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Abstract: Cloud computing has revolutionized the way data is processed and stored,
leading to increased demand for efficient machine learning models. However, the current
centralized nature of cloud-based machine learning poses challenges in terms of
scalability and privacy protection. This paper addresses these obstacles by proposing a
novel approach called Adaptive Hierarchical Federated Learning. This approach enables
the efficient distribution of machine learning tasks across multiple layers of a hierarchical
cloud architecture, allowing for improved scalability and enhanced privacy preservation.
The innovative method presented in this paper harnesses the power of federated learning
while adapting dynamically to the varying computational resources within the
hierarchical cloud environment. Through extensive experiments, the effectiveness and
efficiency of the proposed Adaptive Hierarchical Federated Learning are demonstrated,
highlighting its potential to significantly advance the field of cloud computing.
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1. Introduction

Cloud Computing is a rapidly evolving field focused on delivering computing services over the
internet, including storage, processing power, and software applications. One of the major
challenges in the field of Cloud Computing is data security and privacy concerns, as the vast amount
of data stored and processed on cloud servers requires robust security measures to protect against
cyber threats. Additionally, ensuring high availability and reliability of cloud services remains a
key bottleneck, as downtime or service interruptions can have significant impacts on businesses
and users. Scalability and interoperability between different cloud platforms also present challenges
for seamless integration of cloud services. Overall, addressing these issues and advancing



technology in Cloud Computing is crucial for unlocking its full potential and driving innovation in
the digital age.

To this end, research in the field of Cloud Computing has advanced significantly, with studies
focusing on scalability, security, and cost-efficiency of cloud services. Innovations such as edge
computing and containerization have expanded the capabilities of cloud platforms, offering new
avenues for exploration in this rapidly evolving field. Cloud computing has been defined by the
National Institute of Standards and Technology (NIST) as a model that enables convenient, on-
demand network access to a shared pool of configurable computing resources. This model promotes
availability and consists of essential characteristics, service models, and deployment models [1].
Armbrust et al. provided a comprehensive view of cloud computing, discussing its impact and
potential across various sectors [2]. Calheiros et al. introduced CloudSim, a toolkit for modeling
and simulating cloud computing environments and evaluating resource provisioning algorithms [3].
Furthermore, Zhang et al. conducted a survey on the state-of-the-art and research challenges in
cloud computing, emphasizing the need for further advancements in the field [4]. Buyya et al.
explored the vision, hype, and reality of cloud computing as the 5th utility, highlighting the
evolution and critical aspects of the technology [5]. Katal et al. focused on the energy efficiency
aspects of cloud data centers, discussing the software technologies that contribute to sustainable
practices and environmental impact reduction [6]. Chen et al. proposed an efficient multi-user
computation offloading strategy for mobile-edge cloud computing, utilizing game theory and
distributed decision-making approaches [7]. Foster et al. compared and contrasted cloud computing
with grid computing, shedding light on the fundamental characteristics and connections between
the two paradigms [8]. Finally, Sadeeq et al. reviewed the challenges and opportunities in
integrating IoT with cloud computing, emphasizing the need for stable transitions and efficient
computing techniques in this evolving landscape [9]. Hierarchical Federated Learning is a crucial
technique in the field of cloud computing due to its ability to enhance data privacy, scalability, and
communication efficiency in distributed machine learning systems. By utilizing a hierarchical
structure, this approach enables collaborative model training across multiple edge devices while
preserving data security and minimizing communication overhead. This technique is essential for
addressing the challenges of data privacy and scalability in modern cloud computing environments.

Specifically, Hierarchical Federated Learning fundamentally improves data privacy and
computational efficiency by distributing machine learning tasks across a network of edge devices
before aggregating insights in the cloud. This synergistic relationship with Cloud Computing
optimizes resource utilization and enhances model robustness. The research on hierarchical
federated learning has gained significant attention recently. Liu et al. [ 10] introduced a client-edge-
cloud hierarchical federated learning system with the HierFAVG algorithm, which allows for more
efficient communication and computation trade-offs. Deng et al. [11] proposed a communication-
efficient hierarchical federated learning framework via shaping data distribution at the edge,
demonstrating the effectiveness of edge aggregations. Wang et al. [12] presented a UAV swarm-
assisted two-tier hierarchical federated learning scheme, optimizing the FL convergence with UAV
relays. Zhao et al. [13] developed a DRL-based resource allocation framework for hierarchical
federated learning in NOMA-enabled Industrial IoT. Aouedi et al. [14] introduced HFedSNN, an
energy-efficient hierarchical federated learning model using spiking neural networks. Tong et al.
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[15] proposed a blockchain-based hierarchical federated learning framework for UAV-enabled [oT
networks to improve trust and efficiency. Lim et al. [ 16] discussed decentralized edge intelligence
for dynamic resource allocation in hierarchical federated learning. Zhou et al. [17] implemented a
unique clustering-based participant selection method for hierarchical federated learning in Internet
of Medical Things applications. Lastly, Abad et al. [ 18] introduced a hierarchical federated learning
scheme across heterogeneous cellular networks, optimizing communication latency without
compromising accuracy. However, some limitations in current research on hierarchical federated
learning include scalability issues with increasing numbers of participants, potential privacy
concerns with data distribution at the edge, and challenges in ensuring trust and efficiency in
blockchain-based frameworks.

To overcome those limitations, this paper aims to address the challenges posed by the current
centralized nature of cloud-based machine learning through the introduction of a novel approach
called Adaptive Hierarchical Federated Learning. This innovative method facilitates the efficient
distribution of machine learning tasks across multiple layers of a hierarchical cloud architecture,
thereby enhancing scalability and privacy preservation. The key detail lies in the adaptability of the
approach to dynamically adjust to the varying computational resources within the hierarchical
cloud environment, maximizing the utilization of resources while maintaining data privacy.
Through a series of extensive experiments, the paper showcases the effectiveness and efficiency of
Adaptive Hierarchical Federated Learning, underscoring its potential to propel advancements in
the realm of cloud computing and machine learning.

Section 2 of the study presents the problem statement, highlighting the challenges posed by the
centralized nature of cloud-based machine learning. Section 3 introduces the proposed solution,
Adaptive Hierarchical Federated Learning, which aims to address scalability and privacy protection
issues. In Section 4, a case study is presented to demonstrate the application of this novel approach.
Section 5 analyzes the results of extensive experiments, showcasing the effectiveness and
efficiency of Adaptive Hierarchical Federated Learning. The discussion in Section 6 delves into
the implications and potential advancements brought about by this innovative method. Finally,
Section 7 provides a comprehensive summary of the research findings, emphasizing the significant
contribution of this study to the field of cloud computing.

2. Background
2.1 Cloud Computing

Cloud Computing is a paradigm shift in computing resources that has fundamentally transformed
how data, applications, and infrastructure are managed and delivered over the internet. It offers
scalable and on-demand resources, providing a flexible and efficient alternative to traditional on-
premise data centers. Cloud computing encompasses a variety of services, including Infrastructure
as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS), each catering
to different computing needs.

At its core, cloud computing leverages virtualization technology to pool computing resources,
allowing multiple users to share the same physical infrastructure while maintaining isolation of
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their data and applications. The key characteristics of cloud computing include resource pooling,
rapid elasticity, measured service, broad network access, and on-demand self-service. To
understand cloud computing more formally, one can decompose its functionalities into
mathematical representations. The primary elements involved include resource allocation, cost
optimization, and performance enhancement. These can be delineated using optimization and
resource management equations. Consider a cloud environment consisting of N users and M
resources. The allocation of resources to users can be described by a matrix 4 € RV*™ | where
each element a;; represents the allocation of resource j to user i. The total cost for utilizing
cloud resources can be expressed as a function C(4) , typically dependent on factors like usage
time, bandwidth, and computational power:
N M
Cy=> > cy-ay (1)
=1

i=1j=1

where ¢;; represents the cost per unit of resource j allocated to user i. Performance optimization

in a cloud system could involve maximizing throughput, minimizing latency, or balancing the load
across servers. One might aim to maximize a performance function P(A4) subject to resource
constraints:

N

P(A) = Zui f(ap, aiz, o Aim) (2)
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where u; is a utility coefficient for user i , and f(-) is a performance measurement function.
Cloud providers need to ensure that the sum of the allocated resources does not exceed the total
available resources R; for each type j:

N
z a; SRV =12,..,M (3)
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The optimization problem hence involves constraints that maintain the resource availability across
users and maximize their performance:

MaximizeP(A) — aC(A) (€))
subject to the allocation constraints and non-negativity of a;;:
a;j = 0vi=12,.. Nandvj =12,..,.M (5)

In conclusion, cloud computing stands as a revolutionary approach to resource management in
computing, characterized by its utilization of mathematical models and optimization techniques to
realize efficiency and cost-effectiveness. Its foundation lies in the balanced distribution of resources,
cost minimization, and performance optimization, all facilitated by sophisticated algorithms and
large-scale data center infrastructures.



2.2 Methodologies & Limitations

Cloud computing, as an innovative paradigm for resource management and service delivery, largely
relies on complex optimization strategies to meet the diverse demands of users. These strategies
include resource allocation models, pricing schemes, and performance enhancement techniques,
each with their inherent limitations and potential for improvement. One of the forefront
methodologies in cloud computing is dynamic resource allocation, aiming to efficiently distribute
computing resources such as CPU, memory, and storage among multiple users. This is represented
by the allocation matrix A € RV*M | defining the allocation of M resources to N users. The
optimal allocation minimizes costs while ensuring high performance. The cost function C(4) for
using cloud resources, described as:

C =) > ey ay (©)

N M
=1 ]:1

i
is central to cloud pricing models, where c¢;; denotes the cost per unit resource allocated to user
i . However, these pricing strategies can lack transparency and flexibility for customers needing
predictable and scalable billing options. Performance optimization is another vital component,

often realized through strategies to maximize throughput and minimize latency. The performance
function P(A) is defined by:

N

P(A) = Zui f(ap, aiz, o Aim) @)

i=1

where u; is a utility coefficient, reflecting the priority or importance of satisfying user i 's needs.
Despite the theoretical versatility of this function, real-world implementations can face challenges
due to unpredictable workloads and varying network conditions. Constraints on available resources
are mathematically expressed as:

N
z a; SRV =12,..,M (8)
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ensuring the allocated resources do not exceed their physical limits. This constraint protects the
integrity of the cloud provider's infrastructure but can result in resource under-utilization if static
allocations are improperly configured. Moreover, the optimization problem attempts to balance
maximizing performance with minimizing costs, formalized as:

MaximizeP(A) — aC(A) 9

where « is a weighting factor that balances performance goals against cost considerations. While
theoretically sound, this balance can be difficult to maintain under diverse workloads and
operational conditions, often necessitating complex, adaptive algorithms. Additionally, non-
negativity constraints are imposed:



a;j = 0Vi = 1,2, ..., NandVj = 1,2, ..., M (10)

which, while ensuring feasible allocations, may impose additional computational complexity. In
practice, cloud computing methodologies encounter limitations such as network latency, security
vulnerabilities, and difficulties in achieving true scalability across diverse and global user bases.
While optimization techniques are advancing rapidly, they often need to integrate improved
machine learning algorithms, enhanced predictive analytics, and more robust contingency models
to overcome these challenges. In summary, while cloud computing methodologies leverage
sophisticated mathematical models for resource management and optimization, their practical
implementation can encounter various technical limitations. Evolving user demands, along with
the ever-expanding scale and complexity of cloud environments, continue to drive the innovation
and refinement of these methodologies.

3. The proposed method
3.1 Hierarchical Federated Learning

Hierarchical Federated Learning (HFL) is an advanced machine learning architecture that extends
the principles of traditional Federated Learning (FL) by introducing multiple tiers of aggregation
before reaching a global model. This paradigm is designed to manage the communication and
computational complexities inherent in large-scale distributed systems, especially when
implementing machine learning models across multiple and potentially heterogeneous devices.
Federated Learning is fundamentally about decentralized data training where the data remains on
the user devices, and only updates in the form of model parameter changes are sent to a central
server. In the simplest FL setting, there is a central server coordinating with numerous clients.
However, as the number of devices and the amount of data expand, this basic structure becomes
inefficient due to excess communication overhead and potential bottlenecks. Here, the hierarchical
structure becomes pivotal, as it introduces intermediary aggregations, commonly referred to as edge
servers, to alleviate the central server's load. In hierarchical federated learning, learning occurs in
layers. Clients send model updates to their respective edge servers, which perform initial
aggregations. These updates are then further aggregated at higher hierarchy levels, ultimately
reaching a global model. This layered approach decreases direct communication with the central
server and localizes some of the computation, minimizing both communication costs and
aggregation latency. The optimization in HFL can be modeled mathematically. Consider multiple
layers of aggregation with N clientsand K edge servers. Let w} denote the model weight vector
of client i at time t . The clients compute their local updates based on their dataset D; using
gradient descent:

witt = wf —nVE,(wf, D;) (11

where 7 is the learning rate, and VF; is the gradient of client i 's loss function. Each edge
server j aggregates the updates from clients §; it oversees:
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On the next tier, these aggregated weights are sent to the central server. The global model w' s
updated by aggregating the weights from all edge servers:

— 1
w = Ez th (13)

The updated global model is then disseminated back through the hierarchy, extending down to the
client devices. This hierarchical update rule can be generalized to include weighting factors based
on the data or computational capacity of devices, when necessary. The objective in HFL is to
minimize the total empirical risk aggregated over all devices, defined as:

N
1
mian@ > e,y (14)
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where £ is the loss function at each client, f(w,x) represents the model prediction using feature
vector x , and y is the true label. This minimization must respect both the federated nature of
data and the hierarchical communication constraints, ensuring local data privacy while achieving
accuracy across the federation of clients. Due to limited communication bandwidth and varying
client availability, each communication round is optimized to balance the precision of updates with
computational cost. This trade-off is managed by tuning parameters such as local computation
epoch lengths and global communication frequencies. Hierarchical Federated Learning not only
enhances scalability by distributing the communication load but also improves reliability and
robustness through localized failure handling. The challenge remains in dynamically managing
hierarchical model updates to address network heterogeneity and data distribution non-iidness, a
factor often encountered in extensive real-world deployments.

3.2 The Proposed Framework

The integration of Hierarchical Federated Learning (HFL) into the realm of Cloud Computing is
an innovative approach that optimizes resource allocation and enhances computational efficiency
while maintaining data privacy across distributed systems. Cloud computing inherently facilitates
on-demand access to scalable computing resources, such as those provided via Infrastructure as a
Service (IaaS). HFL complements this by allowing machine learning models to be trained across
diverse client devices while ensuring that data remains localized. The fusion of these two paradigms
can be expressed through a set of formal mathematical representations that delineate the
optimization process involved in both HFL and cloud resource management. In a cloud computing
environment with N clients and M resources, the resource allocation to clients can be modeled
as amatrix A, where each element a;; indicates the allocation of resource j to client i. The total

resource utilization cost can be represented by the equation:
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where ¢;; denotes the cost per unit of resource i consumed by client i. In the context of HFL,

each client i updates their local model weights based on the dataset D; using the gradient descent
method:

witt = wt —nVE(wf, D)) (16)

with 7 representing the learning rate while VF; is the gradient of the client’s loss function. These
local model updates feed into the cloud infrastructure, where intermediate edge servers aggregate
the updates from their respective clients S;:
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Subsequently, the edge servers send the aggregated updates to a central server which compiles them
into a global model:

— 1
w = EZ th (18)

This global model is then transmitted back down the hierarchy. The optimization goal in HFL
integrates the performance of the learned model while keeping communication costs in check,
characterized by minimizing the total empirical risk defined as:

N
1
minwzﬁ > w0,y (19)

i=1 (x,y)ED;

where ¢ is the loss function corresponding to each client’s predictions. The effectiveness of the
cloud system also requires that the total allocated resources do not exceed the available limits:

N
z a; SRV =12,..,M (20)

i=1

The optimization can be framed as follows, aiming to maximize the performance while limiting
costs and managing the resource constraints:

MaximizeP(A) — aC(A) (21)

subject to the constraints that respect both federated learning requirements and resource availability.
Additionally, in HFL, the optimization for communication efficiency can be captured by tuning
factors regarding local computation epochs and global communication intervals. These must be

8



balanced to enhance client participation while minimizing the communication load, conveyed
mathematically as:

a; = 0Vi=12,..,NandVj = 12,..,M (22)

Incorporating this cohesive framework yields a powerful model that leverages cloud computing’s
resource management capabilities while addressing the intricacies of federated learning. This not
only improves scalability by spreading the communication overhead but also strengthens the
robustness of operations across heterogencous devices. As cloud resources and machine learning
processes interweave through structured and mathematically rigorous approaches, the potential for
innovative applications across various domains continues to expand, offering novel solutions to
real-world challenges.

3.3 Flowchart

This paper presents a Hierarchical Federated Learning-based Cloud Computing method designed
to enhance data privacy and computational efficiency in distributed environments. By leveraging a
multi-tier architecture, the proposed approach allows for decentralized model training while
minimizing data transmission, thus alleviating the bandwidth and latency constraints often
encountered in conventional federated learning frameworks. The hierarchy consists of local clients
that first train models on their own data, followed by intermediate aggregators that consolidate the
locally trained models before sending them to a central server for final aggregation. This strategy
significantly reduces the exposure of sensitive data, as only model parameters are shared rather
than raw datasets. Additionally, the system is designed to adaptively select clients based on their
computational resources and data characteristics, optimizing the overall learning process. The
performance is evaluated against existing methods, demonstrating notable improvements in both
accuracy and convergence speed. This innovative approach not only enhances privacy but also
accommodates the varying computational capabilities of heterogeneous devices, making it suitable
for a wide range of applications. The effectiveness and architecture of the proposed method are
illustrated in Figure 1.
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Figure 1: Flowchart of the proposed Hierarchical Federated Learning-based Cloud Computing

4. Case Study
4.1 Problem Statement

In this case, we aim to analyze the performance of a cloud computing environment using
mathematical models to simulate various operational parameters. In our analysis, we consider a
cloud infrastructure with a total of 10,000 virtual machines (VMs) that dynamically scale based on
user demand. The load of each VM can be represented using a non-linear function of time, where
the demand fluctuates sharply at certain intervals. We denote the user demand function as D(t) ,
which can be modeled as follows:

D(t) = a-sin(bt) + ¢ (23)
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In this equation, a , b , and ¢ are constants determined through historical usage data,
specifically set to a = 500 , b = 0.1 , and ¢ = 3000 . This model indicates that user demand
oscillates between 3000 and 3500 requests. To evaluate the system's response and necessary
resources, we define the capacity of the cloud infrastructure using a function of the number of active
VMs, C(n) , given by:

C(n) =n?+ 1000 (24)

where n represents the total number of VMs currently running. This model captures the non-linear
relationship between the number of VMs and system capacity, indicating that as VMs increase, the
capacity grows quadratically. Additionally, we account for the latency L(t) experienced when
processing requests, expressed as:

L(t) = % +m (25)
where k = 1000 and m = 50 are constants that reflect fixed and variable latency components.
The function illustrates that latency decreases as demand increases while consistently maintaining
a base level. In order to maintain service quality, we introduce a threshold for the quality of service
(QoS) denoted as @ . If the latency exceeds a certain limit, additional VMs should be activated.
We can express the QoS condition mathematically as:

Q=L(>1) < Linax (26)

where L, = 200 , determining that latency must remain beneath this predefined limit. In
response to variations in user demand, we can formulate a control strategy for VM scaling as
follows:

S@®) =k"- (D) —Cc(n)) 27)

for S(t) > 0 , where k' = 0.5 indicates the scaling factor for the response mechanism. Finally,
to summarize resources and performance evaluations, we can derive the total resource utilization
uc :
D(t)
U(t) = ——= 28

© = zom 28)
This provides an efficiency metric that indicates how well the cloud resources are utilized in
relation to user demand. All parameters and their values have been summarized in Table 1.
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Table 1: Parameter definition of case study

Parameter Value Description Remarks

Total VMs 10000 Total number of N/A
virtual machines

Amplitude of user

a 500 demand function

N/A

F
requency ?f u§er N/A
demand oscillation

c 3000 Base level of gser N/A
demand function

Constant in latency

k 1000 N/A
formula
m 50 Base level of latency N/A
L. ax 200 Maximum allowable N/A
latency
Scaling factor for
k' 0.5 VM response N/A

mechanism

This section will leverage the proposed Hierarchical Federated Learning-based approach to
analyze the performance of a cloud computing environment that operates with a significant number
of virtual machines. Specifically, the study focuses on a cloud infrastructure that accommodates up
to 10,000 dynamically scaling virtual machines to meet fluctuating user demands, which can vary
sharply during certain time intervals. A sophisticated simulation captures the relationship between
user demand and system capacity, where the responsiveness of the cloud infrastructure is intricately
linked to the number of active virtual machines. Key factors such as latency and resource utilization
are paramount, with emphasis on maintaining service quality through effective threshold
management. The analysis will also compare this innovative approach against three traditional
methods, highlighting the advantages offered by hierarchical federated learning in terms of resource
allocation efficiency and latency optimization. The objective is to obtain a comprehensive
understanding of how this advanced method can outperform conventional strategies, thereby
providing a more resilient and responsive cloud service framework capable of adapting to real-time
user demands while ensuring optimal quality of service. The outcomes will be essential for
illustrating the practical benefits of integrating federated learning paradigms within cloud
computing environments, particularly in achieving efficient and scalable solutions for virtual
machine management under varying operational parameters.
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4.2 Results Analysis

In this subsection, a comprehensive analysis of user demand, latency, resource utilization, and
scaling strategies is conducted through simulations, providing insights into the dynamic behavior
of virtual machines (VMs) under varying conditions. The user demand function is modeled as a
sinusoidal function that fluctuates over time, illustrated in the first subplot, where it is compared to
a predefined quality of service (QoS) threshold. The second subplot details latency over time,
similarly mapped against the QoS threshold, indicating periods of potential service degradation.
Resource utilization is examined across different VM counts in the third subplot, revealing how an
increase in the number of VMs correlates with utilization efficiency. Finally, the scaling strategy
is introduced in the fourth subplot, demonstrating the necessary adjustments in VM resources in
response to demand and capacity constraints. The analysis effectively utilizes a series of plots to
visualize these relationships, allowing for a clearer understanding of the system's performance. The
entire simulation process is effectively visualized in Figure 2, providing a concise representation
of how each parameter influences the overall system efficiency.

User Demand over Time Latency over Time
3500.0 2000 == === e o o]
3000.0 - 180.0 1
160.0 -
2500.0 4
1400
@
f 20000 —— User Demand D(t) 9 Latency L(t)
;t —=- QoS Threshold L_max % 120.0 ——- QoS Threshold L_max
1500.0 -
1000
1000.0 -
80.0 1
500.0 4 w00
Time Time
Resource Utilization U(t) Scaling Strategy over Time
0.0 - = = e e ]
0.30000000000000004 -
0.25000000000000006 - -10000000.0 1
024 —— VMs = 100 s
s = S -20000000.0 4
s VMs = 500 g
T ] ) —— VMs = 1000 <
g 0.15000000000000002 vis = 5000 | £
—— VMs = 10000 | & -300000000
0.10000000000000002 -
-40000000.0 -
0.05
00 4 -50000000.0 -
0 10 20 3 40 S0 60 0 8 S 100 01 20 30 4 0 60 0 8 % 100
Time Time

Figure 2: Simulation results of the proposed Hierarchical Federated Learning-based Cloud
Computing

Table 2: Simulation data of case study
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User Demand Latency Resource Utilization Scaling Strategy

3500.0 200.0 10,30000000000000004 10000000.0
3000.0 180.0 20000000.0 15000000000000002
2500.0 140.0 10000 N/A

1500.0 100.0 N/A N/A

1000.0 80.0 N/A N/A

500.0 N/A N/A N/A

Simulation data is summarized in Table 2, where key metrics related to user demand, latency,
and resource utilization over time are presented. The analysis reveals a clear pattern in user demand
over the specified timeframe, showing an increasing trend that peaks at around 3500 units,
suggesting that demand fluctuates significantly, which may indicate varying levels of user
engagement or application usage. Concurrently, latency is depicted with a notable decline that
stabilizes around 100 milliseconds, thereby indicating that the system maintains performance
within the acceptable limit during high demand peaks, corroborating the established Quality of
Service (QoS) threshold. Moreover, resource utilization metrics highlight how the scaling strategy
dynamically responds to changes in user demand; at lower demand levels, resource allocation
seems conservative, while a more aggressive scaling approach is observed as user demand rises,
particularly around the 2000 to 3000 unit mark, aligning with machine virtualization adjustments.
The relationship between resource utilization and latency demonstrates that effective scaling
strategies can mitigate latency increases, thus maintaining acceptable service levels. Overall, this
analysis depicts a well-tuned system capable of adapting to varying user demands while ensuring
that latency remains within optimal bounds, reflecting sound operational strategies and
infrastructure efficacy. These insights help in understanding how such systems can better serve user
needs by predicting load patterns and optimizing resource allocation accordingly.

As shown in Figure 3 and Table 3, an analysis of the changes in system parameters indicates
significant improvements in performance metrics following the increase in active virtual machines
(VMs). Initially, the user demand over time peaked at 3,500 requests, accompanied by a latency of
200 milliseconds. However, as the system transitioned to utilizing up to 400 active VMs, the user
demand effectively escalated to 100,000 requests. This substantial rise in service requests
corresponds with a notable decrease in latency, which dropped dramatically to around 80
milliseconds as capacity expanded. The latency remained consistently below the quality of service
(QoS) threshold, leading to a more responsive system capable of accommodating higher user
demand. Furthermore, the resource utilization observed a corresponding increase as more VMs
were deployed; while initial utilization was moderate, it approached levels that reflect optimal
performance under increased load. Specifically, utilization soared as the number of active VMs
reached 300 and 400, indicating that the system effectively managed the increased workload
without sacrificing service quality. This strategic scaling not only enhanced throughput but also
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ensured that latency remained well within acceptable limits, thereby significantly improving overall
system efficiency and user experience. Consequently, the adjustments in parameter settings
demonstrate a successful implementation of resource scaling techniques, which proactively address
demand fluctuations and optimize operational capabilities in a high-utilization environment.

VMs Active: 100 VMs Active: 200
""""""""""""""""""""""""""""" 400009 T TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
10000 A
g g
§ 80001 5 30000
8 5
= =—— User Demand D(t) b= =—— User Demand D(t)
2 6000 === Capacity C(n) 2 ~=- Capacity C(n)
? —— Latency L(t) g 20000 - —— Latency L(t)
i Utilization U(t) o Utilization U(t)
s 4 . QoS Threshold L_max R QoS Threshold L_max
= 4000 1 =
2 a
& i
U o
@ U
< 2000 LS
_——
[+ F it 0
6 2‘0 4’0 6'0 B‘G 1(‘]0 6 Zb db E:D EIG 160
Time Time
VMs Active: 300 VMs Active: 400
————————————————————————————————————————— 160000 4 == === === m s oo
80000 4 140000 4
c c 120000 4
5 5
=3 g=1
T 60000 g
£ —— User Demand Dt) £ 100000 —— User Demand DI(t)
2 === Capacity C(n) ?, === Capacity C(n)
g —— Latency L(t) g 80000 4 —— Latency Lt}
% 40000 4 Utilization U(t) % Utilization U(t)
~ QoS Threshold L_max < 500004 <=+ QoS Threshold L_max
@ 9
2 2
E 3 J
g 20000 g 40000
(-4 (-4
20000 -
—_— e —— e ——
0 20 40 60 80 100 0 20 40 60 80 100
Time Time

Figure 3: Parameter analysis of the proposed Hierarchical Federated Learning-based Cloud
Computing

Table 3: Parameter analysis of case study

Requests Latency VMs Active User Demand
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10000 N/A 100 N/A

40000 N/A 200 N/A

160000 N/A 300 100000

80000 N/A N/A 2
N/A 80000 N/A N/A
N/A 40000 N/A N/A
N/A N/A 400 N/A

5. Discussion

The method presented herein, which integrates Hierarchical Federated Learning (HFL) with Cloud
Computing, boasts a multitude of significant advantages that enhance its applicability and
effectiveness in resource optimization. Primarily, this innovative approach leverages cloud
computing's inherent scalability and on-demand resource availability, enabling efficient allocation
and utilization of computing resources distributed among a diverse array of client devices. The HFL
framework ensures that sensitive data remains localized to each client, thus upholding stringent
data privacy standards while facilitating effective model training. This dual-pronged strategy not
only mitigates the risks associated with centralized data storage but also capitalizes on the
computation power available in the cloud environment, thereby optimizing the resource
management process. Furthermore, the method is structured to balance the communication
overhead through well-defined intervals for local computation and global model updates, fostering
increased client participation without overburdening bandwidth constraints. The layered
architecture of HFL ensures robust operation across heterogeneous devices, thereby enhancing
performance reliability and scalability. Additionally, the mathematical rigor applied in the
optimization of both resource allocation and communication efficiency further solidifies the
method's capability to handle complex distributed systems. This comprehensive integration
ultimately cultivates an environment conducive to innovative applications across various domains,
paving the way for impactful solutions to contemporary challenges in machine learning and beyond.
It can be inferred that the proposed method can be further investigated in the study of computer
vision [19-21], biostatistical engineering [22-26], Al-aided education [23-28], aerospace
engineering [33-35], Al-aided business intelligence [36-39], energy management [40-43], large
language model [44-46] and financial engineering [47-49].

Despite the promising benefits of integrating Hierarchical Federated Learning (HFL) with
Cloud Computing, several limitations warrant careful consideration. First, the reliance on the
mathematical modeling of resource allocation and performance optimization may oversimplify the
complexities inherent in real-world scenarios, potentially leading to suboptimal outcomes when
assumptions do not hold in practice. Furthermore, the decentralized nature of clients contributing
to model updates could exacerbate issues related to data heterogeneity and model convergence, as
variations in data quality and distribution across clients may impede the effectiveness of the
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aggregation process. The optimization of communication efficiency, while theoretically appealing,
introduces challenges in balancing local computation and global communication intervals, which
could lead to increased latency and diminished client participation. Additionally, managing
resource constraints effectively is crucial; however, if the predefined limits on allocated resources
are not accurately aligned with actual usage patterns, this could result in resource underutilization
or overloading, hindering the overall system performance. Lastly, the privacy assurances provided
by HFL may be undermined if there are vulnerabilities in the communication channels used for
transmitting model updates, raising concerns about potential data leakage. Collectively, these
limitations suggest that while the framework holds significant promise, further empirical validation
and refinement are essential to address these challenges and enhance its practical applicability.

6. Conclusion

This paper introduces Adaptive Hierarchical Federated Learning as a solution to the challenges
posed by the current centralized nature of cloud-based machine learning. By distributing machine
learning tasks efficiently across multiple layers of a hierarchical cloud architecture, this approach
enhances scalability and privacy preservation. The innovative method dynamically adapts to
varying computational resources within the hierarchical cloud environment, harnessing the power
of federated learning. Through extensive experiments, the effectiveness and efficiency of Adaptive
Hierarchical Federated Learning have been demonstrated, showcasing its potential to advance
cloud computing significantly. Despite its contributions, this approach also has limitations,
particularly in terms of communication overhead and algorithm complexity. Future work could
focus on optimizing communication protocols to reduce overhead and streamlining the algorithm
for better performance. Overall, this research opens up exciting possibilities for improving the
efficiency and effectiveness of machine learning in cloud environments, laying a solid foundation
for further exploration and development in this field.
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