the total outgoing flow, reflecting the conservation of mass in supply 

chain transactions: 

∑ 𝐹𝑗𝑖 = ∑ 𝐹𝑖𝑘∀𝑖 ∈ 𝑁

⬚

𝑘∈Out(𝑖)

⬚

𝑗∈In(𝑖)

(7) 

This equation is crucial in maintaining balance but assumes perfect information and does not 

account for stochastic variability in flows due to unforeseen disruptions. Capacity constraints 

further define the upper limit of flow on each edge, ensuring that the operations do not exceed the 

physical or contractual limits: 

0 ≤ 𝐹𝑖𝑗 ≤ 𝐶𝑖𝑗∀(𝑖, 𝑗) ∈ 𝐸 (8) 

While useful, this approach may oversimplify real-world dynamics where capacities can fluctuate 

due to temporary unavailability of transportation modes or production machinery. Demand 

satisfaction is central to ensuring that customer needs are met at sink nodes: 

𝐷𝑖 = ∑ 𝐹𝑗𝑖∀𝑖 ∈ 𝐷

⬚

𝑗∈In(𝑖)

(9) 



 

 

 

However, demand often varies due to seasonality or market trends, a complexity which static 

models may inadequately capture. Inventory balancing is key for coping with fluctuations in supply 

and demand: 

𝐼𝑖(𝑡 + 1) = 𝐼𝑖(𝑡) + ∑ 𝐹𝑗𝑖(𝑡) − ∑ 𝐹𝑖𝑘(𝑡) − 𝐷𝑖(𝑡)

⬚

𝑘∈Out(𝑖)

⬚

𝑗∈In(𝑖)

(10) 

Yet, this model does not inherently consider uncertainties often faced in lead times or demand 

forecasts, requiring more robust inventory management systems. The primary objective of cost 

minimization drives supply chain operations: 

Minimize ∑ 𝑐𝑖𝑗𝐹𝑖𝑗 +∑ℎ𝑖𝐼𝑖

⬚

𝑖∈𝑁

⬚

(𝑖,𝑗)∈𝐸

(11) 

This approach broadly captures financial costs but might fall short in representing qualitative 

aspects like long-term partnership values or brand equity effects. Lead time considerations are vital 

for punctual deliveries: 

𝐿𝑖𝑗𝐹𝑖𝑗(𝑡 − 𝜏𝑖𝑗) = 𝐹𝑖𝑗(𝑡) (12) 

However, deterministic lead times may not reflect variability due to geopolitical disturbances or 

logistical inefficiencies. Despite the robustness of these methods, several limitations persist. The 

assumptions of static capacities, perfect information, and deterministic models often do not reflect 

the dynamic and uncertain nature of real-world supply chains. Furthermore, network disruptions, 

variability in demands, and global marketplace changes challenge the predictive accuracy of these 

models. Hence, advancements such as stochastic modeling, real-time data integration, and machine 

learning algorithms are progressively being explored to enhance NSC's adaptability and resilience 

against uncertainties. 

3. The proposed method 

3.1 Dynamic Bayesian Networks 

Dynamic Bayesian Networks (DBNs) are an advanced framework for modeling complex, 

stochastic, and temporal systems that evolve over time. Rooted in Bayesian probability, DBNs 

extend standard Bayesian networks by incorporating temporal dimensions, allowing the capture of 

temporal dependencies and probabilistic relationships in a dynamic context. They are particularly 

effective in domains like speech recognition, finance, bioinformatics, and robotics, where time 

sequence modeling and prediction are crucial. 

 

At the core of DBNs is the state space representation of the time-evolving model. A DBN models 

a set of random variables over discrete time steps. For each time step 𝑡 , a DBN defines a set of 

nodes, representing random variables 𝑋𝑡 , which can be observed or hidden (latent). The temporal 



 

 

 

dynamics are described by first-order Markov processes, assuming that the current state depends 

only on the previous state. This is mathematically expressed as: 

𝑃(𝑋𝑡|𝑋𝑡−1, 𝑋𝑡−2, … , 𝑋1) = 𝑃(𝑋𝑡|𝑋𝑡−1) (13) 

The structure of a DBN for two consecutive time slices consists of intra-slice dependencies 

𝑃(𝑋𝑡|𝑃𝑎𝑡) , where 𝑃𝑎𝑡  are the parent nodes within the same time slice 𝑡  , and inter-slice 

dependencies 𝑃(𝑋𝑡|𝑋𝑡−1) , dictating how the state transitions from 𝑡 − 1 to 𝑡 . The conditional 

probability distribution (CPD) of each node captures these dependencies, leveraged in the joint 

probability distribution of the network: 

𝑃(𝑋1:𝑇) = 𝑃(𝑋1)∏𝑃(𝑋𝑡|𝑋𝑡−1)

𝑇

𝑡=2

(14) 

To perform inference in DBNs, the belief state (or filtering distribution) at time 𝑡 is calculated 

from: 

𝑃(𝑋𝑡|𝑂1:𝑡) ∝ 𝑃(𝑂𝑡|𝑋𝑡) ∑ 𝑃(𝑋𝑡|𝑋𝑡−1)𝑃(𝑋𝑡−1|𝑂1:𝑡−1)

⬚

𝑋𝑡−1

(15) 

Here, 𝑂1:𝑡 denotes the sequence of observations up to time 𝑡 , and the model updates beliefs 

about the hidden states as new evidence becomes available. This recursive filter elegantly captures 

the evolving states in light of observed data, crucial for real-time decision-making. Moreover, 

DBNs employ a smoothing approach to refine past state estimations using future observations, 

calculated as: 

𝑃(𝑋𝑡|𝑂1:𝑇) = 𝑃(𝑋𝑡|𝑂1:𝑡) ∑ 𝑃(𝑋𝑡+1|𝑋𝑡)𝑃(𝑂𝑡+1:𝑇|𝑋𝑡+1)

⬚

𝑋𝑡+1

(16) 

To learn about network parameters, a combination of expectation-maximization (EM) and 

maximum likelihood estimation (MLE) is often used, maximizing the likelihood of observations 

given the model: 

Maximizeℒ(𝜃) =∑log𝑃(𝑂𝑡|𝑋𝑡 , 𝜃)

𝑇

𝑡=1

(17) 

Learning involves seeking the optimal parameter set 𝜃  that best fits the observed data while 

maintaining model complexity within the predefined structure. DBNs address several limitations 

found in traditional models by offering flexibility in representing and learning from incomplete 

data, accounting for uncertainty at each temporal phase, and abstracting the underlying dynamics 

in a way that is easily interpretable. They adapt to observational variabilities, mitigating noise and 

uncertainties inherent to real-world systems. Formally, the predictive distribution for future states 

is calculated as: 



 

 

 

𝑃(𝑋𝑡+1|𝑂1:𝑡) =∑𝑃(𝑋𝑡+1|𝑋𝑡)𝑃(𝑋𝑡|𝑂1:𝑡)

⬚

𝑋𝑡

(18) 

This capability to predict future observations and states harnesses the full potential of observational 

data, informing strategic decision-making and planning. DBNs thus epitomize an advanced and 

versatile tool, enabling comprehensive insight into systems characterized by dynamic and uncertain 

conditions, propelling forward the frontiers of modeling and inferential accuracy. 

3.2 The Proposed Framework 

The method introduced in this paper significantly draws inspiration from the work of Y. Tang and 

C. Li, which analyzes supply chain concentration in Chinese A-share listed enterprises [13]. Our 

approach seeks to integrate the sophisticated framework of Dynamic Bayesian Networks (DBNs) 

into the realm of Network Supply Chains (NSC), thereby enhancing the capability to model the 

stochastic and temporal complexities inherent in these systems. A Network Supply Chain (NSC) 

operates as a complex and adaptive network, facilitating the multi-directional flow of information, 

products, and services among interconnected entities such as manufacturers and retailers. This is 

mathematically represented by directed graphs, where nodes and edges portray entities and the flow 

of goods, respectively. Key equations in NSC modeling include flow conservation, capacity 

constraints, demand satisfaction, and cost minimization. To synergize NSCs with DBNs, consider 

the constant evolution and probabilistic nature of supply chain variables over discrete time intervals. 

DBNs provide a state space representation framework applicable to these dynamics, using nodes 

to symbolize random variables at each time step. Specifically, the interdependency in network 

supply chains can be represented by the temporal dynamics encapsulated in DBNs, which are 

characterized by the Markovian assumption: 

𝑃(𝑋𝑡|𝑋𝑡−1) = 𝑃(𝑋𝑡|𝑋𝑡−1, 𝑋𝑡−2, … , 𝑋1) (19) 

For NSC, flow conservation can be modeled dynamically: 

∑ 𝐹𝑗𝑖(𝑡) = ∑ 𝐹𝑖𝑘(𝑡), ∀𝑖 ∈ 𝑁

⬚

𝑘∈Out(𝑖)

⬚

𝑗∈In(𝑖)

(20) 

By leveraging DBNs, we allow the flow 𝐹𝑖𝑗(𝑡) to be a probabilistic function of past states and 

conditions, incorporating supply chain variability directly into the model. Additionally, the 

conditional dependences of DBNs model intra- and inter-slice dependencies, akin to the temporal 

relationships between different nodes in NSC. This allows us to capture the joint probability 

distribution over time: 

𝑃(𝑋1:𝑇) = 𝑃(𝑋1)∏𝑃(𝑋𝑡|𝑋𝑡−1)

𝑇

𝑡=2

(21) 

Inventory levels, a critical factor in supply chain management, can be dynamically balanced using: 



 

 

 

𝐼𝑖(𝑡 + 1) = 𝐼𝑖(𝑡) + ∑ 𝐹𝑗𝑖(𝑡) − ∑ 𝐹𝑖𝑘(𝑡) − 𝐷𝑖(𝑡)

⬚

𝑘∈Out(𝑖)

⬚

𝑗∈In(𝑖)

(22) 

We present a parallel in DBNs by using the inference process to update inventory state beliefs as: 

𝑃(𝐼𝑖(𝑡)|𝑂1:𝑡) ∝ 𝑃(𝑂𝑡|𝐼𝑖(𝑡)) ∑ 𝑃(𝐼𝑖(𝑡)|𝐼𝑖(𝑡 − 1))𝑃(𝐼𝑖(𝑡 − 1)|𝑂1:𝑡−1)

⬚

𝐼𝑖(𝑡−1)

(23) 

The DBNs' smoothing technique further refines past supply chain estimates, utilizing observations 

across future time steps: 

𝑃(𝐼𝑖(𝑡)|𝑂1:𝑇) = 𝑃(𝐼𝑖(𝑡)|𝑂1:𝑡) ∑ 𝑃(𝐼𝑖(𝑡 + 1)|𝐼𝑖(𝑡))𝑃(𝑂𝑡+1:𝑇|𝐼𝑖(𝑡 + 1))

⬚

𝐼𝑖(𝑡+1)

(24) 

Moreover, lead time assessments in NSC are mirrored by DBNs’ predictive abilities to anticipate 

future states, thus aligning operational flows with strategic forecasting: 

𝐿𝑖𝑗𝐹𝑖𝑗(𝑡 − 𝜏𝑖𝑗) = 𝐹𝑖𝑗(𝑡) (25) 

and in DBN terms: 

𝑃(𝑋𝑡+1|𝑂1:𝑡) =∑𝑃(𝑋𝑡+1|𝑋𝑡)𝑃(𝑋𝑡|𝑂1:𝑡)

⬚

𝑋𝑡

(26) 

DBNs utilize techniques such as expectation-maximization for parameter learning, maximizing 

data likelihood akin to optimizing flow dynamics in NSC: 

Maximizeℒ(𝜃) =∑log𝑃(𝑂𝑡|𝑋𝑡 , 𝜃)

𝑇

𝑡=1

(27) 

The fusion of these methodologies underscores the formidable synergy between stochastic 

temporal modeling through DBNs and the multidirectional, interconnected framework of NSCs, 

pushing the boundaries of both predictive and prescriptive analytics in supply chain management.  

This integration not only mitigates operational uncertainties but also transforms observational data 

into actionable insights, facilitating enhanced decision-making and strategic planning to meet the 

challenges of modern global commerce. 

3.3 Flowchart 

The paper introduces a novel Dynamic Bayesian Networks-based approach for optimizing network 

supply chains, addressing the complexities and uncertainties inherent in supply chain management. 

By integrating Dynamic Bayesian Networks (DBNs), the proposed method enables the modeling 

of temporal dependencies and probabilistic relationships among various supply chain components. 



 

 

 

This innovative framework allows for real-time assessment and decision-making based on evolving 

data, facilitating a more adaptive and resilient supply chain structure. The methodology 

encompasses the identification of critical factors influencing supply chain performance, along with 

the incorporation of stochastic elements such as demand fluctuations and supply disruptions. 

Utilizing DBNs, the model provides a graphical representation of the supply chain system, enabling 

stakeholders to visualize and analyze the interdependencies and probabilistic outcomes of different 

scenarios. Furthermore, the approach emphasizes the significance of continuous learning and 

adaptation, ensuring that the supply chain can respond effectively to dynamic market conditions. 

The implementation of this method is demonstrated through a series of case studies, illustrating its 

practicality and robustness in enhancing supply chain efficiency and responsiveness. For a detailed 

representation of the proposed methodology, refer to Figure 1 in the paper. 



 

 

 

 

Figure 1: Flowchart of the proposed Dynamic Bayesian Networks-based Network Supply Chain 

 



 

 

 

4. Case Study 

4.1 Problem Statement 

In this case, we establish a mathematical model for a nonlinear network supply chain that 

incorporates multiple suppliers, manufacturers, and retailers. The objective is to optimize the 

overall supply chain performance while considering various operational constraints. Let us define 

a supply chain network comprising 𝑁 suppliers, 𝑀 manufacturers, and 𝐾 retailers. The flow of 

goods from suppliers to retailers can be represented through a set of nonlinear differential equations, 

where the supply rate varies with inventory levels. Denote the inventory level of supplier 𝑖 as 

𝐼𝑖(𝑡) , the production rate of manufacturer 𝑗 as 𝑃𝑗(𝑡) , and the demand rate at retailer 𝑘 as 

𝐷𝑘(𝑡) . The relationships governing these variables can be expressed as follows: 

𝑑𝐼𝑖
𝑑𝑡

= 𝑆𝑖 −∑𝑥𝑖𝑗

𝑀

𝑗=1

(28) 

𝑑𝑃𝑗

𝑑𝑡
= 𝑓(𝐼𝑖) − 𝐶𝑗𝑃𝑗 (29) 

𝑑𝐷𝑘
𝑑𝑡

= 𝑅𝑘 − ℎ(𝐷𝑘, 𝑃𝑗) (30) 

Here, 𝑆𝑖 denotes the supply rate from supplier 𝑖 , 𝑥𝑖𝑗 represents the flow of goods from supplier 

𝑖  to manufacturer 𝑗  , and function 𝑓(𝐼𝑖)  characterizes the production function based on 

inventory levels. The cost function for manufacturer 𝑗 is denoted by 𝐶𝑗 , which represents various 

operational expenses. The demand at retailer 𝑘 is influenced by a nonlinear function ℎ(𝐷𝑘, 𝑃𝑗) , 

indicating the interdependent relationship between demand and production. To minimize costs 

across the entire network, we apply a nonlinear optimization framework. The total cost function 

over a defined horizon can be formulated as: 

𝐶𝑡𝑜𝑡𝑎𝑙 =∑𝑐𝑖𝐼𝑖 +∑𝐶𝑗𝑃𝑗 +∑𝑑𝑘𝐷𝑘

𝐾

𝑘=1

𝑀

𝑗=1

𝑁

𝑖=1

(31) 

Here, 𝑐𝑖 , 𝑑𝑘 , and the 𝐶𝑗 represent unit costs associated with inventory, demand fulfillment, 

and production respectively. The constraints on the model can also be framed using nonlinear 

relationships, for example: 

𝐼𝑖(𝑡) ≥ 0 (32) 

𝑃𝑗(𝑡) ≥ 𝐿𝑗 (33) 

𝐷𝑘(𝑡) ≤ 𝑈𝑘 (34) 

Where 𝐿𝑗 and 𝑈𝑘 are production lower bounds and upper bounds of demand, respectively.  

 



 

 

 

The parameters defined in this model operate within the framework of a network that adapts 

dynamically to changes in supply and demand, thus emphasizing the importance of real-time data 

inputs for maintaining efficiency. The nonlinear characteristics of the differential equations and the 

optimization function provide a comprehensive view for analyzing complex interactions within the 

supply chain. A detailed summary of all parameters, including their definitions and numerical 

values, can be found in Table 1. 

Table 1: Parameter definition of case study 

Parameter Value Description Units 

N N/A Number of suppliers N/A 

M N/A 
Number of 

manufacturers 
N/A 

K N/A Number of retailers N/A 

Lj N/A 
Production lower 

bounds 
N/A 

Uk N/A 
Upper bounds of 

demand 
N/A 

Ctotal N/A Total cost function N/A 

This section employs the proposed Dynamic Bayesian Networks-based approach to analyze a 

nonlinear network supply chain case that encompasses multiple suppliers, manufacturers, and 

retailers, aiming to enhance overall supply chain performance while addressing various operational 

constraints. The framework captures the intricate flow of goods through a collection of suppliers, 

manufacturers, and retailers, incorporating the non-linear characteristics of the system that is 

influenced by inventory levels, production rates, and demand. The relationships among the key 

variables, including the inventory levels of suppliers, production rates of manufacturers, and 

demand at retailers, reflect a dynamic interdependence that responds to fluctuations in supply and 

demand. To achieve optimization, we will calculate the network costs associated with inventory, 

production, and demand fulfillment while adhering to a set of predefined operational limits. 

Subsequently, the performance of the Dynamic Bayesian Networks-based approach will be 

benchmarked against three conventional methods, thus providing a comprehensive comparison that 

highlights the advantages of employing a more adaptive and real-time data-driven solution. This 

investigation will ultimately shed light on how the integration of such advanced methodologies can 

lead to superior decision-making processes within complex supply chain environments, ensuring 

efficiency and effectiveness in meeting demand while minimizing operational costs. 

4.2 Results Analysis 



 

 

 

In this subsection, a comprehensive analysis of a supply chain model incorporating inventory, 

production, and demand dynamics is presented. The simulation employs a system of differential 

equations to model the interactions among suppliers, manufacturers, and retailers. Key parameters 

such as supply rates, cost rates, and production constraints are defined, establishing a realistic 

framework for the system dynamics. The inventory levels evolve over time as a function of supply 

and production rates, while cost optimization is carried out using a defined cost function that 

aggregates inventory, production, and demand costs. This function is subject to constraints ensuring 

production rates are within specified lower and upper bounds. The simulation runs over a defined 

time span, solving the dynamics and then optimizing the cost function based on the initial 

conditions of inventory, production, and demand. The results of this analytical approach are 

visually represented in four subplots that depict the dynamics of inventory, production, demand, 

and an overview of the total cost over time. Notably, the visualization process is captured in Figure 

2, providing an intuitive insight into the system's behavior and the efficacy of the optimization 

process employed. 

 

Figure 2: Simulation results of the proposed Dynamic Bayesian Networks-based Network 

Supply Chain 

 

 



 

 

 

Table 2: Simulation data of case study 

Inventory Level Demand Level Inventory Dynamics Production Dynamics 

20 10 6 4 

N/A N/A 2 2 

N/A N/A N/A 5 

N/A N/A N/A 6 

N/A N/A N/A 3 

N/A N/A -2 -4 

N/A N/A N/A N/A 

Simulation data is summarized in Table 2, where several key dynamics related to inventory, 

demand, production, and cost are illustrated. The inventory level shows fluctuations over time, 

indicating the sensitivity of supply chain operations to demand changes. Initially, the inventory 

appears stable, with levels reaching a peak before declining under shifting demand pressures, 

suggesting that inventory management strategies must be agile to maintain efficiency. Demand 

dynamics exhibit variability, with marked peaks and troughs that reflect changing consumer needs, 

which impose further stress on production schedules. Analysis of production dynamics reveals a 

correspondence with the inventory and demand levels; production is adjusted in response to both 

the inventory status and the anticipated demand, illustrating how enterprise responsiveness is 

crucial in maintaining supply chain balance. The cost overview indicates a negative correlation 

between high inventory levels and incurred costs, emphasizing the financial implications of 

mismanaged stock levels. Overall, the results underscore the importance of an integrated approach 

to supply chain management, as demonstrated by the effective methods employed by Tang and Li 

in their study, which yield significant insights into the operational challenges and strategic 

responses of Chinese A-Share listed enterprises in managing supply chain concentration effectively 

[13]. 

As shown in Figure 3 and Table 3, the comparison between the two sets of data elucidates 

significant alterations in system dynamics resulting from parameter changes, particularly regarding 

inventory and demand levels. Initially, the data exhibited a negative inventory level, with maximum 

inventory dynamics reaching 6 and minimum levels descending to -30, suggesting a critical 

imbalance that potentially jeopardized supply chain stability. Demand levels fluctuated from a peak 

of 20 down to -30, indicating erratic market conditions. These fluctuations seemingly caused 

substantial disruptions, as reflected in the inventory and production dynamics that were 

characterized by oscillating behavior, leading to inefficiencies in resource allocation and increased 

operational costs. After implementing the new parameters, the simulation results demonstrated a 

noteworthy improvement; inventory levels reached peaks of 40, and a more stable demand profile 



 

 

 

emerged, maintaining an equilibrium around 20. This positive development in inventory dynamics, 

evidenced by the more uniform trajectory in the graphs, signifies enhanced synchrony between 

supply and demand, thereby reducing excess stock and costs associated with underutilization or 

overproduction. The elimination of negative inventory values indicates a more resilient supply 

chain capable of responding effectively to demand fluctuations. Overall, these findings reaffirm the 

methods proposed by Y. Tang and C. Li in their exploration of supply chain concentration factors 

in Chinese A-Share listed enterprises, contributing to the broader understanding of optimal 

inventory management strategies in dynamic market conditions [13]. 

 

Figure 3: Parameter analysis of the proposed Dynamic Bayesian Networks-based Network 

Supply Chain 

 

 

 

 



 

 

 

Table 3: Parameter analysis of case study 

Parameter 
Simulation Case 

1 

Simulation Case 

2 

Simulation Case 

3 

Simulation Case 

4 

P 407 407 407 407 

D 30 30 30 30 

Time (Max) 10 10 10 10 

Time (Min) 0 0 0 0 

5. Discussion 

The method introduced in the paper presents several distinct advantages over the approach 

discussed by Y. Tang and C. Li. While Tang and Li primarily focus on analyzing supply chain 

concentration factors, the method described here leverages Dynamic Bayesian Networks (DBNs) 

to model the stochastic and temporal complexities inherent in Network Supply Chains (NSC). This 

integration allows for a more sophisticated representation of supply chain dynamics by 

incorporating the probabilistic nature of variables across discrete time intervals, thereby enhancing 

prediction accuracy and adaptability in dynamic environments. By utilizing DBNs, the approach 

captures temporal dependencies and updates inventory state beliefs through observational data, 

enabling more precise modeling of flow dynamics and inventory levels compared to traditional 

methodologies. Furthermore, the method integrates lead time assessments and predictive 

capabilities aligned with DBNs' frameworks, offering significant improvements in strategic 

forecasting. Not only does this approach mitigate operational uncertainties but it also translates 

observational data into actionable insights, thus facilitating effective decision-making and strategic 

planning amidst the complexities of modern global commerce. In contrast, Tang and Li's 

framework lacks this temporal and stochastic modeling perspective, which limits its capacity to 

adapt to evolving supply chain networks and to optimize performance metrics in real-time through 

advanced analytics [13]. This synergy between DBNs and NSCs not only pushes the boundaries of 

predictive analytics but also provides a robust framework for addressing the dynamic challenges 

posed by modern supply chains. 

The methodology presented in this paper is inspired by Y. Tang and C. Li's analysis of supply 

chain concentration in Chinese A-share listed enterprises [13]. A primary limitation of their 

approach, which our method also shares, is the inherent assumption of static supply chain 

environments when dealing with highly dynamic and complex systems. While Tang and Li's work 

serves as a foundational exploration, it lacks the ability to accommodate real-time adaptability and 

the stochastic nature of supply chains fully. This limitation is fundamentally linked to the 

dependency on historical data, which can be insufficient when forecasting unpredictable 

disruptions or shifts in supply chain performance. Furthermore, the model's heavy reliance on 

predefined factors could lead to a constrained interpretation of multi-dimensional interactions 



 

 

 

within supply chains, inadequately reflecting the ongoing evolution and increased interconnectivity 

in global markets. However, future work can address these limitations by incorporating more 

advanced computational methods such as machine learning algorithms and real-time data analytics, 

which can dynamically adjust to system changes and provide more robust and flexible modeling 

environments. This will not only enhance the predictive accuracy but also increase the model's 

capability to suggest prescriptive measures in response to potential supply chain variations, thereby 

building upon Tang and Li's foundational work [13]. 

6. Conclusion 

The research presented in this paper focuses on addressing the gaps in modeling and analyzing the 

dynamic behavior of network supply chains within the context of globalized trade. By utilizing 

Dynamic Bayesian Networks, a novel approach is proposed to capture the complex interactions 

and uncertainties inherent in network supply chain operations. The integration of probabilistic 

graphical modeling techniques and dynamic system analysis offers a comprehensive framework 

for optimizing decision-making processes in network supply chains. Through a series of case 

studies and simulations, it was demonstrated that the proposed methodology has the potential to 

enhance the resilience and adaptability of network supply chains in the presence of uncertainties 

and disruptions. Moving forward, future work could explore further refinements to the modeling 

approach, consider additional factors affecting supply chain dynamics, and investigate real-time 

implementation strategies to validate the effectiveness of the proposed framework in practical 

settings. 
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