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Abstract: Autonomous resource management in cloud computing is crucial for
optimizing performance and resource utilization. Current research primarily focuses on
supervised learning techniques, which require labeled data and manual intervention.
However, unsupervised learning methods have the potential to autonomously adapt to
dynamic cloud environments without the need for prior training data. In this context, this
paper proposes a novel approach utilizing DBSCAN-based unsupervised learning for
autonomous cloud resource management. This innovative method aims to cluster cloud
resources based on their utilization patterns, enabling proactive resource allocation and
dynamic scaling. By leveraging unsupervised learning, our approach addresses the
challenges of scalability and real-time resource management in cloud environments,
contributing to the advancement of autonomous cloud computing systems.
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1. Introduction

Autonomous Cloud Resource Management is a research field dedicated to developing automated
systems and algorithms for optimizing resource allocation in cloud computing environments
without human intervention. Current challenges and bottlenecks in this area include the complexity
of cloud infrastructures, the dynamic nature of workloads, the need for real-time decision-making,
the security and privacy concerns associated with autonomous systems, and the lack of standardized
approaches for autonomous resource management. Researchers in this field are actively working
to overcome these obstacles through innovations in machine learning, artificial intelligence,
decentralized systems, and policy-based management strategies to achieve more efficient, cost-
effective, and reliable cloud resource management solutions.



To this end, research on Autonomous Cloud Resource Management has advanced to the stage
where machine learning algorithms and Al techniques are being integrated to optimize resource
allocation, enhance scalability, and improve efficiency in cloud computing environments. In the
literature review, there are several key studies discussing different aspects of cloud resource
management. Zaker et al. [1] proposed a formally verified scalable look ahead planning for cloud
resource management, demonstrating the elasticity and flexibility of their autonomic manager in
various cloud applications. Cho and Baffier [2] introduced an autonomous resource management
model for edge clouds, focusing on resource allocation based on load and cost functions. Xia [3]
designed a cloud-based human resource management model using big data technology to enhance
HR functions such as recruitment and performance evaluation. Dong [4] presented an agent-based
cloud simulation model for resource management, evaluating resource allocation strategies and
their impact on energy consumption and resource utilization in heterogeneous clouds. Bucur and
Miclea [5] discussed multi-cloud resource management techniques for cyber-physical systems,
emphasizing the importance of managing resources for complex software projects like autonomous
vehicles. Xiu et al. [6] proposed a task-driven computing offloading and resource allocation scheme
for maritime autonomous surface ships, highlighting the importance of efficient resource allocation
in a cloud—shore—ship collaboration framework. Hasan et al. [7] addressed computational
offloading and resource management in vehicular edge computing, focusing on federated learning
for better resource utilization while maintaining security and privacy. Lastly, Liu et al. [§]
developed a data-connector framework for autonomous smart management in the cloud-edge
continuum, showcasing the benefits of ML-based decision-making for resource adaptation
scenarios. These studies collectively contribute to the advancement of cloud resource management
through innovative models, algorithms, and frameworks. DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) is a popular clustering algorithm in data mining for its
ability to effectively identify clusters of varying shapes and sizes, especially in noisy and large
datasets. This technique is preferred in cloud resource management studies to efficiently group
resources based on their proximity and density, enabling better resource allocation strategies and
optimizing energy consumption. Its adaptability to different data distributions and robustness
against outliers make DBSCAN a valuable tool for improving resource utilization and performance
in complex cloud environments.

Specifically, DBSCAN, as a clustering algorithm, plays a crucial role in Autonomous Cloud
Resource Management by efficiently identifying groups of cloud resources based on their
similarities. This enables automated resource allocation and optimization strategies to enhance
cloud system performance and scalability. The literature review on DBSCAN clustering algorithms
provides insights into various advancements in the field. DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) is a crucial algorithm for unsupervised machine learning
due to its capability to cluster datasets with different densities, shapes, and sizes, without requiring
the predefined number of clusters [9]. An improved version, Enhanced DBSCAN-based Histogram
(EDBSCAN-H), addresses challenges of DBSCAN in processing satellite images by incorporating
a histogram-based approach [10]. Additionally, researchers have explored variations like
MDBSCAN, a multi-density DBSCAN based on relative density, and DBSCAN Revisited,
Revisited, which aim to enhance the performance of the original algorithm [11] [12]. Furthermore,
new approaches like Block-Diagonal Guided DBSCAN Clustering leverage the block-diagonal
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property of similarity graphs to improve clustering outcomes, and Anomaly Detection Based on
GCNs and DBSCAN combines Graph Convolutional Networks with DBSCAN for efficient
anomaly detection on graphs [13] [14]. Finally, a survey of DBSCAN clustering algorithms for big
data highlights the advancements and provides a comprehensive comparison among the algorithms
[15,16]. However, current limitations in DBSCAN clustering algorithms include scalability issues
with large datasets, sensitivity to parameter settings, and challenges in handling high-dimensional
data effectively.

To overcome those limitations, this paper aims to explore and develop a novel approach to
autonomous resource management in cloud computing by utilizing DBSCAN-based unsupervised
learning techniques. The primary objective of this research is to address the challenges of scalability
and real-time resource management in dynamic cloud environments without the need for labeled
data or manual intervention. By focusing on unsupervised learning methods, this approach seeks to
autonomously adapt to changing cloud conditions and optimize performance and resource
utilization. The proposed method involves clustering cloud resources based on their utilization
patterns, enabling proactive resource allocation and dynamic scaling. By leveraging the capabilities
of unsupervised learning, the approach aims to contribute to the advancement of autonomous cloud
computing systems by offering a more flexible and efficient resource management solution. This
research highlights the potential for unsupervised learning techniques to enhance the autonomy and
adaptability of cloud computing systems, ultimately improving overall performance and resource
utilization in cloud environments.

Section 2 of this study presents the problem statement focusing on autonomous resource
management in cloud computing to optimize performance and resource utilization. In Section 3,
the proposed method is introduced, highlighting the utilization of DBSCAN-based unsupervised
learning for autonomous cloud resource management. Section 4 delves into a detailed case study,
showcasing the application and efficacy of the novel approach. Analysis of results in Section 5
demonstrates the benefits of utilizing unsupervised learning methods in dynamic cloud
environments. Section 6 engages in a discussion addressing scalability and real-time resource
management challenges. Finally, Section 7 concludes the study, emphasizing the contribution of
the innovative approach to advancing autonomous cloud computing systems through proactive
resource allocation and dynamic scaling based on utilization patterns.

2. Background
2.1 Autonomous Cloud Resource Management

Autonomous Cloud Resource Management (ACRM) refers to the self-directed oversight of
computing resources in a cloud environment. It leverages a set of intelligent strategies to
dynamically allocate, optimize, and manage resources such as CPU, memory, storage, and network
bandwidth. The aim is to achieve performance goals while minimizing costs and meeting Service
Level Agreements (SLAs). At its core, ACRM involves a decision-making process that relies on
real-time monitoring and predictive models. These models allow the system to anticipate demand
and adapt resource allocation without human intervention. A fundamental concept underpinning
ACRM is the notion of elasticity, which involves scaling resources up and down based on workload
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demands. A central challenge in ACRM is optimally determining the quantity of resources r(t)
allocated at a given time t . This can be mathematically expressed as:

r(t) = argmin,, (C(r¢) + P(ry, d)) (1)

where C(r;) represents the cost function associated with the resources, and P(ry, d;) is a penalty
function tied to demand d; and allocation 7, . The penalty function encompasses SLA violations
or performance degradations that might occur if resources are improperly managed. To anticipate
future resource needs, ACRM employs predictive analytics. A common approach is the use of time-
series forecasting methods, such as ARIMA or machine learning models like recurrent neural

networks (RNNs). The predicted demand d(t + k) for a future time period t+ k can be
expressed as:

d(t+k) = f(d(t—1),..,d(D) (2)

where f denotes the forecasting function based on past observations. To measure the efficiency
of resource allocation, utility functions are often implemented. A typical utility function U (r¢,d;)
considers both performance and cost:

U(re, de) = wy - S(rg, de) —wy - C(1) 3)

where S(ry,d;) is a satisfaction function measuring SLA fulfillment, C(r;) is the cost function
as earlier defined, and w; , w, are weighting factors balancing the two objectives. Resource
optimization in ACRM can be represented by a constrained optimization problem aiming to
maximize utility while ensuring constraints such as budget or capacity are respected:

max,, U(r, d)subject to:Tmin < 7t < Tinax 4)

where Ty,i, and 7y, define the minimum and maximum bounds of resource allocation.
Moreover, scheduling techniques play a pivotal role in ACRM, where tasks are assigned to
resources to optimize performance indices. The scheduling problem can be formulated as follows:

n

min,; Z L (ft(i), d(i)) (5)

i=1

where m is a scheduling policy, n the number of tasks, ft(i) the finish time, and d® the
deadline for task i . The loss term L quantifies the deviation from task deadlines. Finally, the
incorporation of feedback loops is vital in ACRM systems. Through continuous monitoring, the
system self-adjusts by learning from past experiences, reducing errors, and adapting to unforeseen
changes in demand. A feedback function can be denoted as:

Tty =Tt a-(de—1) (6)

where «a is a learning rate indicating the adjustment magnitude based on observed deviation. In
conclusion, ACRM represents a sophisticated area of research integrating machine learning,
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optimization theory, and systems engineering to autonomously manage cloud resources in an
efficient and cost-effective manner.

2.2 Methodologies & Limitations

Autonomous Cloud Resource Management (ACRM) leverages several contemporary
methodologies for resource allocation, predictive management, and optimization. Nevertheless,
while these approaches significantly enhance efficiency, they present inherent challenges. One
prominent technique in ACRM is the application of machine learning models, especially
reinforcement learning, to guide autonomous decisions. In reinforcement learning, the cloud
environment is modeled as a Markov Decision Process (MDP), where the agent (the ACRM system)
aims to learn an optimal policy that maximizes cumulative reward. The reward function R(s;, a;)
is linked to the state s, of the environment and the action a; taken, commonly related to cost
efficiency and SLA adherence:

R(sp,ap) = UQre, dy) — A -V (e, dy) @)

Here, U(r:, d;) isthe utility function, and V(ry, d;) represents a penalty for SLA violations, with
A being a trade-off parameter. Despite the efficacy of these models, a significant deficiency is the
requirement for vast computational resources and data for training, which is not always feasible.
Moreover, exploration in reinforcement learning might lead to suboptimal resource allocation
during early stages, affecting performance. A prevalent approach to handle dynamic resource
allocation is Linear Programming (LP) or Integer Programming (IP). These methods formulate the
problem as an optimization model:

min C(r;) + P(r;, d;) (8)

subject to capacity and SLA constraints. While LP/IP are computationally efficient for real-time
applications, they assume linear relationships and discrete decisions, potentially oversimplifying
the complexity of cloud environments. To bridge prediction inaccuracies, time-series forecasting
techniques like ARIMA (AutoRegressive Integrated Moving Average) and more complex methods
like LSTMs (Long Short-Term Memory networks) are employed. The accuracy of such predictions
is critical:

D
d(t+k)=z¢id(t—i)+et 9)
i=1

where ¢; are the AR parameters, p is the number of lag observations, and €; denotes noise.
Although these models capture temporal dependencies, their performance heavily depends on
historical data quality and may not adapt swiftly to abrupt changes. Another strategic element is
multi-objective optimization, which considers multiple criteria like cost, latency, and energy
efficiency. The Pareto front is a popular solution technique:

min (C(r), E(ry), L(ry)) (10)



The introduction of multi-objective optimization necessitates complex decision-making
frameworks, possibly increasing computational overhead and decision latency. Feedback control
systems are crucial in ACRM to maintain system stability. A basic proportional feedback
mechanism is illustrated through:

Tep1 =1 Ky (de — 1) (11)

where K, is the proportional gain. Although feedback control can enhance responsiveness, it risks
overshooting and oscillations if not carefully tuned, thereby complicating the balancing act between
response speed and system stability. Furthermore, ACRM systems often rely on heuristic
algorithms like Genetic Algorithms or Ant Colony Optimization for scheduling and load balancing:

n
max Z w@) - Aat® (12)
i=1

with W (i) as task weights and At as processing time differentials. Despite providing near-
optimal solutions, these heuristics may lack the rigor of conventional optimization methods, leading
to efficiency compromises under different scenarios. Overall, while current methodologies in
ACRM offer robust solutions, their effectiveness is contingent on continuous adaptation to
emerging technological landscapes and evolving computational challenges. Addressing these
limitations will require ongoing research and development to refine models, optimize algorithms,
and enhance system responsiveness.

3. The proposed method
3.1 DBSCAN

DBSCAN, or Density-Based Spatial Clustering of Applications with Noise, is an unsupervised
machine learning algorithm inherently designed to identify clusters of varying shapes and sizes in
data characterized by noise. Unlike other clustering algorithms such as K-means, which partition
data into a predetermined number of clusters, DBSCAN offers a more flexible approach by
identifying regions densely packed with data points separated by regions of lower density. This
characteristic endows DBSCAN with an advantageous versatility in cluster detection within
complex datasets, expanding its utility across diverse domains. The algorithm operates based on
two key parameters: € (eps), specifying the maximum radius of the neighborhood around a point,
and minPts , denoting the minimum number of points required to form a dense region. Central
to DBSCAN's methodology is the notion of “density reachability” and “density connectivity.”
Density reachability implies a point is reachable from another given enough density connectivity,
which is established through a shared chain of neighboring points. Mathematically, DBSCAN can
be formalized considering a dataset D composed of n points. The € -neighborhood of a point
p in D is denoted as:

N.(p) = q € D | distance(p,q) < € (13)

where distance is typically measured using Euclidean distance, though other distance metrics are

applicable depending on the data nature. For a point p , if |N.(p)| = minPts , p isregarded as
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a core point. The process of forming clusters begins with identifying these core points as they are
the nucleus around which other points congregate. Non-core points, which form the border of a
cluster, adhere to at least one core point. Points are grouped when one point is density-reachable
from another. Hence, if there exists a sequence pq,py, ...,Px With p; = p and p, = q where
each p;yq is in N(p;) for all i , q is density-reachable from p . This property ensures
clusters are connected within their bounds. The notion of density connectivity further extends that
if point a is density-connected to b , and b is density-connected to ¢ , then a is density-
reachable from c, explained as:

Va, b, c: (density-reachable(a, b) A density-reachable(b, ¢)) = density-reachable(a,c) (14)

DBSCAN performs clustering effectively by iteratively progressing through each point p € D
identifying the connected components of dense regions as clusters. A point is labeled as noise, or
an outlier, if it fails to achieve membership status across any established dense region. The
Euclidean distance metric frequently used is defined by:

distance(p, q) = (15)

where m represents the dimensionality of the data points. Moreover, the adjustable parameters €
and minPts play critical roles in determining cluster granularity, as they filter out noise and
delineate cluster boundaries. A smaller € could yield many small clusters, while a larger value
might merge data points into fewer, larger clusters:

C(e,minPts) = c | |c| = minPts AVp € ¢, |N.(p)| = minPts (16)

Despite its robustness, DBSCAN assumes relatively stable density across clusters, which may
compromise accuracy in datasets with varying density. Additionally, defining an optimal €
remains a challenge, often requiring heuristic tuning or domain expertise to ensure that noise points
are not mistakenly included in clusters. The precision and reliability of DBSCAN's clustering hinge
significantly on accurate calibration of its parameters in congruence with dataset characteristics,
paving a path for expansive application while underscoring the ongoing pursuit for enhanced
adaptive clustering strategies.

3.2 The Proposed Framework

In the context of Autonomous Cloud Resource Management (ACRM), the integration of the
DBSCAN clustering algorithm provides a robust mechanism for enhancing resource allocation
strategies based on dynamically evolving demand patterns. ACRM, which autonomously oversees
cloud computing resources, requires not only accurate predictive analytics but also effective
clustering techniques to identify patterns that can inform resource allocation decisions in real-time.
DBSCAN, with its density-based approach, allows for the identification of various resource
utilization patterns in the cloud environment. By clustering historical resource usage data, ACRM
can efficiently categorize workloads into densely populated regions, thus enabling optimal resource
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allocation tailored to specific application demands. The core density parameters of DBSCAN,
namely € (the neighborhood radius) and minPts (the minimum number of points to establish a
dense region), can be leveraged to categorize workloads that exhibit similar performance
characteristics and demands. Mathematically, the € -neighborhood for a resource usage point
r(t) can be defined as follows:

Ne(r(t)) =r(t')ER| distance(r(t),r(t')) <e€ 17)

where R represents the set of all resource utilization states observed over time. Here, the distance
can be derived based on a defined similarity metric tailored to the characteristics of the cloud
resources. In the context of ACRM, the challenge of resource allocation can be reformulated using
DBSCAN's clustering approach. The objective is to minimize costs while ensuring that sufficient
resources are allocated to meet demand, expressed by:

r(t) = argminy, (C(re) + D(ry)) (18)

where D(r;) represents the distance to the nearest cluster centroid identified through DBSCAN.
This relationship posits that not only the costs must be optimized, but also the proximity to a
suitable resource cluster must be established to maximize efficiency. The decision-making process
in ACRM utilizing DBSCAN can extend to adaptively modifying resource allocations based on
cluster identification. If a resource r(t) is classified as a core point within a particular cluster
C (e, minPts) , it is indicative that the system can allocate resources to this workload efficiently.
Conversely, non-core points could be handled differently, potentially representing outliers or
anomalous workloads that may require separate management strategies. To quantify the expected
satisfaction S(r;,d;) from a cluster of resources, we integrate the cluster properties defined by
DBSCAN:

S(re,dy) = z f(r(i),dt) 19

rec

where f(r(®,d,) quantifies the satisfaction based on actual resource performance as compared to
expected demand d, . This satisfaction metric incorporates the clustering results from DBSCAN,
allowing ACRM to assess how well allocated resources meet the demands of various workloads.
Furthermore, the feedback loop prevalent in ACRM can be structured around cluster dynamics. As
workloads evolve, the resource allocation can be iteratively adjusted based on the identified clusters.
Thus, we can express this adaptive mechanism as:

Tty =1+ 8- (SO, dy) — starget) (20)

where f reflects the learning rate and S'@9¢ is the desired satisfaction benchmark. The
utilization of such a feedback function ensures that ACRM remains responsive to both internal
operational metrics and external demand fluctuations. Incorporating DBSCAN into ACRM
systems enhances the ability to discern meaningful patterns from resource usage data, effectively
supporting dynamic resource allocation. Through clustering, ACRM can identify temporally and
spatially dense resource usage scenarios, allowing for strategic scalability defined by:
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max,, U(r, d¢)subject to:Ne (1) N Ne(rq1) # @ (21)

This optimization emphasizes the continuous monitoring and adjustment of resource clusters,
maintaining efficiency and effectiveness in cloud resource management. Ultimately, the
intersection of clustering methodologies such as DBSCAN with ACRM enables a holistic approach
towards achieving performance goals while remaining responsive to cost and SLA obligations,
thereby shaping a future-ready cloud resource management paradigm.

3.3 Flowchart

The paper introduces a DBSCAN-based Autonomous Cloud Resource Management method
designed to optimize resource allocation in cloud computing environments. This approach
leverages the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm
to identify and cluster user demand patterns for cloud resources, facilitating more efficient
provisioning and scaling. By analyzing usage metrics over time, the method effectively
distinguishes between high-demand and low-demand periods, allowing for proactive resource
adjustments. The integration of DBSCAN not only enables the identification of underutilized
resources but also helps in minimizing waste and improving overall performance by adapting to
fluctuating workload requirements. Furthermore, the proposed method incorporates a feedback
mechanism that continuously learns from historical data, enhancing its predictive capabilities for
future resource needs. This adaptive strategy ensures optimized performance while maintaining
cost-effectiveness for cloud service providers. The practical implementations and performance
metrics of the proposed approach are illustrated and detailed in Figure 1.
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Load Resource Utilization Data
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Figure 1: Flowchart of the proposed DBSCAN-based Autonomous Cloud Resource Management
4. Case Study
4.1 Problem Statement

In this case, we delve into the intricacies of autonomous cloud resource management, emphasizing
the nonlinear dynamics governing resource allocation and optimization in cloud environments. The
aim is to establish a mathematical model that facilitates efficient resource allocation while
minimizing operational costs and maximizing throughput.
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We begin by defining our key parameters. Let N represent the total number of virtual machines
(VMs) in the cloud, and R signify the total available resources, such as CPU and memory. The
resource demand from users can be denoted as a nonlinear function D(t) , which we define as
D(t) = A-ePt | where A and b are positive constants representing the initial demand and
growth rate, respectively. The objective is to ascertain the resource allocation for each VM, denoted
as 1;(t) , which is contingent upon the dynamic resource demand, defined as follows:

ri(t) = # (22)

This allocation strategy, however, introduces a nonlinearity as it balances individual VM
requirements against the overall demand. The total system cost can be modeled as a function of the

current resource allocation, expressed as C(t) =k - fot[ri(t)]zdt , where k is a constant
reflecting the cost per resource unit squared. An optimization goal emerges whereby we seek to
minimize the cost function C(t) under certain constraints. Additionally, we introduce a utilization
factor U;(t) for each VM to account for performance degradation at higher loads, formulated as:

Ui(t) = R

(23)
To ensure system stability, we impose that the total utilization does not exceed a predefined
threshold U,,,, , represented by:

N
PRGEY- 24)
i=1

The feedback mechanism of the cloud system is another crucial aspect to consider, where the future
demand can be predicted based on historical data, formulated as:

Dpred(t + At) =cC- D(t) + (1 - C) ' Dpred(t) (25)

where ¢ is a coefficient reflecting the accuracy of the prediction model. Additionally, we
introduce a penalty function to encourage resource optimization, defined as:

N

P(H) = ) @i(®) = 7 ()’ 26)
i=1

where ;i(t) represents the optimal resource allocation derived from historical analysis. Through
this mathematical modeling approach, we can evaluate the effectiveness of different strategies in
autonomous cloud resource management by analyzing the interplay of resource allocation, demand,
cost, and utilization factors. By systematically tuning the parameters within the defined equations,
we can arrive at optimal solutions that reinforce the system's operational efficiency. All parameters
are summarized in Table 1.

Table 1: Parameter definition of case study

11



Parameter Value Description Notes

Total number of

N N/A virtual machines N/A
(VMs)
Total available
R N/A resources (CPU and N/A
memory)
A N/A Initial demand N/A

b N/A Growth rate of N/A
resource demand

C(t) k j 0'[r;(D)]?dt Total system cost k is a constant

Predefined threshold
Umax N/A for total utilization N/A

fficient f
¢ N/A Cocthicient for N/A
prediction model

This section will employ the proposed DBSCAN-based approach to calculate the intricacies of
autonomous cloud resource management in the context of a given case study, and it will
subsequently compare the results with three traditional methods. The focus is on understanding the
nonlinear dynamics that dictate resource allocation and optimization within cloud environments.
The examination starts with the identification of critical parameters, including the total number of
virtual machines and the available resources such as CPU and memory. The user demand is
conceptualized as a nonlinear function that evolves over time, necessitating a corresponding
allocation strategy for each virtual machine that strives to balance individual needs against overall
demand. Such strategies inherently introduce complexity due to the nonlinearity of the system.
Additionally, a performance degradation factor is implemented to represent how resource
utilization impacts system performance at elevated loads. This modeling framework places
particular emphasis on ensuring system stability through defined utilization thresholds. Moreover,
historical data informs future demand predictions, creating an adaptive resource management
strategy that can be fine-tuned over time. By contrasting this approach with traditional methods,
we can comprehensively evaluate how effective resource allocation, cost management, and
utilization strategies converge to enhance the operational efficiency of cloud environments,
ultimately leading to optimal solutions that mitigate costs while maximizing throughput, thereby
addressing the intricate balancing act required for efficient resource management in dynamic cloud
contexts.

4.2 Results Analysis
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In this subsection, a comprehensive analysis of resource allocation and cost management for virtual
machines (VMs) is presented through a series of computational methods. The demand function is
modeled using an exponential growth equation, allowing for the forecasting of resource needs over
time, which is subsequently allocated evenly among ten VMs. The total cost function is calculated
based on the resource allocation while taking into account the principle of least effort through a
penalty function, which measures the deviation from an optimal allocation determined through
historical data. Furthermore, a predictive model leveraging historical demand data is introduced to
refine future demand estimates. Clustering techniques, specifically the DBSCAN algorithm, are
employed to identify patterns in resource allocation and utilization, providing insights into potential
groupings of VMs based on their operational efficiency. The findings are visually represented
through four distinct plots, illustrating resource allocation dynamics, cost function stability,
utilization patterns, and the defined clusters. This simulation process is effectively visualized in
Figure 2, which encapsulates the overall resource management strategy and highlights areas of
improvement within the resource allocation framework.

Resource Allocation Total Cost Function
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Figure 2: Simulation results of the proposed DBSCAN-based Autonomous Cloud Resource
Management

Table 2: Simulation data of case study
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Resource Allocation Utilization Cost Total Cost Function

75 1.0 0.035 5.0
100 0.8 0.030 75
12.5 0.2 0.025 10.0
15.0 0.0 0.020 N/A
17.5 0.0 0.015 N/A
20.0 0.0 0.010 N/A

2 N/A N/A N/A

Simulation data is summarized in Table 2, presenting key insights into resource allocation per
virtual machine (VM) and its corresponding utilization over time. The data illustrates the trend of
resource allocation, with specific focus on how it impacts utilization rates at different time intervals.
Initially, the resource allocation starts at 0.0 and shows a gradual increase towards 10.0, indicating
a growing demand for resources as time progresses. The utilization metric, which approaches a
maximum of 1.0, signifies the extent to which the allocated resources are being effectively utilized
by the VMs. A critical observation is that there are fluctuations in utilization, with levels dropping
to as low as 0.2 at specific time points suggesting periods of underutilization. Additionally, the total
cost function is analyzed, showing that costs appear to vary inversely with utilization; as resource
allocation increases, the cost elements reflect a downward trend, stabilizing around 0.025. This
cost-effectiveness analysis indicates a strong correlation between resource allocation decisions and
their financial implications. The visual data representation supports this, showing distinct clusters
where certain resource allocation levels lead to optimal or suboptimal utilization outcomes. The
DBSCAN clustering results provide a clear identification of these groups, which can inform future
strategies in resource management and enhance overall operational efficiency across the virtualized
environments. Overall, the simulation results deliver a comprehensive understanding of the
dynamics between resource allocation, utilization, and associated costs, which is pertinent for
optimizing resource management and decision-making frameworks in cloud computing.

As shown in Figure 3 and Table 3, the analysis of the two datasets reveals significant changes
in resource allocation and utilization metrics following the modifications in scaling parameters.
Initially, in the pre-alteration data, resource allocation per virtual machine (VM) demonstrated a
variable utilization trend, where utilization rates fluctuated between 0.0 and 1.0 across different
time intervals. Specifically, it peaked at higher resource allocative parameters, such as 12.5 and
15.0, which correspondingly influenced the total cost function that ranged from 0.005 to 0.035. In
contrast, the modified dataset, labeled Case 2 (Scale 1.0), indicated an overall increase in the
efficiency of resource utilization due to a scaling factor that enhanced computational performance
and lowered associated costs. When compared to Case 1 (Scale 0.5), the improvement in utilization
effectiveness was evident, as indicated by a more stable utilization rate around the higher end of
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the spectrum. In this latter case, the allocation pattern exhibited a measurable drop in cost metrics.
This shift can be attributed to the optimized allocation of resources which not only improved
performance but also substantially reduced financial expenditure, as represented by the cost
function's altered trajectory. Moreover, the clustering results derived from the DBSCAN algorithm
suggest that the refined scaling parameters resulted in more coherent and efficient clusters, thereby
facilitating better resource allocation decisions. Collectively, these insights underline the pivotal
role of scaling adjustments in enhancing operational efficiency and cost-effectiveness within the

system.
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Figure 3: Parameter analysis of the proposed DBSCAN-based Autonomous Cloud Resource
Management

Table 3: Parameter analysis of case study
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Parameters Case 1 (Scale: 0.5) Case 2 (Scale: 1.0) Remark

0 0 N/A N/A
7 7 N/A N/A
3 3 N/A N/A
25 25 N/A N/A
22 N/A 22 N/A
2 N/A 2 N/A
8 N/A 8 N/A

5. Discussion

The method proposed in this study, which integrates the DBSCAN clustering algorithm within
Autonomous Cloud Resource Management (ACRM), exhibits several notable advantages that
enhance resource allocation strategies in response to fluctuating demand patterns. Primarily, the
application of DBSCAN's density-based clustering allows for the effective categorization of
diverse resource utilization patterns, facilitating the identification of workload clusters that share
similar performance characteristics. This capability is essential in enabling ACRM to dynamically
adjust resource allocations, ensuring optimal responsiveness to real-time application demands.
Furthermore, DBSCAN's inherent ability to differentiate between core points and outliers allows
ACRM to tailor its resource management strategies, prioritizing efficient allocation for workloads
that are deemed critical while managing anomalies with specialized approaches. The integration of
clustering metrics within the ACRM framework aids in optimizing resource management costs
while maintaining alignment with service level agreements, thereby increasing operational
efficiency. Additionally, the feedback mechanism established through cluster dynamics empowers
ACRM to continually refine resource allocations based on evolving workloads, contributing to a
more agile and responsive cloud environment. This adaptability not only ensures that resource
distributions remain effective but also promotes strategic scalability, as ACRM can swiftly respond
to varying demand scenarios. Overall, the incorporation of DBSCAN significantly enhances
ACRM's capability to manage cloud resources effectively, paving the way for a more efficient and
future-oriented resource management paradigm in cloud computing. It can be leveraged that the
proposed method can be further investigated in the study of mechanical engineering [17-18],
computer vision [19-21], biostatistical engineering [22-26], Al-aided education [27-32], aerospace
engineering [33-35], Al-aided business intelligence [36-39], energy management [40-43], large
language model [44-46] and financial engineering [47-49].

Despite the promising capabilities of the integrated DBSCAN clustering algorithm in
Autonomous Cloud Resource Management (ACRM), certain limitations warrant consideration.
Firstly, the performance of DBSCAN is highly sensitive to the selection of its core parameters,
$\epsilon$ and $minPts$. An inappropriate setting of these parameters may lead to suboptimal
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clustering results, such as over-segmentation or under-segmentation of resource usage patterns,
compromising the accuracy of workload categorization. Furthermore, DBSCAN is not well-suited
for clusters of varying densities, which can result in misclassification of resources, particularly in
heterogeneous cloud environments where resource demands fluctuate rapidly. Additionally, while
the algorithm effectively identifies densely populated clusters, it may struggle with noise and
outliers, potentially leading to incorrect resource allocation strategies for anomalous workloads.
Moreover, the reliance on historical data for clustering may introduce latency in the system’s
adaptability, hindering real-time responsiveness in dynamic scenarios where immediate
adjustments are critical. The feedback mechanism, while advantageous, may also lead to instability
if the learning rate $\beta$ is not appropriately calibrated, exacerbating oscillations in resource
allocation decisions based on satisfaction metrics. Finally, the mathematical constructs governing
resource proximity and optimization may not fully encapsulate the complexities of cloud resource
interdependencies, thereby oversimplifying the multifaceted nature of resource management within
autonomous systems. Consequently, while DBSCAN enriches ACRM, it necessitates careful
parameter tuning, robust handling of resource variability, and a comprehensive understanding of
the broader resource allocation context to mitigate its inherent limitations.

6. Conclusion

Autonomous resource management in cloud computing is crucial for optimizing performance and
resource utilization. Current research primarily focuses on supervised learning techniques, which
require labeled data and manual intervention. However, unsupervised learning methods have the
potential to autonomously adapt to dynamic cloud environments without the need for prior training
data. In this context, this paper proposes a novel approach utilizing DBSCAN-based unsupervised
learning for autonomous cloud resource management. This innovative method aims to cluster cloud
resources based on their utilization patterns, enabling proactive resource allocation and dynamic
scaling. By leveraging unsupervised learning, our approach addresses the challenges of scalability
and real-time resource management in cloud environments, contributing to the advancement of
autonomous cloud computing systems. Moving forward, future work could explore enhancing the
proposed method by incorporating reinforcement learning techniques to further improve adaptive
resource allocation and scaling strategies. Additionally, investigating the application of this
approach in multi-cloud environments could provide insights into its effectiveness across a broader
range of cloud deployment scenarios. Overall, the utilization of unsupervised learning for
autonomous cloud resource management presents a promising direction for future research in
optimizing cloud performance and resource utilization.
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