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Abstract: Motor design involves a variety of complex parameters, and traditional 
approaches often rely on experience and experimentation, which can be inefficient and 
challenging to optimize. With the rapid growth of industries such as electric vehicles and 
intelligent manufacturing, the demand for improved motor performance continues to rise. 
Optimizing motor designs under multi-objective and multi-constraint conditions has 
become a critical challenge. To address this, this paper introduces a motor design 
performance optimization algorithm that leverages Graph Neural Networks (GNN) and 
adaptive weighting techniques. GNN, a deep learning model adept at handling complex 
structured data, is capable of modeling the relationships between multiple parameters in 
motor design. Its feature propagation mechanism allows for automatic extraction of 
essential features, effectively addressing the limitations of traditional methods in 
capturing parameter dependencies. Additionally, Mixed-Integer Linear Programming 
(MILP) serves as a robust global optimization tool, capable of finding the optimal 
solution even in the presence of complex decision variables and constraints, overcoming 
the global convergence issues associated with conventional optimization algorithms. The 
adaptive weighting mechanism further enhances the algorithm by dynamically adjusting 
the weights based on the parameters' influence on motor performance, ensuring more 
accurate and adaptable optimization results across different scenarios. By combining 
these three techniques, this paper aims to resolve issues related to inefficiency, poor 
global convergence, and the static nature of parameter weighting in traditional motor 
design optimization. This approach integrates advanced machine learning models and 
optimization algorithms to create an efficient framework for motor design performance 
optimization. 
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1. Introduction 

Motors, as a core component of modern industry and technology development, are widely used in 

electric vehicles, intelligent manufacturing, aerospace, and other fields, driving the efficient 

operation and functional realization of modern equipment. Especially with the rapid development 

of electric vehicles and renewable energy technologies, the requirements for motors have been 

continuously increasing, demanding not only higher efficiency and lower energy consumption but 

also the ability to maintain stable performance under multi-objective and multi-constraint 

conditions[1]. The key performance indicators in motor design include power output, efficiency, 

thermal management, power-to-weight ratio, and cost, which often have complex trade-offs[2]. 

Therefore, optimizing motor design while meeting multiple performance requirements has become 

an important research topic in modern motor design. Most traditional motor design methods rely 

on designers' experience and repeated experiments, using rule-based simulation or finite element 

analysis tools for performance prediction and adjustment[3]. While these methods can meet the 

demands of motor design to some extent, with the increasing complexity of motor designs, 

traditional methods are gradually exposing two major issues: one is the inefficiency of the design 

process, relying on repeated experiments and iterations, which is not only time-consuming but also 

prone to local optima[4]; the second is that traditional methods struggle to cope with the complex 

dependencies in multi-parameter, multi-objective designs [5]. Especially in aspects such as motor 

geometry design, material selection, and production processes, multiple design parameters often 

interact to form complex dependency structures, which traditional methods struggle to capture 

comprehensively. 

To address these challenges, the introduction of machine learning and optimization techniques 

in recent years has brought new opportunities to the field of motor design. In particular, Graph 

Neural Networks (GNN)[6], as a deep learning model capable of effectively handling graph-

structured data, have shown significant advantages in capturing complex structural relationships 

and high-dimensional data. The various parameters in motor design and their dependencies can be 

naturally modeled as a graph structure, with design parameters as nodes and edges representing 

dependencies between parameters. Through GNN's information propagation mechanism, the 

interaction features between design parameters can be effectively extracted, providing critical 

input for optimizing motor performance. This GNN-based design parameter modeling method 

compensates for the shortcomings of traditional design methods in handling complex multi-

parameter dependencies. However, relying solely on GNN for design parameter modeling and 

feature extraction is still insufficient to solve the global optimization problem in motor design[7]. 

Motor design often involves a complex combination of discrete and continuous variables, such as 

material selection and motor structure design dimensions. These variables need to be reconciled 

within a multi-objective optimization framework. Mixed-Integer Linear Programming (MILP), as 

a powerful optimization tool capable of handling discrete and continuous variables, offers the 

ability to find global optima while satisfying multiple constraints, overcoming the problem of 

traditional optimization algorithms falling into local optima in complex design tasks[8]. By using 

GNN-extracted design parameter features as input, MILP can further optimize the overall motor 

design, ensuring that the design not only meets multi-objective performance requirements but also 

finds the global optimal solution under constraint conditions. Additionally, the importance of 

different parameters to motor performance varies with design environments and application needs, 

making the reasonable setting of design weights crucial. Traditional optimization algorithms 

usually use fixed parameter weights, which are difficult to dynamically adjust the importance of 

parameters in different design scenarios, resulting in the neglect of certain key parameters in 

specific contexts. To solve this problem, this paper introduces an adaptive weighting mechanism, 

which dynamically adjusts the weights of various parameters during the design process, allowing 

the optimization process to evaluate and adjust the contributions of each parameter in real-time. 
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This method not only effectively improves the efficiency of motor design but also maintains a high 

level of optimization performance in different application scenarios, solving the problems of 

inefficiency, difficulty in global optimization, and lack of dynamic adjustment capability in 

traditional design methods. 

The structure of this paper is as follows: The introduction section provides the background, 

existing challenges, and research motivation for motor design optimization. Next, the related work 

section reviews traditional motor design methods, Graph Neural Networks (GNN), Mixed-Integer 

Linear Programming (MILP), and adaptive weighting applications in optimization, and analyzes 

the limitations of existing methods. Subsequently, the methodology section elaborates on the motor 

optimization algorithm based on GNN, adaptive weighting, and MILP, including design parameter 

modeling, dynamic weight adjustment, and global optimization implementation. The experiments 

and results section demonstrates the effectiveness of the algorithm through comparative 

experiments, verifying its application value in motor design. Finally, the conclusion summarizes 

the main contributions of this paper and provides an outlook for future research directions. The 

main contributions of this paper can be summarized as follows: 

1. This paper proposes a novel method for modeling the multi-parameter relationships in motor 

design using Graph Neural Networks (GNN). By treating the design parameters in motor design 

as graph nodes and using GNN's feature propagation mechanism to capture the complex 

dependencies between these nodes, the method addresses the challenge of traditional methods 

failing to effectively handle multi-parameter dependencies and provides more accurate data 

support for performance optimization. 

2. This paper combines Mixed-Integer Linear Programming (MILP) technology with GNN-

extracted design features, proposing a method for achieving global optimization of motor design 

under multi-objective and multi-constraint conditions. MILP can handle complex combinations of 

discrete and continuous variables, ensuring that the global optimal solution is found under multiple 

constraints, overcoming the problem of traditional optimization algorithms being prone to local 

optima in complex design tasks. 

3. An adaptive weighting mechanism is introduced, enabling the optimization algorithm to 

dynamically adjust the importance of different parameters based on their actual impact on motor 

performance. By adaptively adjusting parameter weights, the optimization process can more 

flexibly adapt to different design scenarios and requirements, ensuring that key parameters are 

fully considered in the optimization process, thus improving optimization accuracy and model 

adaptability. 

2. Related Work 

The optimization of motor design performance is a complex problem involving multiple objectives 

and constraints, and it has long attracted widespread attention from both academia and industry. 

To address issues such as parameter dependencies, low optimization efficiency, and poor global 

convergence in motor design, researchers have explored various methods, including traditional 

parameter optimization techniques, the application of Graph Neural Networks (GNN) in design 

optimization, the integration of Mixed-Integer Linear Programming (MILP), and adaptive weight 

optimization mechanisms[9]. Traditional motor design methods largely rely on the experience of 

designers and trial-and-error processes, utilizing numerical simulation tools such as Finite Element 

Analysis (FEA) or Computational Fluid Dynamics (CFD) to predict motor performance. Hameyer 

et al.[10] proposed a shape optimization method for fractional horsepower DC motors based on 

stochastic methods. They emphasized the challenges posed by highly complex design parameters 

and various constraints in the Automatic Optimization Design (AOD) of electromagnetic devices. 

By combining numerical field computation techniques such as the Finite Element Method (FEM) 

with stochastic optimization methods, a general and effective solution to these complex technical 
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issues was provided. Huang et al.[11] proposed a thermal design and analysis method for in-wheel 

motors based on oil spray cooling. Utilizing the flat structural characteristics of the in-wheel motor, 

they designed an oil spray cooling system and simulated the transient process of oil spraying from 

the nozzle onto the stator carrier and dripping onto the winding ends using a two-phase CFD 

method with a volume of fluid model. The effectiveness of this cooling system and the simulation 

method was validated through prototyping. These methods can provide estimates of various motor 

performance metrics (such as efficiency, power output, and temperature rise), but due to the 

complex manual tuning process, they are inefficient and struggle to find optimal solutions in large 

parameter spaces. In addition, early motor optimization methods typically used heuristic 

optimization algorithms, such as Genetic Algorithms (GA)[12] and Particle Swarm Optimization 

(PSO)[13], which simulate biological evolution or natural group behavior to gradually optimize 

design parameters. However, while heuristic algorithms can handle non-linear problems in motor 

design, their limitation lies in often finding only local optima, and their efficiency is low when 

dealing with complex multi-objective problems. 

With the development of deep learning technologies, more and more research has applied these 

techniques to motor design optimization. In particular, Graph Neural Networks (GNNs), which 

propagate information through the structural features of graphs, can effectively aggregate 

information between nodes and capture complex parameter relationships. This enables GNNs to 

automatically extract features in multi-dimensional motor design optimization without the need 

for manually preset feature engineering. Sabir et al. [14] proposed a GNN-based optimization 

method, GNN-GA-AST, to address the nonlinear fifth-order induction motor model (FO-IMM) 

problem. By discretizing the nonlinear FO-IMM with GNN, a fitness function with mean square 

error as the objective was generated. This method also demonstrated consistency, effectiveness, 

and rapid convergence in solving the FO-IMM problem through numerical experiments and 

statistical analysis. Tang et al.[15] proposed a fault diagnosis method for induction motors based 

on a Graph Cardinality Preserving Attention Network (GCPAT), which can operate under various 

conditions, including steady-state and transient states. This helps engineers predict potential failure 

modes during the design phase, optimizing motor structure and material selection, thereby 

enhancing its reliability and lifespan. However, although GNNs can effectively model complex 

parameter relationships in motor design, most existing studies focus on single-objective or small-

scale design problems. GNN’s modeling capabilities and optimization effects still need further 

improvement when dealing with large-scale design problems with multiple objectives and 

constraints. 

Mixed-Integer Linear Programming (MILP) is a widely used technique for optimization 

problems, capable of handling both discrete and continuous variables. In motor design, issues such 

as material selection, geometric design, and manufacturing processes often involve mixed 

variables. MILP provides an efficient optimization tool that ensures global optimal solutions under 

complex multi-objective and multi-constraint conditions. By establishing objective functions and 

linear constraints, it ensures that performance, cost, and manufacturing demands are met 

throughout the design process. Yamanaka et al.[16] proposed a MILP method for optimizing fuel 

consumption in Hybrid Electric Vehicle (HEV) power systems. By linearizing non-linear terms 

and employing piecewise linear and multilayer perceptron regression methods to approximate fuel 

consumption, the MILP optimization efficiently obtained Lagrange multipliers for design variables, 

facilitating effective design revision strategies. Robuschi et al.[17] proposed an iterative linear 

programming algorithm for calculating the optimal fuel energy management strategy of a parallel 

HEV under specific driving cycles. The method first established a mixed-integer model that 

included engine start-stop signals and gear shift commands, and by converting the fuel 

optimization problem into linear programming, the optimal shift trajectory and energy 

management strategy were quickly calculated, achieving a fuel-optimal control strategy with lower 
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computational burden. However, a major limitation of MILP in motor design lies in its 

computational complexity. As design parameters increase, MILP’s solution time may grow 

exponentially, especially when dealing with complex nonlinear constraints, making the solving 

process extremely complex. 

Traditional motor design optimization methods often use fixed weights, which cannot adjust 

the importance of parameters in real-time according to changing design needs, leading to some 

parameters being overlooked or overly considered in certain scenarios, thus affecting optimization 

results[18]. The adaptive weight mechanism dynamically adjusts the weights of design parameters 

during the optimization process by assessing their contribution to the final performance in real-

time, allowing the optimization algorithm to respond more flexibly to different design needs and 

scenarios. In multi-objective optimization problems, adaptive weights can enhance the algorithm’s 

sensitivity to local performance requirements while maintaining global optimization objectives, 

improving optimization efficiency[19]. However, the application of adaptive weight mechanisms 

in motor design optimization is still in its early stages. Effectively implementing dynamic weight 

adjustments and integrating them with other optimization algorithms require further 

exploration[20]. Although the aforementioned methods have made some progress in motor design 

optimization, they still have some limitations. Traditional heuristic algorithms tend to fall into local 

optima, GNNs, while effective at modeling complex parameter dependencies, are not yet mature 

in large-scale optimization problems. MILP has strong capabilities for solving global optimization 

problems but suffers from high computational complexity, and adaptive weight mechanisms still 

face challenges in dynamically adjusting weights during the optimization process. This paper 

combines GNN, adaptive weights, and MILP to construct a motor design optimization framework 

that handles complex design parameter relationships, dynamically adjusts optimization weights, 

and achieves global optimal solutions. By using GNN to model motor design parameters, this 

approach addresses the issue of traditional optimization methods being unable to effectively 

capture multi-parameter dependencies. The introduction of an adaptive weight mechanism 

enhances the model’s flexibility across different design scenarios. The integration of MILP ensures 

the ability to solve for the global optimum, significantly improving the effectiveness and efficiency 

of motor design optimization. 

3. Method 

Figure 1 illustrates the overall architecture of the motor optimization design algorithm proposed in 

this paper. First, the input is transformed into a graph representation, and a Graph Neural Network 

(GNN) is used to model the complex parameter relationships in motor design. Combined with 

Mixed-Integer Linear Programming (MILP) for prediction, it outputs the marginal probability of 

the variables. During this process, an adaptive weighting mechanism dynamically adjusts the 

importance of each parameter, ensuring that parameters with a significant impact on performance 

are prioritized in different design scenarios. Next, the algorithm selects key variables based on 

marginal probability, applies a rounding strategy to obtain an initial solution, and further refines 

this solution through trust-region search to approach the global optimum. The final output is a 

near-optimal design solution, achieving multi-objective optimization and efficient optimization 

under multiple constraints in motor design. 
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Figure 1. Overall algorithm architecture. 

3.1 Graph Neural Network Architecture 

In motor design optimization, there are often complex dependencies among design parameters. To 

effectively model these dependencies, a Graph Neural Network (GNN) is used to extract features 

and optimize the design solution. The network architecture is shown in Figure 2. First, the motor 

design parameters are modeled as an undirected graph G = (V, E), where V represents the set of 

nodes, with each node v ∈ V corresponding to a design parameter. E represents the set of edges, 

and an edge (u, v) ∈ E represents the dependency or interaction between design parameters u 

and v. Each node v has an initial feature vector hv
(0)

∈ Rd , representing the attributes of the 

parameter. The weight of the edge wuv  represents the strength of the relationship between 

parameters u and v, which can be set based on physical constraints, empirical rules, or historical 

data. 

 

Figure 2. GNN network architecture diagram. 

To update and propagate the features of the nodes, this paper uses a Graph Convolutional 

Network (GCN) to implement feature propagation and aggregation. The basic idea of GCN is to 

update each node's representation by aggregating the features of its neighboring nodes. The feature 

vector of each node in the l-th layer is updated through its neighboring nodes' features, with the 

specific update formula as follows: 

 
( 1) ( ) ( ) ( ) ( )

( )

l l l l luv
v u v

u v v u

w
h W h W h

d d
+



 
= + 

 
 
  (1) 

where hv
(l+1)

 is the feature vector of node v in the l + 1-th layer, 𝒩(v) is the set of neighbors 

of node v, wuv is the weight of the edge (u, v), dv and du represent the degrees of nodes v 

and u respectively, W(l) is the weight matrix of the l-th layer, and σ is a nonlinear activation 

function. 
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To avoid numerical instability during feature propagation, a normalized form of the graph 

Laplacian matrix is used for neighborhood feature aggregation: 

 

1 1

2 2A D AD
− −

=  (2) 

where A is the adjacency matrix of the graph, and D is the degree matrix. This ensures stability 

during information transfer in feature propagation. To capture the global dependencies among 

design parameters, a multi-layer GNN architecture is used. The features of each node depend on 

the features of its neighboring nodes in each layer, and through stacking multiple layers, the 

features of a node can aggregate information from farther neighbors, forming a global feature 

representation. The feature update formula for the l-th layer is: 

 ( )( 1) ( ) ( )l l lH AH W+ =  (3) 

where H(l)  is the feature matrix of all nodes, the output of the l-th layer, and W(l)  is the 

learnable weight matrix of the l-th layer. By stacking multiple GNN layers, the features of nodes 

can aggregate information from farther nodes layer by layer. After multiple layers of GNN feature 

extraction, the final feature representation of each node contains global information from itself and 

its neighboring nodes. To achieve global optimization, these node features are further processed 

into a global feature representation z ∈ Rd , which is used as the input to the subsequent 

optimization module. The final global feature representation can be obtained by pooling the feature 

vectors of all nodes: 

 
( )Pool({ | })L

vz h v V=   (4) 

where hv
(L)

 is the node feature after L layers of GNN. By using GNN, the complex dependencies 

among motor design parameters are effectively modeled. 

3.2 Mixed-Integer Linear Programming Architecture 

In motor design optimization, it is necessary to handle both continuous and discrete decision 

variables. Therefore, MILP is used to handle these mixed-type variables and achieve global 

optimization under multiple objectives and constraints. The network architecture is shown in 

Figure 3. MILP defines an objective function and combines linear constraints to find the optimal 

solution globally, making it an effective tool for addressing complex motor design optimization 

problems. The MILP problem can be formulated as the following optimization problem: 

 min ( , ) T Tf x y c x d y= +  (5) 

 

Figure 3. MILP algorithm architecture diagram. 

where x ∈ Rn are continuous variables, y ∈ Zm are integer variables, and c ∈ Rn and d ∈ Rm 

are the coefficient vectors of the objective function, representing the design parameters to be 
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optimized. The goal of MILP is to minimize the objective function f(x, y), subject to a series of 

linear constraints: 

 Ax By b+   (6) 

where A ∈ Rp×n, B ∈ Rp×m, and b ∈ Rp. These constraints represent the physical, performance, 

or material limitations during the design process, such as power limits, thermal management 

requirements, or material properties. 

In motor design optimization, the objective function typically includes multiple sub-objectives, 

such as minimizing loss, maximizing efficiency, and controlling costs. By weighting these 

objectives, a composite optimization objective is formed: 

 1 1 2 2min ( , ) ( , ) ( , ) ( , )k kf x y f x y f x y f x y  = + + +  (7) 

where f1, f2, … , fk  are different objective functions, and λ1, λ2, … , λk  are the weights of each 

objective, which can be adjusted according to design needs. The objective function is defined 

according to different design requirements. The efficiency maximization function improves the 

motor's energy conversion efficiency and reduces operating losses. This goal is usually achieved 

by optimizing design parameters such as motor geometry and winding structure. The 

corresponding objective function can be defined as the negative value of motor efficiency: 

 efficiency( , ) ( , )f x y x y=−  (8) 

where η(x, y) represents the motor's efficiency, which is a function of design parameters x and 

y. The cost minimization function reduces the total cost of motor manufacturing, including material 

and manufacturing costs. The objective function can be expressed as the weighted sum of material 

and manufacturing costs: 

 

 cost material material manufacture manufacture( , ) ( , ) ( , )f x y C x y C x y =  +   (9) 

where Cmaterial(x, y) and Cmanufacture(x, y) are the material and manufacturing costs, and αmaterial 

and αmanufacture  are the weight coefficients. The thermal management optimization function 

controls the motor's temperature rise to prevent damage due to overheating. The corresponding 

objective function can be defined as: 

 thermal ( , ) ( , )f x y T x y=  (10) 

where T(x, y) represents the maximum temperature rise of the motor under the given design 

conditions. To ensure that the optimization results are feasible in real-world applications, power 

constraints ensure that the motor's output power meets design requirements: 

 output required( , )P x y P  (11) 

where Poutput(x, y) is the output power of the motor design, and Prequired is the minimum power 

requirement. Temperature constraints limit the motor's maximum operating temperature to prevent 

overheating: 

 max( , )T x y T  (12) 
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where Tmax is the maximum allowable temperature. Material and geometry constraints limit the 

selection of materials and geometric dimensions within reasonable ranges: 

 min max( , )L L x y L   (13) 

 min max( , )M M x y M   (14) 

where L(x, y) and M(x, y) represent the geometric dimensions and mass of the motor. Finally, 

CPLEX is used to solve the MILP problem and find the optimal design parameters x∗, y∗ that 

minimize the objective function while satisfying all constraints. This method not only captures the 

complex dependencies among parameters but also performs global optimization, ensuring optimal 

performance under multi-objective and multi-constraint conditions. 

3.3 Adaptive Weighting 

The adaptive weighting mechanism dynamically adjusts the weight values by evaluating the 

contribution of each design parameter to the final objective function in real-time. This ensures that 

each parameter receives appropriate attention during different optimization stages. By 

automatically adjusting the importance of parameters according to their impact on performance, 

the optimization algorithm can flexibly handle complex design scenarios. The adaptive weighting 

mechanism expresses the optimization of the objective function as follows: 

 
1

min ( , , ) ( , )
k

i i

i

f x y w w f x y
=

=  (15) 

where wi  is the adaptive weight of the i-th objective function fi(x, y), and f(x, y, w) is the 

weighted composite objective function. The adaptive weights wi are dynamically updated during 

the optimization process. 

At the start of the optimization, the weights wi of all design parameters are initialized based 

on the design task's priorities. In the absence of specific priorities, the weights of all objective 

functions can be initialized to the same value: 

 
1

,iw i
k

=   (16) 

where k  is the number of objective functions. If the designer has prior knowledge of the 

importance of different objectives, the weights wi can be assigned based on experience: 

 

1

priority

priority

i
i k

j

j

w

=

=


 (17) 

where priority
i
 is the priority of the i-th objective function. 

As the optimization process progresses, the influence of design parameters on the objective 

function may change, necessitating dynamic weight adjustment. This paper employs a gradient-

based feedback mechanism to adjust the weights by evaluating the impact of each design parameter 

on the current objective function. The basic idea of weight updating is to adjust the weight 
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corresponding to each objective function based on its rate of change during the optimization 

process. The weight update formula is as follows: 

 
( 1) ( )

( )

t t i
i i t

i

f x
w w

x w
+  

= − 
 

 (18) 

where wi
(t)

 is the weight of the i -th objective at the t -th iteration, α  is the learning rate 

controlling the speed of weight update, and 
∂fi

∂x
 represents the gradient of the design parameter x 

with respect to the objective function fi. Through this gradient descent mechanism, parameters 

with greater influence on the objective function receive higher weights, while parameters with less 

impact have their weights reduced. The adaptive weighting mechanism dynamically adjusts 

parameter weights, enabling the optimization algorithm to effectively balance different design 

objectives, thus improving overall optimization performance in motor design. 

4. Experiment 

4.1 Experimental Data 

Dataset 1 mainly focuses on optimizing the geometric design parameters of the motor[21], 

including seven key stator geometric parameters such as tooth head overhang 1, height of tooth 

head, tangential groove width, stator inner diameter, tooth head overhang 2, tooth width near air 

gap, and iron length, which vary during the simulation, while other electrical parameters (such as 

the number of slots, phase voltage, and phase current) remain constant. The generation of Dataset 

1 is based on geometric models created using Computer-Aided Design (CAD). These geometric 

design parameters are then input into simulation software, which converts them into pixelized 

images, with each pixel representing different motor material components (such as air, metal, 

magnet, etc.). Through the simulation process, 68,099 samples were generated, and key 

performance indicators (KPIs) were derived for each design, including active part costs, critical 

field strength, maximum torque, maximum power, efficiency, and more. Table 1 lists the key 

performance indicators (KPIs) for Dataset 1, including costs of active parts, critical field strength, 

maximum torque, maximum power, efficiency, etc. By analyzing these KPIs, the impact of 

geometric parameter variations on motor performance can be assessed, and the design can be 

optimized accordingly. 

Dataset 2 expands upon the modeling scope of Dataset 1, covering both stator and rotor 

geometric parameters[22]. The model for Dataset 2 includes 12 variables, representing the design 

of the full-pole cross-section of the motor. By modeling both the stator and rotor simultaneously, 

the samples generated from this dataset can more comprehensively reflect the overall performance 

of the motor. Similar to Dataset 1, these geometric parameters are transformed into pixelized 

images for simulation. A total of 7,744 samples were generated. Table 2 lists the KPIs for Dataset 

2, including total cost, maximum torque, maximum power at maximum rpm, iron losses, copper 

losses, and the mass of different components. Dataset 2 is particularly suitable for studying the 

synergy between stator and rotor parameters and provides more detailed feedback during the 

optimization process. 
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Table1. Dataset 1 KPI introduction. 

KPI Parameter Description Unit 

𝑧1 Total cost Euro 

𝑧2 Critical magnetic field kA/m 

𝑧3 Peak torque Nm 

𝑧4 Maximum power W 

𝑧5 Efficiency rating % 

𝑧6 Torque fluctuation Nm 

𝑧7 Ripple behavior - 

𝑧8 Converter losses W 

𝑧9 Acoustic noise level dBA 

𝑧10 Highest magnet temperature K 

𝑧11 Peak winding temperature K 

 

Table2. Dataset 2 KPI introduction. 

KPI Parameter Description Unit 

𝑞1 Total cost Euro 

𝑞2 Peak torque kA/m 

𝑞3 Maximum power at top speed Nm 

𝑞4 Iron losses W 

𝑞5 Copper losses W 

𝑞6 Maximum torque ripple Nmp 

𝑞7 Iron mass Kg 

𝑞8 Copper mass Kg 

𝑞9 Magnet mass Kg 

𝑞10 Torque ripple characteristics unitless 

4.2 Evaluation Metrics 

To evaluate the model's performance, two key evaluation metrics are employed: the dimensionless 

Mean Relative Error (MRE) and the Pearson Correlation Coefficient (PCC). These two metrics 

assess the accuracy of the model's predictions and the correlation between the input-output 

mappings from different perspectives. The Mean Relative Error is used to evaluate the relative 

error between the predicted and true values of the model. It is suitable for multi-output nonlinear 

regression problems where each Key Performance Indicator (KPI) has different dimensions. MRE 

is calculated using the following formula: 

 

( ) ( )

( )
1

ˆ1
100

test
i in

j j

i
itest j

y y
MRE

n y=

−
=   (19) 

where yj
(i)

 is the true value of the i-th test sample, yj
(i)̂

 is the predicted value of the model, and 

ntestis the number of test samples. MRE is expressed as a percentage to measure the degree of 
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deviation in the prediction results. This metric quantifies the accuracy of the model's predictions, 

with lower values indicating more accurate predictions. 

The Pearson Correlation Coefficient (PCC) is used to measure the linear correlation between 

the input parameters and the target output. By calculating the correlation between the true values 

and the predicted values, PCC reflects the accuracy of the model's mapping to the target output. 

The formula is: 

 

( )( )

( ) ( )

( ) ( )

1

22
( ) ( )

1 1

ˆ ˆ

ˆ ˆ

test

test test

n
i i

j j j j

i

n n
i i

j j j j

i i

y y y y

PCC

y y y y

=

= =

− −

=

− −



 

 (20) 

where yj̅ and ŷj̅ are the mean values of the true and predicted values, respectively. The PCC 

ranges from [-1, 1], with values closer to 1 indicating a stronger linear correlation between the 

model's predictions and the true values, implying better model performance. 

4.3 Experimental Comparison and Analysis 

Verify the effectiveness of the motor design performance optimization algorithm based on graph 

neural network representation and adaptive weights through experiments. We selected key 

performance indicators (KPIs) from the motor design task and divided them into Dataset 1 and 

Dataset 2. Using these datasets, we compared the performance of four models: GNN, MILP, AW, 

and the final fusion model. The experiments employed Mean Relative Error (MRE) and Pearson 

Correlation Coefficient (PCC) as evaluation metrics. MRE measures the error between the model's 

predicted values and the actual values, while PCC assesses the correlation between the predicted 

results and the actual values. 

Table 4 provides a detailed comparison of the four models' performance on Dataset 1, 

primarily measuring model performance through MRE and PCC. First, the GNN model showed 

good performance across various indicators, but had a relatively high MRE value. For example, 

for the z1 indicator, MRE was 1 and PCC was 0.91, indicating that the GNN model has strong 

correlation on this indicator but significant prediction error. For other indicators, such as z3 and 

z5, MREs were 0.61 and 0.56, with PCCs of 0.91 and 0.86, respectively, showing that the GNN 

predicts certain indicators accurately, but overall error still needs improvement. In comparison, the 

MILP model has certain advantages in handling global optimization problems, but MRE increased 

for some indicators; for example, for z2 and z4, MREs were 1.34 and 1.3, with PCCs of 0.89 and 

0.87, indicating that the MILP model tends to get trapped in local optima for these indicators, 

leading to increased prediction error. The AW model (adaptive weight model) enhances prediction 

accuracy by dynamically adjusting weights. For indicators z3 , z5 , and z8 , the AW model 

achieved PCCs of 0.95, 0.92, and 0.93, showing strong correlation for these indicators. However, 

MRE increased for some indicators, such as z2 , where MRE reached 1.91, indicating that in 

certain cases, adjusting the adaptive weights may lead to increased prediction error. The final 

model integrates the advantages of GNN, MILP, and AW, performing well across multiple 

indicators, significantly reducing MRE and improving PCC. Additionally, Figure 4 clearly 

demonstrates the final model's predictive capability across different performance indicators, 

validating the model's effectiveness in motor design performance optimization. 

Table 5 presents the performance comparison of each model on Dataset 2. It can be observed 

that the final model significantly reduced MRE across all indicators, indicating its predictive 

accuracy is notably superior to other models. Meanwhile, PCC improved to above 0.9 in most 



 

13 

 

cases, suggesting that the final model's predictions have a stronger correlation with actual values. 

Particularly for indicators q1  and q3 , the final model saw the greatest reduction in MRE, 

dropping to 0.43 and 0.19, while PCC increased to 0.96 and 0.93, respectively. This indicates that 

the final model not only improved prediction accuracy when processing Dataset 2 but also 

demonstrated more stable performance across different indicators. In contrast, the GNN, MILP, 

and AW models exhibited more dispersed performance in terms of MRE and PCC, failing to 

achieve the same level of optimization. Additionally, Figure 5 illustrates the prediction results of 

the final model across various indicators on Dataset 2, showing the distribution of predicted values 

compared to actual values, indicating the final model's high prediction accuracy for these indicators. 

Table4. Comparison of related indicators on dataset 1. 

Model 
GNN MILP AW Final Model 

MRE PCC MRE PCC MRE PCC MRE PCC 

𝑧1 1 0.91 0.67 0.93 0.91 0.93 0.13 0.98 

𝑧2 1.3 0.82 1.34 0.89 1.91 0.89 0.54 0.94 

𝑧3 0.61 0.91 0.79 0.9 1.02 0.95 0.22 0.99 

𝑧4 0.79 0.92 1.3 0.87 0.68 0.92 0.14 0.96 

𝑧5 0.56 0.86 1.01 0.86 1.65 0.92 0.08 0.94 

𝑧6 1.96 0.89 2.53 0.91 2.91 0.91 1.38 0.98 

𝑧7 1.97 0.83 2.6 0.85 1.86 0.87 1.22 0.95 

𝑧8 0.78 0.9 0.64 0.93 0.56 0.93 0.26 0.98 

𝑧9 1.09 0.88 1.3 0.87 1.21 0.89 0.34 0.97 

𝑧10 0.43 0.89 1.41 0.93 1.14 0.96 0.16 0.98 

𝑧11 1.22 0.83 1.5 0.89 1.64 0.93 0.42 0.95 

 

Table5. Comparison of related indicators on dataset 2. 

Model 
GNN MILP AW Final Model 

MRE PCC MRE PCC MRE PCC MRE PCC 

𝑞1 0.99 0.9 1.85 0.89 1.64 0.92 0.43 0.96 

𝑞2 0.6 0.88 0.6 0.9 0.95 0.91 0.32 0.94 

𝑞3 1.11 0.84 1.4 0.85 1.73 0.85 0.19 0.93 

𝑞4 0.94 0.9 1.47 0.92 0.96 0.88 0.26 0.96 

𝑞5 0.38 0.83 0.4 0.89 1.66 0.88 0.13 0.95 

𝑞6 1.04 0.89 0.82 0.86 1.39 0.91 0.47 0.94 

𝑞7 1.29 0.81 1.35 0.83 1.73 0.88 1.06 0.92 

𝑞8 1.15 0.9 1.1 0.91 1.54 0.91 0.37 0.96 

𝑞9 1.14 0.85 1.61 0.89 1.54 0.9 0.42 0.94 

𝑞10 0.45 0.9 1.33 0.93 1.57 0.9 0.23 0.97 
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Figure 4. Metrics predictions for the final model on dataset 1. 
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Figure 5. Metrics predictions for the final model on dataset 2. 

5. Conclusion 

In this paper, we proposed a novel motor design performance optimization algorithm that 

integrates Graph Neural Networks (GNN), Mixed-Integer Linear Programming (MILP), and an 

adaptive weighting mechanism. The algorithm addresses several key challenges in modern motor 

design, including the complexity of multi-parameter dependencies, the difficulty of global 

optimization, and the need for dynamic weight adjustment in multi-objective scenarios. Through 

the use of GNN, the algorithm effectively captures the intricate relationships between various 

design parameters, allowing for a more accurate representation of motor characteristics. MILP 

ensures global optimization across both continuous and discrete variables, overcoming the 

limitations of traditional optimization algorithms that often fall into local optima. The introduction 

of adaptive weighting further enhances the model’s ability to adjust the importance of different 

parameters in real-time, ensuring that the design process remains flexible and adaptive to different 

performance requirements. Experimental results on two datasets demonstrated that the proposed 

algorithm significantly improves both accuracy and global optimization performance compared to 

traditional methods. The final integrated model consistently outperformed standalone GNN, MILP, 

and adaptive weighting models, achieving lower Mean Relative Error (MRE) and higher Pearson 
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Correlation Coefficient (PCC) in multiple KPIs. In conclusion, this work presents an efficient and 

scalable framework for motor design optimization, capable of handling the increasing complexity 

and performance demands in fields such as electric vehicles and intelligent manufacturing. Future 

research could explore further improvements in optimization techniques and applications to more 

diverse motor designs and configurations, enhancing the algorithm’s adaptability and 

generalization across different industrial domains. 
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