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Abstract: As neural networks are increasingily deployed on mobile and distributed
computing platforms, there is a need to lower latency and increase computational speed
while decreasing power and memory usage. Rather than using FPGAs as accelerators
in tandem with CPUs or GPUs, we directly encode individual neural network layers as
combinational logic within FPGA hardware. Utilizing binarized neural networks
minimizes the arithmetic computation required, shrinking latency to only the signal
propagation delay. We evaluate size-optimization strategies and demonstrate network
compression via weight quantization and weight-model unification, achieving 96% of
the accuracy of baseline MNIST digit classification models while using only 3% of the
memory. We further achieve 86% decrease in model footprint, 8mW dynamic power
consumption, and <9ns latency, validating the versatility and capability of feature-
strength-based pruning approaches for binarized neural networks to flexibly meet
performance requirements amid application resource constraints.

Keywords: Algorithms Implemented in Hardware, Combinational Logic, Cost/Perform
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1. Introduction

In recent years, the increased utilization of artificial intelligence in everyday technologies has
necessitated advances in computer architectures for both training and running machine learning
models. A main limitation of neural edge-computing infrastructures is the memory- and
computation-intensive nature of conventional models. Thus, it is of increasing interest to
investigate reduction of computational requirements for neural networks [1]. Some recent efforts
have explored the use of field- programmable gate arrays (FPGAS) as hardware accelerators for
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specific elements of neural network training and evaluation [2]. Logic blocks within FPGAs can
be dynamically reconfigured to adjust to different computational tasks, allowing for more
efficient, task-specific logic circuitry, such as accelerating image processing while reducing
power consumption compared to conventional embedded system platforms [3], [4], [5], [6].

However, when applied to neural network computation, FPGAs are conventionally utilized
in tandem with CPUs and GPUs [7]. Because basic neural functionalities can be replicated with
transistor arrangements [8], there have been efforts to fabricate neural network-specific hardware
components [9], [10]. However, the intrinsic reconfigurability of FPGAs can be further utilized
to maximize functionality: dynamic memory reallocation has allowed hardware footprint
minimization in various data processing tasks [11], and there has been recent interest in
architectures that embed neural networks within FPGAs [12], [13], [14]. Such approaches have
multiple benefits: not only can FPGA floating-point hardware accelerate neural network
arithmetic [15], the large number of logic gates available in FPGA fabric allows pipelining and
duplication of network segments to simultaneously perform computations on separate data [16].
Indeed, FPGAs outperform mobile platforms on machine learning benchmarks and real-time
computer vision with higher efficiency [17], [18], and have been utilized for applications like
particle physics experimentation to analyze collision byproducts that disappear within
nanoseconds [19].

Such latency-reduction approaches are relevant to meet ever- tightening latency and
performance requirements for computing needs like artificial intelligence-based services [20].
This has even led to the pursuit of alternative hardware, such as optical neural networks, to
decrease latency [21]. Additional motivation for latency reduction arises from a need for data
encryption for privacy: Even while leveraging parallel processing for improved throughput,
performing predictions on encrypted data can require high latencies of up to 250 seconds [22],
and networks that achieve 290ms latency on encrypted handwritten digits are constrained by
limitations of transfer learning [23]. Recent work on secure inference has achieved 30ms latency
for MNIST digit classification [24], and demand for near-instant predictions urges a search for
strategies to reduce latency further.

Advancements toward making neural networks intrinsically more efficient have include
compressing models by pruning the parameters that are invoked, quantizing weights, and
distilling internal knowledge representations [25], [26]. Large-scale commercial approaches have
demonstrated 8-bit hybrid calculations capable of similar performance as 32-bit floating point
operations [27]. Some approaches with FPGA hardware optimize model design for individual
accelerators [28], while others build a physical network pipeline [29]. Other biologically-inspired
architectures improve energy efficiency, achieving 95% accuracy with 20ms mean latency at 0.3
watts of board power, but require large specialized hardware [30].

2. Objectives

Building upon the existing literature, we identify the need to explore novel approaches to
hardware implementations of neural networks that can achieve high accuracy with low latency
and low power consumption, maintaining the seamless user experiences of mobile and wearable
platforms [31]. Techniques like weight binarization have shown promise in reducing the number
of calculations required in computing results, enabling acceleration with minimal impact on
accuracy [32], [33], [34], and are uniquely adaptable to implementation in hardware logic gates.
By minimizing memory transfers and instruction-based computations, computational load
significantly decreases and model latency can be reduced to merely the signal propagation delays
through sequential binary logic.

The goal of this work was thus to propose and explore a novel FPGA architecture approach
for machine learning computation on low-power platforms, demonstrating binarized neural



networks and comparing the efficacy of size-optimization strategies, specifically with regard to
the continuous tradeoff between algorithm compression and key performance indicators of
accuracy, latency, network size, and power efficiency.

3. Methods / Approach

To evaluate classification capability on a well-validated computational task, strategies were
developed for FPGA-based handwritten digit classification on the MNIST dataset, a longstanding
benchmark for machine learning [35]. Within the original dataset, each image has a 28x28
resolution (784 pixels per image) in 8-bit grayscale (values 0 to 255). In order to process MNIST
digits in binarized neural networks, the input data were converted from grayscale to binary
representations. A fixed threshold of 50% grayscale (8-bit value 128/256) was used as the
threshold to determine binary representation for each pixel (<128 = “0”, >128 = “1”). Each
converted image thus contained 784 bits, with each pixel corresponding to background (binary
“0”) or digit (binary “1”’). This binary-converted dataset was used to train and evaluate multiple
network implementations.

First, we created and tested a set of minimal hardware implementations (Section IV),
benchmarking the potential for basic pattern-matching algorithms-in-hardware to successfully
classify handwritten digits. The results from these pattern- recognition algorithms were used to
determine the functional characteristics of the binarized dataset, and inform the subsequent,
progressively more advanced algorithms.

Next, we created a baseline single-layer neural network (Section V) by taking a neural
network architecture that is well- validated for handwritten digit detection and adapting it for
direct deployment on an FPGA, then evaluating performance of the modified algorithm. We
further optimized and evaluated the model with weight quantization and strategic simplifications
to reduce memory usage and computational requirements.

In our final approach, we developed a binarized neural network (Section VI) that utilizes
binary pixel weights rather than integer weights, decreasing integer arithmetic operations. We
compare multiple pixel-weight selection and pruning strategies and evaluate their impacts on
model size and accuracy. Additionally, we pursue further model compression through weight-
model unification, condensing network logic to include weights in computational logic rather
than in memory. We then evaluate key performance indicators and resource utilization of the
pruned models, and demonstrate the ability of
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Fig. 1. Digit heatmaps generated from training dataset.
2)1000 images, b) 50,000 images. Upper row = 0-4, Lower row = 5-9

such approaches to optimize binarized neural networks.



In order to create these hardware-embedded neural networks, all algorithms were first
simulated with Python 3.7.3 and TensorFlow 2.0 [36] to verify and evaluate model functionality,
then implemented on a Xilinx Artix-7 FPGA development board (XC7A100T, Digilent Nexys 4
DDR) using SystemVerilog and the Xilinx Vivado HLx design suite. Additional performance
metrics and hardware layout are derived from Xilinx Vivado.

4. Minimal Hardware Implementations

Statistical approaches to parsing handwritten digits include multinomial lassos to identify pixel
predictance values and sparse principal components analysis to identify key component pixels for
different handwritten digits [37]. While both of these methods require lengthy mathematical
instruction sets, they offer a starting point for a minimal classification algorithm, without the
need for computationally expensive convolutions.

A. Digit Predictor Pixels

Combining these approaches, we first develop a hardware implementation based on digit
“predictor pixels”. Fig. 1 contains heatmaps corresponding to the pixel occurrence frequency in
each of ten MNIST digits, from the first 1000 and the full 50,000 training images. Different
digits have primary locations in which pixels are active; the location of active pixels in a test
image is utilized as a proxy for the digit contained within the image. Fig. 2a demonstrates an
initial predictor-pixel matrix, constrained to pixels with only positive values. We observe that
some digits are significantly over-represented; for example, “4” has far fewer active pixels than
“0” or “7”. To compensate for this, an activation threshold was implemented to remove low-
intensity
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Fig. 2. Matrix of predictor pixels.
a) 0 threshold, b) 100 threshold, ¢) 170 threshold, d) 190 threshold.

pixels. Fig. 2b, 2c, and 2d show the predictor-pixel matrix with activation thresholds of 100, 170,
and 190 (out of 28 = 256).

In this method, the final classification result was determined to be the digit (0-9) with the
largest number of activated pixels, given a binarized input image. The accuracy across the test
dataset was observed to be 28.07%. While 3x better than chance, the predictive power is
hampered by the many cases in which the number of activated pixels within the designated
regions is identical across multiple candidate digits. In other words, having a low activation
threshold leads to low accuracy, as inputs are preferentially classified as the digits with more



predictor pixels; increasing the activation threshold results in low discrimination capability
between multiple potential classifications.

B. Limitations and Extensions

While the predictor-pixel method is appealing from a simplicity standpoint (as all inputs can be
matched against one aggregate reference), we observe that this approach has limited accuracy
and multiple limitations. For instance, the presence of positive-valued pixels that are common
across multiple digits decreases the predictive power of those individual pixels. When one digit
has a slightly higher average activation within one pixel compared to other digits, selecting a
small number of predictor pixels to determine digit classifications amplifies those slight
distinctions might falsely skew results toward certain digits over others.

5. Single-Layer Neural Network

A. Structuring, Training, and Validation

Network architecture plays a large role in determining performance and accuracy, especially with
compact models or small datasets [38]. In order to establish a baseline neural network
architecture for binarization and optimization, we adapt the LeNet architecture [39], which is
both compact (~6-7 layers) and accurate (>90%), and has been adapted to a variety of
classification tasks, such as image recognition and facial recognition [40]. To traverse the
complexity-accuracy tradeoff, we pared down model parameters to evaluate performance in
progressively minimal models. All models were constructed and evaluated using Python and
Tensorflow, dividing the 60,000 images in the dataset into a training-testing split of 90%/10%.

Condensing the network to two convolutional layers and one fully-connected dense layer
1024 neurons wide facilitates a classification accuracy of 98.6%, while a version of the same
network without the dense layer is able to achieve 97.9% accuracy. With the removal of the
second convolutional layer (leaving one convolutional layer and one dense layer), we achieve
96.2% MNIST accuracy. Next, we eliminated the convolutional layer entirely, in order to form
direct parallels between a conventional single-layer implementation and single-

| Ah‘ ' T o ' f— ' ’,‘: o - ' - '
e | o I | = | |
0 1 2 3 R
=4\ = | | | g
o £.” - R
I o | I ikt | e |
5 6 7 8 9

Fig. 3. Pixel weight heatmaps for each digit.

layers implemented in FPGA hardware. This model (Appendix Fig. 1) successfully achieves 91.5%
accuracy, showing that even a single-layer implementation can offer significant predictive power
without the need for costly convolution operations.

As shown in Fig. 3, the single-layer neural network operates on ten sets of 784 weights, one
set per digit and one weight per pixel. Blue pixels indicate strong predictors of a particular digit,
while red pixels imply that the presence of pixels in that region reduce the likelihood that that is
the correct digit. Functioning essentially as a linear classifier, not only does this single-layer
neural network provide a simple way to rapidly recognize MNIST handwritten digits with



minimal calculations, this method also retains higher accuracy than convolutional neural
networks (CNNs) trained on subsets of the MNIST dataset [41]. Hence, our single-layer
classifier shows good performance while minimizing the computational hardware footprint.

B. Model Optimization

For implementation into FPGA fabric, we consider both the operations required to execute the
model, as well as the connections between logic blocks necessary to facilitate the operations. We
begin optimizing the neural network itself by distilling the architecture into a single layer, which
allows us to treat the entire prediction-serving region as a single hardware module. Next, we
identify two areas of optimization: the weights within the model, and the activation functions for
the output.

A primary source of computational overhead during execution of neural networks is due to
the mathematical operations necessary when multiplying input data by sequences of weights and
summing inputs into activation functions, especially since floating-point mathematics requires
additional hardware resources and clock cycles. Weight quantization can address these problems
[25], [27]. We quantize the weights in our single-layer classifier from 32-bit floating point
decimals to 8-bit integers, resulting in a 75% decrease in weight size from 10 - 784 - 32 =
250,880 bits, to 10 - 784 - 8 = 62,720 bits, with only a 0.3% decrease in accuracy (91.5% to
91.2%).

C. Implementation Architecture

The second aspect of computational overhead involves the mathematical activation functions
utilized to compile results from each layer. The base neural network utilized a softmax activation
function, which has been approximated in FPGA hardware [42]. However, mirroring the
simplicity inherent to a single-layer slice of a model, we implement a maximum-value evaluator,
which allows us to retain full accuracy while eliminating the need to instantiate additional
arithmetic computation modules, minimizing hardware footprint.

Once deployed in FPGA hardware, the single-layer neural network comprises a single set of
parallel pipelines. The weights for each of the ten digit nodes are stored in a set of registers, and
the input image is simultaneously routed and matched against the 784x8 arrays containing the 8-
bit weights. Because the input image is binary, the multiplication operation consists of a set of
AND operations between each input pixel and its corresponding weight. The selected weights are
added to create the output sum for a particular digit. The output sums are compared across digit
nodes, and the node with maximum value is the digit output.

This single-layer, 8-bit quantized neural network (Appendix Fig. 2) achieves minimal latency,
with a signal propagation delay of under 7ns per pixel, and high energy-efficiency, with a
Vivado- estimated 0.007W of dynamic power consumption.

6. Binarized Neural Network

To pursue a more tightly-coupled neural network within FPGA hardware, we binarize the neural
network, with binary weights that can be represented as transistorized logic rather than arithmetic
operations. Replacing arithmetic computation with bitwise operations has been shown to improve
power efficiency and computational speed, and reduce memory use and number of memory
accesses required to calculate each layer within a model [33]. Direct binarization of the 8-bit



guantized neural network yields almost 88% reduction in weight size; we additionally explore
further reductions in size to evaluate performance of highly compact models-in-hardware.

A.  Weight Conversion and Implementation

Previous works have selectively binarized portions of networks [43]; this work sought to
characterize multiple points in the model accuracy-size space. Multiple approaches have been
taken to forming and pruning binarized neural networks, such as isolating and trimming
vacillatory weights that flip polarity many times near the end of model training completion

[44] or removing clusters of weights that have smaller effects on output accuracy [45].
Unique biomolecular “winner-take-all” systems have also been created for DNA pattern
recognition

[46]; this can be reframed as a form of binary logic with each input corresponding to a
certain “pixel” of the desired signal and the classifier as a series of logic operations reaching a
deterministic outcome based on certain combinations of inputs. Based on these strategies, we
binarize our quantized single- layer neural network by identifying the strongest “predictor pixels”
as the top-N largest values given a number of pixels to be calculated (N) for each digit map. Each
set of predictor pixels is stored in a 784-bit variable in which each pixel position is denoted with
a 0 or 1 if that pixel is a designated predictor for that digit. The model iterates through each index
at a rate of one input pixel per clock cycle, then tallies and compares the sums across digits to
determine the final digit classification.

Returns from Binary Matchup Strategies
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Fig. 4. Binarized Neural Network Accuracy vs. Binarization Strategy.

B. Multi-Strategy Performance Comparison

We further evaluate and interpret different strategies to select the top “predictor pixels” within
our binarized neural network. First, it is possible to create models of varying size and accuracy
by changing the number of pixels referenced in each layer (i.e. nonzero weight). Second, because
weights in a trained model do not form a symmetric distribution (e.g. there are different amounts
and magnitudes of positive weights vs. negative weights), there are different classification
accuracies when referencing the presence of a certain number N of pixels with positive-valued
weights, versus the absence of N pixels with negative-valued weights. Out of a possible 784
pixels in an image, we evaluate the accuracy performance of binary matchup strategies



referencing a total number of pixels ranging from N=2 to N=512. In addition to positive and
negative predictors, we also evaluate a mixed strategy, in which the pixel reference count is
evenly divided between positively-weighted pixels and negatively-weighted pixels. Fig. 4 shows
the characteristic curves observed with such binary matchup strategies.

We observe a few relevant details from the characteristic curves that provide insight into
optimal binarization strategies. First, we note the diminishing return of referencing larger
numbers of pixels; this is because the weights of lower-ranked pixels have smaller absolute
values and contribute less to gains in accuracy, while still commanding computational overhead.
Next, the absence of negative predictors is significantly more accurate than the presence of
positive predictors in small values of N. This may be because high-valued positive predictors are
more likely to be similarly placed across digits (see similarly- positioned blue regions in 0, 2, 3, 7
in Fig. 3), as opposed to more unique positioning of strong negative predictors across digits.
Lastly, the predictive capability of the mixed-strategy dual matchup is consistently more accurate
than either positive or negative predictors alone, with a maximum accuracy of 87.5% using
N=256 reference pixels (128 positive, 128 negative).

C. Further Optimization: Weight-Model Unification

Significant improvements in computational and power efficiency can be achieved by reducing
the number of memory accesses required to execute a model [47], [48]. We utilize Boolean logic
minimization to consolidate weights and logic within our binarized neural network. Weights
stored in memory already take the form of binary flags, which must be retrieved, multiplied with
an input datum, and summed to reach a final output value. In an FPGA, such binary weights can
simply be instantiated as part of the hardware algorithm logic, translating binary flags into AND
operations through which input data pass and are filtered before summing. We utilize this to
create an optimized representation in FPGA hardware (Appendix Fig. 3), that utilizes
transistorized logic without having to reference separate memory registers for each operation.

7. Results and Discussion

A. Latency Minimization and Resource Efficiency

Our 8-bit quantized single-layer neural network dedicates one clock cycle to sum each pixel,
reaching a final result in 785 cycles. The condensed architecture allows the use of clock cycle
periods as low as 7ns, allowing a result to be reached in only 5495ns (under 6 microseconds),
while retaining an accuracy of 91.2% - only 0.3% less than the 91.5% accuracy of the reference
network with 32-bit floating-point integers. Our binarized neural network, however, is
implemented entirely in combinational logic, and yields final determinations in under 10ns.
When clocked, Vivado signal timing analysis confirms a stable result in only 8.465ns,
demonstrating a near-instantaneous result. With just a 4.1% drop in accuracy, we are able to
achieve over 800x faster speeds than the 8-bit quantized network and 1.5 million times faster
than other state-of-the-art systems [24].



TABLE 1: Performance Comparison

Source Device Accuracy  Latency Resource Utilization Power Throughput Power
Req. Efficiency

This work, Xilinx Artix-7 87.5% 847 ns 333 LUTs (0.5%), 4 slice registers 0.008W! 118,133,491 FPS 14,767 MFPS/W!
binarized (0.003%) (0.105W)? (1125 MFPS/W)?
This work, Xilinx Artix-7 91.2% 5495ns 2276 LUTs (3.6%), 288 slice registers 0.007W* 181,984 FPS 26.0 MFPS/W!
8-bit quantized (0.23%) (0.104W)? (1.75 MFPS/W)?
Giardino et al. Xilinx Artix-7 90% 41,000 ns 15,796 LUTs (29.7%), 106,400 slice 0.975W* 24,390 FPS 0.025 MFPS/W!
[53] registers (4.4%), 52.5% BRAM (1.096W)? (0.022 MFPS/W)?
Ngadiuba et al. Xilinx Virtex 93% 200ns 2,009,821 LUTs (17%* [55]), -- 5,000,000 FPS
[54] UltraScale 9+ 16% BRAM
Umuroglu et al. Xilinx Zynq 95.8% 310ns 91,131 LUTs (17%*), 0.8% BRAM 7.3W 12,361,000FPS 1.69 MFPS/W
[52] UltraScale+
Alemdar et al. Xilinx Kintex-7 97.89% 20,500 ns 81% (~20,533 slices/LUTs") 3.8W 48,780 FPS 0.013 MFPS/W
[48]
Liang et al. [56] Altera Stratix-V 98.23% 3390ns 182,301 LUTs (69.5%), 86.1% BRAM 26.2W 294,985FPS 0.011 MFPS/W
Wang, 16-bit [57] | Intel Arria VGZ 98.81% 6800 ns 9078 LUTs (7%), 210,364 slice registers ~ 4.203W 147,058 FPS 0.035 MFPS/W

(39%), 988 DSP (95%), 3% BRAM
CPU (Wang) [57] | Intel i7-8750H 98.81% 173,800 ns - 254W 5753 FPS 0.0002 MFPS/W
CPU (Liang) [56] | Intel Xeon E5-240 98.23% 106,570,000 ns -- 95W 9.38 FPS 9x10° MFPS/W
GPU (Wang) [57] | Nvidia GTX 1060H 98.81% 112,200 ns - 23w 8912FPS 0.0004 MFPS/W
GPU (Liang) [56] | Nvidia Tesla K40 98.23% 6,470,000 ns - 235W 154 FPS 7x107 MFPS/W

-- indicates values were not available. * indicates values are estimated based on provided metrics. * indicates values
calculated using the dynamic power consumption of the implemented algorithm; 2 indicates values calculated using the sum
of both dynamic power consumption + static chip power consumption.

Further, both implementations are extremely compact hardware representations of neural
networks. The quantized network uses a total of 2276 slice lookup tables (LUTSs) (3.6% of the
63400 available on this FPGA), 288 slice registers (0.23%), and 690 slices (4.4%), and has a
dynamic power consumption of only 0.007 W. The binarized network uses a total of 333 LUTs
(0.53%), 4 slice registers (0.003%), and 101 slices (0.64%), with a dynamic power consumption
of only 0.008 W. This extremely minimal resource utilization represents multiple orders of
magnitude of space savings and resource conservation compared to conventional networks that
may take up the majority of an FPGA fabric [49].

Prior researchers have observed that while binary logic can improve latency, unoptimized
representations can exponentially increase model complexity [46], [50], or require additional
weights and activations to reach similar accuracies [51]. Our model performance demonstrates
that feature-strength-based pruning allows for effective retention of significant contributors to
accuracy, and implementation on FPGA allows significant gains in speed and compression of
models while minimizing power consumption and on-chip resource utilization.

B. Functional Comparison

To contextualize the performance of our models, we compare performance against benchmark
performance and recent research. Conventional MNIST classification systems often take
significantly longer times per image; some convolutional neural networks (CNNSs) require as
long as 7-12 seconds per image [52]. With <9ns latency, our methods are over 109x faster than
such algorithms. Even specialized FPGA platforms emulating spiking neural networks only
achieve 20ms latencies for MNIST digits [30]; our system is over six orders of magnitude faster.



In the high-performance regime, this work exhibits superb speed and energy efficiency,
achieving low-latency and low-power objectives critical to real-time applications.

Table 1 compares our quantized and binarized networks with other state-of-the-art MNIST
classification implementations. We explore the tradeoff between accuracy and performance by
targeting 90% of the accuracy of comparison algorithms, but with <10% of the latency and using
only <10% of the on-chip resources. The impact of this is high throughout and ultra-low power
consumption, resulting in 3-4 orders of magnitude greater power efficiency than the next most
efficient alternative [53].

Our minimal implementations far exceed the efficiency of prior literature in terms of
dynamic power consumption. When considering total power consumption, our 8-bit quantized
network offers a slight (~4%) power efficiency improvement over Umuroglu et al. [53], and our
binarized network offers more than 500x greater power efficiency, while also achieving nearly
40x faster latency. We also observe that total power efficiency would further increase if FPGA
fabric utilization was increased with multiple instances running in parallel for greater throughput,
as the static chip power consumption overhead currently accounts for 92-93% of the total power
consumption.

Notably, our system vyields significantly better overall results than the most recent
implementations of MNIST-classifying convolutional neural networks on the same FPGA
platform. Our quantized implementation achieves greater accuracy than Giardino et al. [54] with
more than a 90% decrease in resource utilization, 99.2% decrease in dynamic power
consumption, and 94% reduction in latency (>15x acceleration), while our binarized approach
exhibits 590,680x greater dynamic power efficiency and 45,000x greater total power efficiency
(frames per second per watt). This further supports the assessment of this approach as a novel
contribution enabling low-latency artificial intelligence in hardware and significantly improving
hardware performance compared to state-of-the-art research.

C. Cost/Performance Analysis and Applications

The pursuit of higher-accuracy machine-learning models coupled with the conventional intuition
that model acceleration is not worth decreases in accuracy, has yielded an underexplored
performance envelope for networks with slightly reduced accuracy but far lower latency. Prior
approaches have seen accuracy decrease under compression (e.g. 98.81% at 16-bit, to 95.53% at
6-bit, to 43.30% at 5-bit) [58], but our methods allow for accuracy retention even with significant
compression from 7840 8-bit weights (91.2% accuracy), to 2560 binary yes/no decisions (87.5%
accuracy), demonstrating that the performance envelope can be successfully expanded to ultra-
low-latency and ultra-low-power implementations, without sacrificing accuracy: 4% lower
accuracy here enables 99.85% lower latency (650x acceleration) and 86% lower hardware
resource utilization.

This low resource utilization also enables versatility in applications. For instance, this
architecture could be scaled up to facilitate the implementation of multi-layered networks all
within a single FPGA, as opposed to having to spread networks out between multiple devices
[29]. Additionally, strategic design pipelining could be utilized to increase throughput for
individual networks, by allowing multiple operations to be conducted in parallel. Latency
increases can be offset by higher clock speeds due to decreased module depth / propagation
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distance, and the flexibility from small modules facilitates deployment on integrated circuits
conducting other operations, like leveraging unused sections of registers occupied by other
algorithms to minimize additional on-chip resource utilization.

The low power requirements and resource utilization of our methods also make such
strategies well-suited for ubiquitous computation and smaller form factors, and opens new
avenues for cost-effective advanced computation on inexpensive chips. The use of individual,
compact networks for specialized tasks can improve efficiency and safety in electromechanical
systems that must make safety-critical decisions in fractions of a second [59]. By detecting
potentially hazardous scenarios in near-real- time, safety equipment can be primed before a full-
confidence determination is reached, improving reaction time and resultant safety. Since these
designs are so compact, basic neural networks could feasibly and economically be deployed on
low- quality silicon, low-speed processors, or on small ASIC die areas. With the energy stored in
a single alkaline AA battery [60], our binarized FPGA network could continuously classify
images for 20 days. Such efficiency is key for long-duration deployments for biosensors [61], on-
body electronics [62], and brain-computer interfaces for prosthetics [63] or for decoding and
digitizing of mental handwriting in paralyzed patients [64].

8. Conclusion

As the prevalence and role of neural networks in mobile and edge computing continues to
increase, there is a growing drive to lower latency and increase throughput while decreasing
power and resource utilization. Wielgosz and Karwatowski’s review of FPGA latency
optimization concludes that “in some application domains, such as...anomaly detection, the
response time of the system is more critical to ensure quality of service than the quality of the
answer” [65]. Indeed, Sze et al.’s survey of machine learning hardware notes that “the key
metrics for embedded machine learning are accuracy, energy consumption, throughput/latency,
and cost” [66]. By encoding neural network layers as combinational logic within FPGA hardware,
we minimize expensive memory access operations and arithmetic computation, shrinking latency
to only the signal propagation delay through FPGA fabric. We implement and compare size-
optimization strategies and demonstrate network compression via weight quantization and
weight-model unification, achieving up to 96% of the accuracy of baseline MNIST digit
classification using only 3% of the memory. We further achieve an 86% decrease in model
footprint, 8BmW power consumption, and ultra-low <9ns latency, validating the versatility and
capability of feature-strength-based pruning approaches for binarized neural networks to flexibly
meet performance requirements depending on application resource constraints.

Not only does this work have critical implications in a variety of use cases where low latency
and low power usage are crucial, it also demonstrates a significant advancement in terms of
strategies for neural network construction and complex input classification leveraging FPGA
logic. Low-latency, resource- efficient neural network computation is critical for high-
performance edge computing, moving beyond mobile devices and wearables to on-body
electronics and ubiquitous computing ecosystems in which these resource constraints are key
[31]. Our architecture and method of compressing and implementing binarized networks can also
be extended and applied to more complex tasks ranging from process control and safety
measures to human-computer interfaces and biomedical devices.
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Appendices

Appendix Figure 1:
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Appendix Fig. 1. Single-layer neural network model architecture. Preliminary

data transforms (yellow) include binarization of MNIST digits and casting into a linear pixel
array, then a single fully-connected layer (blue) determines image classification out of ten
potential digits.
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Appendix Figure 2:

Appendix Fig. 2. Implemented 8-bit Quantized Neural Network.

a) Network structure, b) FPGA die floorplan coverage,
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c) simulated power consumption, d) module resource utilization
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Appendix Fig. 3. Implemented Binarized Neural Network
a) Network structure, b) FPGA die floorplan coverage,

c) simulated power consumption, d) module resource utilization
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