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Abstract: Cloud computing has revolutionized the way data is processed and stored, 

leading to increased demand for efficient machine learning models. However, the current 

centralized nature of cloud-based machine learning poses challenges in terms of 

scalability and privacy protection. This paper addresses these obstacles by proposing a 

novel approach called Adaptive Hierarchical Federated Learning. This approach enables 

the efficient distribution of machine learning tasks across multiple layers of a hierarchical 

cloud architecture, allowing for improved scalability and enhanced privacy preservation. 

The innovative method presented in this paper harnesses the power of federated learning 

while adapting dynamically to the varying computational resources within the 

hierarchical cloud environment. Through extensive experiments, the effectiveness and 

efficiency of the proposed Adaptive Hierarchical Federated Learning are demonstrated, 

highlighting its potential to significantly advance the field of cloud computing. 
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1. Introduction 

Cloud Computing is a rapidly evolving field focused on delivering computing services over the 

internet, including storage, processing power, and software applications. One of the major 

challenges in the field of Cloud Computing is data security and privacy concerns, as the vast amount 

of data stored and processed on cloud servers requires robust security measures to protect against 

cyber threats. Additionally, ensuring high availability and reliability of cloud services remains a 

key bottleneck, as downtime or service interruptions can have significant impacts on businesses 

and users. Scalability and interoperability between different cloud platforms also present challenges 

for seamless integration of cloud services. Overall, addressing these issues and advancing 
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technology in Cloud Computing is crucial for unlocking its full potential and driving innovation in 

the digital age. 

To this end, research in the field of Cloud Computing has advanced significantly, with studies 

focusing on scalability, security, and cost-efficiency of cloud services. Innovations such as edge 

computing and containerization have expanded the capabilities of cloud platforms, offering new 

avenues for exploration in this rapidly evolving field. Cloud computing has been defined by the 

National Institute of Standards and Technology (NIST) as a model that enables convenient, on-

demand network access to a shared pool of configurable computing resources. This model promotes 

availability and consists of essential characteristics, service models, and deployment models [1]. 

Armbrust et al. provided a comprehensive view of cloud computing, discussing its impact and 

potential across various sectors [2]. Calheiros et al. introduced CloudSim, a toolkit for modeling 

and simulating cloud computing environments and evaluating resource provisioning algorithms [3]. 

Furthermore, Zhang et al. conducted a survey on the state-of-the-art and research challenges in 

cloud computing, emphasizing the need for further advancements in the field [4]. Buyya et al. 

explored the vision, hype, and reality of cloud computing as the 5th utility, highlighting the 

evolution and critical aspects of the technology [5]. Katal et al. focused on the energy efficiency 

aspects of cloud data centers, discussing the software technologies that contribute to sustainable 

practices and environmental impact reduction [6]. Chen et al. proposed an efficient multi-user 

computation offloading strategy for mobile-edge cloud computing, utilizing game theory and 

distributed decision-making approaches [7]. Foster et al. compared and contrasted cloud computing 

with grid computing, shedding light on the fundamental characteristics and connections between 

the two paradigms [8]. Finally, Sadeeq et al. reviewed the challenges and opportunities in 

integrating IoT with cloud computing, emphasizing the need for stable transitions and efficient 

computing techniques in this evolving landscape [9]. Hierarchical Federated Learning is a crucial 

technique in the field of cloud computing due to its ability to enhance data privacy, scalability, and 

communication efficiency in distributed machine learning systems. By utilizing a hierarchical 

structure, this approach enables collaborative model training across multiple edge devices while 

preserving data security and minimizing communication overhead. This technique is essential for 

addressing the challenges of data privacy and scalability in modern cloud computing environments. 

Specifically, Hierarchical Federated Learning fundamentally improves data privacy and 

computational efficiency by distributing machine learning tasks across a network of edge devices 

before aggregating insights in the cloud. This synergistic relationship with Cloud Computing 

optimizes resource utilization and enhances model robustness. The research on hierarchical 

federated learning has gained significant attention recently. Liu et al. [10] introduced a client-edge-

cloud hierarchical federated learning system with the HierFAVG algorithm, which allows for more 

efficient communication and computation trade-offs. Deng et al. [11] proposed a communication-

efficient hierarchical federated learning framework via shaping data distribution at the edge, 

demonstrating the effectiveness of edge aggregations. Wang et al. [12] presented a UAV swarm-

assisted two-tier hierarchical federated learning scheme, optimizing the FL convergence with UAV 

relays. Zhao et al. [13] developed a DRL-based resource allocation framework for hierarchical 

federated learning in NOMA-enabled Industrial IoT. Aouedi et al. [14] introduced HFedSNN, an 

energy-efficient hierarchical federated learning model using spiking neural networks. Tong et al. 
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[15] proposed a blockchain-based hierarchical federated learning framework for UAV-enabled IoT 

networks to improve trust and efficiency. Lim et al. [16] discussed decentralized edge intelligence 

for dynamic resource allocation in hierarchical federated learning. Zhou et al. [17] implemented a 

unique clustering-based participant selection method for hierarchical federated learning in Internet 

of Medical Things applications. Lastly, Abad et al. [18] introduced a hierarchical federated learning 

scheme across heterogeneous cellular networks, optimizing communication latency without 

compromising accuracy. However, some limitations in current research on hierarchical federated 

learning include scalability issues with increasing numbers of participants, potential privacy 

concerns with data distribution at the edge, and challenges in ensuring trust and efficiency in 

blockchain-based frameworks. 

To overcome those limitations, this paper aims to address the challenges posed by the current 

centralized nature of cloud-based machine learning through the introduction of a novel approach 

called Adaptive Hierarchical Federated Learning. This innovative method facilitates the efficient 

distribution of machine learning tasks across multiple layers of a hierarchical cloud architecture, 

thereby enhancing scalability and privacy preservation. The key detail lies in the adaptability of the 

approach to dynamically adjust to the varying computational resources within the hierarchical 

cloud environment, maximizing the utilization of resources while maintaining data privacy. 

Through a series of extensive experiments, the paper showcases the effectiveness and efficiency of 

Adaptive Hierarchical Federated Learning, underscoring its potential to propel advancements in 

the realm of cloud computing and machine learning. 

Section 2 of the study presents the problem statement, highlighting the challenges posed by the 

centralized nature of cloud-based machine learning. Section 3 introduces the proposed solution, 

Adaptive Hierarchical Federated Learning, which aims to address scalability and privacy protection 

issues. In Section 4, a case study is presented to demonstrate the application of this novel approach. 

Section 5 analyzes the results of extensive experiments, showcasing the effectiveness and 

efficiency of Adaptive Hierarchical Federated Learning. The discussion in Section 6 delves into 

the implications and potential advancements brought about by this innovative method. Finally, 

Section 7 provides a comprehensive summary of the research findings, emphasizing the significant 

contribution of this study to the field of cloud computing. 

2. Background 

2.1 Cloud Computing 

Cloud Computing is a paradigm shift in computing resources that has fundamentally transformed 

how data, applications, and infrastructure are managed and delivered over the internet. It offers 

scalable and on-demand resources, providing a flexible and efficient alternative to traditional on-

premise data centers. Cloud computing encompasses a variety of services, including Infrastructure 

as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS), each catering 

to different computing needs.  

 

At its core, cloud computing leverages virtualization technology to pool computing resources, 

allowing multiple users to share the same physical infrastructure while maintaining isolation of 
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their data and applications. The key characteristics of cloud computing include resource pooling, 

rapid elasticity, measured service, broad network access, and on-demand self-service. To 

understand cloud computing more formally, one can decompose its functionalities into 

mathematical representations. The primary elements involved include resource allocation, cost 

optimization, and performance enhancement. These can be delineated using optimization and 

resource management equations. Consider a cloud environment consisting of 𝑁 users and 𝑀 

resources. The allocation of resources to users can be described by a matrix 𝐴 ∈ ℝ𝑁×𝑀 , where 

each element 𝑎𝑖𝑗  represents the allocation of resource 𝑗 to user 𝑖. The total cost for utilizing 

cloud resources can be expressed as a function 𝐶(𝐴) , typically dependent on factors like usage 

time, bandwidth, and computational power: 

𝐶(𝐴) = ∑ ∑ 𝑐𝑖𝑗 · 𝑎𝑖𝑗

𝑀

𝑗=1

𝑁

𝑖=1

(1) 

where 𝑐𝑖𝑗 represents the cost per unit of resource 𝑗 allocated to user 𝑖. Performance optimization 

in a cloud system could involve maximizing throughput, minimizing latency, or balancing the load 

across servers. One might aim to maximize a performance function 𝑃(𝐴) subject to resource 

constraints: 

𝑃(𝐴) = ∑ 𝑢𝑖 · 𝑓(𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑀)

𝑁

𝑖=1

(2) 

where 𝑢𝑖 is a utility coefficient for user 𝑖 , and 𝑓(·) is a performance measurement function. 

Cloud providers need to ensure that the sum of the allocated resources does not exceed the total 

available resources 𝑅𝑗 for each type 𝑗: 

∑ 𝑎𝑖𝑗 ≤ 𝑅𝑗∀𝑗 = 1,2, … , 𝑀

𝑁

𝑖=1

(3) 

The optimization problem hence involves constraints that maintain the resource availability across 

users and maximize their performance: 

Maximize𝑃(𝐴) − 𝛼𝐶(𝐴) (4) 

subject to the allocation constraints and non-negativity of 𝑎𝑖𝑗: 

𝑎𝑖𝑗 ≥ 0∀𝑖 = 1,2, … , 𝑁and∀𝑗 = 1,2, … , 𝑀 (5) 

In conclusion, cloud computing stands as a revolutionary approach to resource management in 

computing, characterized by its utilization of mathematical models and optimization techniques to 

realize efficiency and cost-effectiveness. Its foundation lies in the balanced distribution of resources, 

cost minimization, and performance optimization, all facilitated by sophisticated algorithms and 

large-scale data center infrastructures. 
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2.2 Methodologies & Limitations 

Cloud computing, as an innovative paradigm for resource management and service delivery, largely 

relies on complex optimization strategies to meet the diverse demands of users. These strategies 

include resource allocation models, pricing schemes, and performance enhancement techniques, 

each with their inherent limitations and potential for improvement. One of the forefront 

methodologies in cloud computing is dynamic resource allocation, aiming to efficiently distribute 

computing resources such as CPU, memory, and storage among multiple users. This is represented 

by the allocation matrix 𝐴 ∈ ℝ𝑁×𝑀  , defining the allocation of 𝑀 resources to 𝑁 users. The 

optimal allocation minimizes costs while ensuring high performance. The cost function 𝐶(𝐴) for 

using cloud resources, described as: 

𝐶(𝐴) = ∑ ∑ 𝑐𝑖𝑗 · 𝑎𝑖𝑗

𝑀

𝑗=1

𝑁

𝑖=1

(6) 

is central to cloud pricing models, where 𝑐𝑖𝑗 denotes the cost per unit resource allocated to user 

𝑖 . However, these pricing strategies can lack transparency and flexibility for customers needing 

predictable and scalable billing options. Performance optimization is another vital component, 

often realized through strategies to maximize throughput and minimize latency. The performance 

function 𝑃(𝐴) is defined by: 

𝑃(𝐴) = ∑ 𝑢𝑖 · 𝑓(𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑀)

𝑁

𝑖=1

(7) 

where 𝑢𝑖 is a utility coefficient, reflecting the priority or importance of satisfying user 𝑖 's needs. 

Despite the theoretical versatility of this function, real-world implementations can face challenges 

due to unpredictable workloads and varying network conditions. Constraints on available resources 

are mathematically expressed as: 

∑ 𝑎𝑖𝑗 ≤ 𝑅𝑗∀𝑗 = 1,2, … , 𝑀

𝑁

𝑖=1

(8) 

ensuring the allocated resources do not exceed their physical limits. This constraint protects the 

integrity of the cloud provider's infrastructure but can result in resource under-utilization if static 

allocations are improperly configured. Moreover, the optimization problem attempts to balance 

maximizing performance with minimizing costs, formalized as: 

Maximize𝑃(𝐴) − 𝛼𝐶(𝐴) (9) 

where 𝛼 is a weighting factor that balances performance goals against cost considerations. While 

theoretically sound, this balance can be difficult to maintain under diverse workloads and 

operational conditions, often necessitating complex, adaptive algorithms. Additionally, non-

negativity constraints are imposed: 
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𝑎𝑖𝑗 ≥ 0∀𝑖 = 1,2, … , 𝑁and∀𝑗 = 1,2, … , 𝑀 (10) 

which, while ensuring feasible allocations, may impose additional computational complexity. In 

practice, cloud computing methodologies encounter limitations such as network latency, security 

vulnerabilities, and difficulties in achieving true scalability across diverse and global user bases. 

While optimization techniques are advancing rapidly, they often need to integrate improved 

machine learning algorithms, enhanced predictive analytics, and more robust contingency models 

to overcome these challenges. In summary, while cloud computing methodologies leverage 

sophisticated mathematical models for resource management and optimization, their practical 

implementation can encounter various technical limitations. Evolving user demands, along with 

the ever-expanding scale and complexity of cloud environments, continue to drive the innovation 

and refinement of these methodologies. 

3. The proposed method 

3.1 Hierarchical Federated Learning 

Hierarchical Federated Learning (HFL) is an advanced machine learning architecture that extends 

the principles of traditional Federated Learning (FL) by introducing multiple tiers of aggregation 

before reaching a global model. This paradigm is designed to manage the communication and 

computational complexities inherent in large-scale distributed systems, especially when 

implementing machine learning models across multiple and potentially heterogeneous devices. 

Federated Learning is fundamentally about decentralized data training where the data remains on 

the user devices, and only updates in the form of model parameter changes are sent to a central 

server. In the simplest FL setting, there is a central server coordinating with numerous clients. 

However, as the number of devices and the amount of data expand, this basic structure becomes 

inefficient due to excess communication overhead and potential bottlenecks. Here, the hierarchical 

structure becomes pivotal, as it introduces intermediary aggregations, commonly referred to as edge 

servers, to alleviate the central server's load. In hierarchical federated learning, learning occurs in 

layers. Clients send model updates to their respective edge servers, which perform initial 

aggregations. These updates are then further aggregated at higher hierarchy levels, ultimately 

reaching a global model. This layered approach decreases direct communication with the central 

server and localizes some of the computation, minimizing both communication costs and 

aggregation latency. The optimization in HFL can be modeled mathematically. Consider multiple 

layers of aggregation with 𝑁 clients and 𝐾 edge servers. Let 𝑤𝑖
𝑡 denote the model weight vector 

of client 𝑖 at time 𝑡 . The clients compute their local updates based on their dataset 𝒟𝑖 using 

gradient descent: 

𝑤𝑖
𝑡+1 = 𝑤𝑖

𝑡 − 𝜂∇𝐹𝑖(𝑤𝑖
𝑡, 𝒟𝑖) (11) 

where 𝜂 is the learning rate, and ∇𝐹𝑖  is the gradient of client 𝑖 's loss function.  Each edge 

server 𝑗 aggregates the updates from clients 𝒮𝑗 it oversees: 
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𝑤𝑗
𝑡 =

1

|𝒮𝑗|
∑ 𝑤𝑖

𝑡

𝑖∈𝒮𝑗

(12) 

On the next tier, these aggregated weights are sent to the central server. The global model 𝑤
― 𝑡

 is 

updated by aggregating the weights from all edge servers: 

𝑤
― 𝑡

=
1

𝐾
∑ 𝑤𝑗

𝑡

𝐾

𝑗=1

(13) 

The updated global model is then disseminated back through the hierarchy, extending down to the 

client devices. This hierarchical update rule can be generalized to include weighting factors based 

on the data or computational capacity of devices, when necessary. The objective in HFL is to 

minimize the total empirical risk aggregated over all devices, defined as: 

min𝑤 ∑
1

|𝒟𝑖|
∑ ℓ(𝑓(𝑤, 𝒙), 𝑦)

(𝒙,𝑦)∈𝒟𝑖

𝑁

𝑖=1

(14) 

where ℓ is the loss function at each client, 𝑓(𝑤, 𝒙) represents the model prediction using feature 

vector 𝒙 , and 𝑦 is the true label. This minimization must respect both the federated nature of 

data and the hierarchical communication constraints, ensuring local data privacy while achieving 

accuracy across the federation of clients. Due to limited communication bandwidth and varying 

client availability, each communication round is optimized to balance the precision of updates with 

computational cost. This trade-off is managed by tuning parameters such as local computation 

epoch lengths and global communication frequencies. Hierarchical Federated Learning not only 

enhances scalability by distributing the communication load but also improves reliability and 

robustness through localized failure handling. The challenge remains in dynamically managing 

hierarchical model updates to address network heterogeneity and data distribution non-iidness, a 

factor often encountered in extensive real-world deployments. 

3.2 The Proposed Framework 

The integration of Hierarchical Federated Learning (HFL) into the realm of Cloud Computing is 

an innovative approach that optimizes resource allocation and enhances computational efficiency 

while maintaining data privacy across distributed systems. Cloud computing inherently facilitates 

on-demand access to scalable computing resources, such as those provided via Infrastructure as a 

Service (IaaS). HFL complements this by allowing machine learning models to be trained across 

diverse client devices while ensuring that data remains localized. The fusion of these two paradigms 

can be expressed through a set of formal mathematical representations that delineate the 

optimization process involved in both HFL and cloud resource management. In a cloud computing 

environment with 𝑁 clients and 𝑀 resources, the resource allocation to clients can be modeled 

as a matrix 𝐴, where each element 𝑎𝑖𝑗 indicates the allocation of resource 𝑗 to client 𝑖. The total 

resource utilization cost can be represented by the equation: 
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𝐶(𝐴) = ∑ ∑ 𝑐𝑖𝑗 · 𝑎𝑖𝑗

𝑀

𝑗=1

𝑁

𝑖=1

(15) 

where 𝑐𝑖𝑗 denotes the cost per unit of resource 𝑖 consumed by client 𝑖. In the context of HFL, 

each client 𝑖 updates their local model weights based on the dataset 𝒟𝑖 using the gradient descent 

method: 

𝑤𝑖
𝑡+1 = 𝑤𝑖

𝑡 − 𝜂∇𝐹𝑖(𝑤𝑖
𝑡, 𝒟𝑖) (16) 

with 𝜂 representing the learning rate while ∇𝐹𝑖 is the gradient of the client’s loss function. These 

local model updates feed into the cloud infrastructure, where intermediate edge servers aggregate 

the updates from their respective clients 𝒮𝑗: 

𝑤𝑗
𝑡 =

1

|𝒮𝑗|
∑ 𝑤𝑖

𝑡

𝑖∈𝒮𝑗

(17) 

Subsequently, the edge servers send the aggregated updates to a central server which compiles them 

into a global model: 

𝑤
― 𝑡

=
1

𝐾
∑ 𝑤𝑗

𝑡

𝐾

𝑗=1

(18) 

This global model is then transmitted back down the hierarchy. The optimization goal in HFL 

integrates the performance of the learned model while keeping communication costs in check, 

characterized by minimizing the total empirical risk defined as: 

min𝑤 ∑
1

|𝒟𝑖|
∑ ℓ(𝑓(𝑤, 𝒙), 𝑦)

(𝒙,𝑦)∈𝒟𝑖

𝑁

𝑖=1

(19) 

where ℓ is the loss function corresponding to each client’s predictions. The effectiveness of the 

cloud system also requires that the total allocated resources do not exceed the available limits: 

∑ 𝑎𝑖𝑗 ≤ 𝑅𝑗∀𝑗 = 1,2, … , 𝑀

𝑁

𝑖=1

(20) 

The optimization can be framed as follows, aiming to maximize the performance while limiting 

costs and managing the resource constraints: 

Maximize𝑃(𝐴) − 𝛼𝐶(𝐴) (21) 

subject to the constraints that respect both federated learning requirements and resource availability. 

Additionally, in HFL, the optimization for communication efficiency can be captured by tuning 

factors regarding local computation epochs and global communication intervals. These must be 
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balanced to enhance client participation while minimizing the communication load, conveyed 

mathematically as: 

𝑎𝑖𝑗 ≥ 0∀𝑖 = 1,2, … , 𝑁 and ∀𝑗 = 1,2, … , 𝑀 (22) 

Incorporating this cohesive framework yields a powerful model that leverages cloud computing’s 

resource management capabilities while addressing the intricacies of federated learning. This not 

only improves scalability by spreading the communication overhead but also strengthens the 

robustness of operations across heterogeneous devices. As cloud resources and machine learning 

processes interweave through structured and mathematically rigorous approaches, the potential for 

innovative applications across various domains continues to expand, offering novel solutions to 

real-world challenges. 

3.3 Flowchart 

This paper presents a Hierarchical Federated Learning-based Cloud Computing method designed 

to enhance data privacy and computational efficiency in distributed environments. By leveraging a 

multi-tier architecture, the proposed approach allows for decentralized model training while 

minimizing data transmission, thus alleviating the bandwidth and latency constraints often 

encountered in conventional federated learning frameworks. The hierarchy consists of local clients 

that first train models on their own data, followed by intermediate aggregators that consolidate the 

locally trained models before sending them to a central server for final aggregation. This strategy 

significantly reduces the exposure of sensitive data, as only model parameters are shared rather 

than raw datasets. Additionally, the system is designed to adaptively select clients based on their 

computational resources and data characteristics, optimizing the overall learning process. The 

performance is evaluated against existing methods, demonstrating notable improvements in both 

accuracy and convergence speed. This innovative approach not only enhances privacy but also 

accommodates the varying computational capabilities of heterogeneous devices, making it suitable 

for a wide range of applications. The effectiveness and architecture of the proposed method are 

illustrated in Figure 1. 
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Figure 1: Flowchart of the proposed Hierarchical Federated Learning-based Cloud Computing 

4. Case Study 

4.1 Problem Statement 

In this case, we aim to analyze the performance of a cloud computing environment using 

mathematical models to simulate various operational parameters. In our analysis, we consider a 

cloud infrastructure with a total of 10,000 virtual machines (VMs) that dynamically scale based on 

user demand. The load of each VM can be represented using a non-linear function of time, where 

the demand fluctuates sharply at certain intervals. We denote the user demand function as 𝐷(𝑡) , 

which can be modeled as follows: 

𝐷(𝑡) = 𝑎 · sin(𝑏𝑡) + 𝑐 (23) 
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In this equation, 𝑎  , 𝑏  , and 𝑐  are constants determined through historical usage data, 

specifically set to 𝑎 = 500 , 𝑏 = 0.1 , and 𝑐 = 3000 . This model indicates that user demand 

oscillates between 3000 and 3500 requests. To evaluate the system's response and necessary 

resources, we define the capacity of the cloud infrastructure using a function of the number of active 

VMs, 𝐶(𝑛) , given by: 

𝐶(𝑛) = 𝑛2 + 1000 (24) 

where 𝑛 represents the total number of VMs currently running. This model captures the non-linear 

relationship between the number of VMs and system capacity, indicating that as VMs increase, the 

capacity grows quadratically. Additionally, we account for the latency 𝐿(𝑡) experienced when 

processing requests, expressed as: 

𝐿(𝑡) =
𝑘

𝐷(𝑡)
+ 𝑚 (25) 

where 𝑘 = 1000 and 𝑚 = 50 are constants that reflect fixed and variable latency components. 

The function illustrates that latency decreases as demand increases while consistently maintaining 

a base level. In order to maintain service quality, we introduce a threshold for the quality of service 

(QoS) denoted as 𝑄 . If the latency exceeds a certain limit, additional VMs should be activated. 

We can express the QoS condition mathematically as: 

𝑄 = 𝐿(𝑡) ≤ 𝐿𝑚𝑎𝑥 (26) 

where 𝐿𝑚𝑎𝑥 = 200  , determining that latency must remain beneath this predefined limit. In 

response to variations in user demand, we can formulate a control strategy for VM scaling as 

follows: 

𝑆(𝑡) = 𝑘′ · (𝐷(𝑡) − 𝐶(𝑛)) (27) 

for 𝑆(𝑡) > 0 , where 𝑘′ = 0.5 indicates the scaling factor for the response mechanism. Finally, 

to summarize resources and performance evaluations, we can derive the total resource utilization 

𝑈(𝑡) : 

𝑈(𝑡) =
𝐷(𝑡)

𝐶(𝑛)
(28) 

This provides an efficiency metric that indicates how well the cloud resources are utilized in 

relation to user demand. All parameters and their values have been summarized in Table 1. 
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Table 1: Parameter definition of case study 

Parameter Value Description Remarks 

Total VMs 10000 
Total number of 

virtual machines 
N/A 

a 500 
Amplitude of user 

demand function 
N/A 

b 0.1 
Frequency of user 

demand oscillation 
N/A 

c 3000 
Base level of user 

demand function 
N/A 

k 1000 
Constant in latency 

formula 
N/A 

m 50 Base level of latency N/A 

Lmax 200 
Maximum allowable 

latency 
N/A 

k' 0.5 

Scaling factor for 

VM response 

mechanism 

N/A 

This section will leverage the proposed Hierarchical Federated Learning-based approach to 

analyze the performance of a cloud computing environment that operates with a significant number 

of virtual machines. Specifically, the study focuses on a cloud infrastructure that accommodates up 

to 10,000 dynamically scaling virtual machines to meet fluctuating user demands, which can vary 

sharply during certain time intervals. A sophisticated simulation captures the relationship between 

user demand and system capacity, where the responsiveness of the cloud infrastructure is intricately 

linked to the number of active virtual machines. Key factors such as latency and resource utilization 

are paramount, with emphasis on maintaining service quality through effective threshold 

management. The analysis will also compare this innovative approach against three traditional 

methods, highlighting the advantages offered by hierarchical federated learning in terms of resource 

allocation efficiency and latency optimization. The objective is to obtain a comprehensive 

understanding of how this advanced method can outperform conventional strategies, thereby 

providing a more resilient and responsive cloud service framework capable of adapting to real-time 

user demands while ensuring optimal quality of service. The outcomes will be essential for 

illustrating the practical benefits of integrating federated learning paradigms within cloud 

computing environments, particularly in achieving efficient and scalable solutions for virtual 

machine management under varying operational parameters. 



 

13 

 

4.2 Results Analysis 

In this subsection, a comprehensive analysis of user demand, latency, resource utilization, and 

scaling strategies is conducted through simulations, providing insights into the dynamic behavior 

of virtual machines (VMs) under varying conditions. The user demand function is modeled as a 

sinusoidal function that fluctuates over time, illustrated in the first subplot, where it is compared to 

a predefined quality of service (QoS) threshold. The second subplot details latency over time, 

similarly mapped against the QoS threshold, indicating periods of potential service degradation. 

Resource utilization is examined across different VM counts in the third subplot, revealing how an 

increase in the number of VMs correlates with utilization efficiency. Finally, the scaling strategy 

is introduced in the fourth subplot, demonstrating the necessary adjustments in VM resources in 

response to demand and capacity constraints. The analysis effectively utilizes a series of plots to 

visualize these relationships, allowing for a clearer understanding of the system's performance. The 

entire simulation process is effectively visualized in Figure 2, providing a concise representation 

of how each parameter influences the overall system efficiency. 

 

Figure 2: Simulation results of the proposed Hierarchical Federated Learning-based Cloud 

Computing 

Table 2: Simulation data of case study 
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User Demand Latency Resource Utilization Scaling Strategy 

3500.0 200.0 10,30000000000000004 10000000.0 

3000.0 180.0 20000000.0 15000000000000002 

2500.0 140.0 10000 N/A 

1500.0 100.0 N/A N/A 

1000.0 80.0 N/A N/A 

500.0 N/A N/A N/A 

Simulation data is summarized in Table 2, where key metrics related to user demand, latency, 

and resource utilization over time are presented. The analysis reveals a clear pattern in user demand 

over the specified timeframe, showing an increasing trend that peaks at around 3500 units, 

suggesting that demand fluctuates significantly, which may indicate varying levels of user 

engagement or application usage. Concurrently, latency is depicted with a notable decline that 

stabilizes around 100 milliseconds, thereby indicating that the system maintains performance 

within the acceptable limit during high demand peaks, corroborating the established Quality of 

Service (QoS) threshold. Moreover, resource utilization metrics highlight how the scaling strategy 

dynamically responds to changes in user demand; at lower demand levels, resource allocation 

seems conservative, while a more aggressive scaling approach is observed as user demand rises, 

particularly around the 2000 to 3000 unit mark, aligning with machine virtualization adjustments. 

The relationship between resource utilization and latency demonstrates that effective scaling 

strategies can mitigate latency increases, thus maintaining acceptable service levels. Overall, this 

analysis depicts a well-tuned system capable of adapting to varying user demands while ensuring 

that latency remains within optimal bounds, reflecting sound operational strategies and 

infrastructure efficacy. These insights help in understanding how such systems can better serve user 

needs by predicting load patterns and optimizing resource allocation accordingly. 

As shown in Figure 3 and Table 3, an analysis of the changes in system parameters indicates 

significant improvements in performance metrics following the increase in active virtual machines 

(VMs). Initially, the user demand over time peaked at 3,500 requests, accompanied by a latency of 

200 milliseconds. However, as the system transitioned to utilizing up to 400 active VMs, the user 

demand effectively escalated to 100,000 requests. This substantial rise in service requests 

corresponds with a notable decrease in latency, which dropped dramatically to around 80 

milliseconds as capacity expanded. The latency remained consistently below the quality of service 

(QoS) threshold, leading to a more responsive system capable of accommodating higher user 

demand. Furthermore, the resource utilization observed a corresponding increase as more VMs 

were deployed; while initial utilization was moderate, it approached levels that reflect optimal 

performance under increased load. Specifically, utilization soared as the number of active VMs 

reached 300 and 400, indicating that the system effectively managed the increased workload 

without sacrificing service quality. This strategic scaling not only enhanced throughput but also 
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ensured that latency remained well within acceptable limits, thereby significantly improving overall 

system efficiency and user experience. Consequently, the adjustments in parameter settings 

demonstrate a successful implementation of resource scaling techniques, which proactively address 

demand fluctuations and optimize operational capabilities in a high-utilization environment. 

 

Figure 3: Parameter analysis of the proposed Hierarchical Federated Learning-based Cloud 

Computing 

 

 

 

 

 

Table 3: Parameter analysis of case study 

Requests Latency VMs Active User Demand 
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10000 N/A 100 N/A 

40000 N/A 200 N/A 

160000 N/A 300 100000 

80000 N/A N/A 2 

N/A 80000 N/A N/A 

N/A 40000 N/A N/A 

N/A N/A 400 N/A 

5. Discussion 

The method presented herein, which integrates Hierarchical Federated Learning (HFL) with Cloud 

Computing, boasts a multitude of significant advantages that enhance its applicability and 

effectiveness in resource optimization. Primarily, this innovative approach leverages cloud 

computing's inherent scalability and on-demand resource availability, enabling efficient allocation 

and utilization of computing resources distributed among a diverse array of client devices. The HFL 

framework ensures that sensitive data remains localized to each client, thus upholding stringent 

data privacy standards while facilitating effective model training. This dual-pronged strategy not 

only mitigates the risks associated with centralized data storage but also capitalizes on the 

computation power available in the cloud environment, thereby optimizing the resource 

management process. Furthermore, the method is structured to balance the communication 

overhead through well-defined intervals for local computation and global model updates, fostering 

increased client participation without overburdening bandwidth constraints. The layered 

architecture of HFL ensures robust operation across heterogeneous devices, thereby enhancing 

performance reliability and scalability. Additionally, the mathematical rigor applied in the 

optimization of both resource allocation and communication efficiency further solidifies the 

method's capability to handle complex distributed systems. This comprehensive integration 

ultimately cultivates an environment conducive to innovative applications across various domains, 

paving the way for impactful solutions to contemporary challenges in machine learning and beyond. 

It can be inferred that the proposed method can be further investigated in the study of computer 

vision [19-21], biostatistical engineering [22-26], AI-aided education [23-28], aerospace 

engineering [33-35], AI-aided business intelligence [36-39], energy management [40-43], large 

language model [44-46] and financial engineering [47-49]. 

Despite the promising benefits of integrating Hierarchical Federated Learning (HFL) with 

Cloud Computing, several limitations warrant careful consideration. First, the reliance on the 

mathematical modeling of resource allocation and performance optimization may oversimplify the 

complexities inherent in real-world scenarios, potentially leading to suboptimal outcomes when 

assumptions do not hold in practice. Furthermore, the decentralized nature of clients contributing 

to model updates could exacerbate issues related to data heterogeneity and model convergence, as 

variations in data quality and distribution across clients may impede the effectiveness of the 
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aggregation process. The optimization of communication efficiency, while theoretically appealing, 

introduces challenges in balancing local computation and global communication intervals, which 

could lead to increased latency and diminished client participation. Additionally, managing 

resource constraints effectively is crucial; however, if the predefined limits on allocated resources 

are not accurately aligned with actual usage patterns, this could result in resource underutilization 

or overloading, hindering the overall system performance. Lastly, the privacy assurances provided 

by HFL may be undermined if there are vulnerabilities in the communication channels used for 

transmitting model updates, raising concerns about potential data leakage. Collectively, these 

limitations suggest that while the framework holds significant promise, further empirical validation 

and refinement are essential to address these challenges and enhance its practical applicability. 

6. Conclusion 

This paper introduces Adaptive Hierarchical Federated Learning as a solution to the challenges 

posed by the current centralized nature of cloud-based machine learning. By distributing machine 

learning tasks efficiently across multiple layers of a hierarchical cloud architecture, this approach 

enhances scalability and privacy preservation. The innovative method dynamically adapts to 

varying computational resources within the hierarchical cloud environment, harnessing the power 

of federated learning. Through extensive experiments, the effectiveness and efficiency of Adaptive 

Hierarchical Federated Learning have been demonstrated, showcasing its potential to advance 

cloud computing significantly. Despite its contributions, this approach also has limitations, 

particularly in terms of communication overhead and algorithm complexity. Future work could 

focus on optimizing communication protocols to reduce overhead and streamlining the algorithm 

for better performance. Overall, this research opens up exciting possibilities for improving the 

efficiency and effectiveness of machine learning in cloud environments, laying a solid foundation 

for further exploration and development in this field. 
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