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Abstract: Motor design involves a variety of complex parameters, and traditional
aﬁproaches often rely on experience and experimentation, which can be inefficient and
challenging to optimize. With the rapid growth of industries such as electric vehicles and
intelligent manufacturing, the demand for improved motor performance continues to rise.
Optimizing motor designs under multi-objective and multi-constraint conditions has
become a critical challenge. To address this, this paper introduces a motor design
performance optimization algorithm that leverages Graph Neural Networks (GNN) and
adaptive weighting techniques. GNN, a deep learning model adept at handling complex
structured data, is capable of modeling the relationships between multiple parameters in
motor design. Its feature propagation mechanism allows for automatic extraction of
essential features, effectively addressing the limitations of traditional methods in
capturing parameter dependencies. Additionally, Mixed-Integer Linear Programmin
(MILP) serves as a robust global optimization tool, capable of finding the optima
solution even in the presence of complex decision variables and constraints, overcoming
the global convergence issues associated with conventional optimization algorithms. The
adaptive weighting mechanism further enhances the algorithm by dynamically adjusting
the weights based on the parameters' influence on motor performance, ensuring more
accurate and adaptable optimization results across different scenarios. By combining
these three techniques, this paper aims to resolve issues related to inefficiency, poor
global convergence, and the static nature of parameter weighting in traditional motor
esign optimization. This approach integrates advanced machine learning models and
optimization algorithms to create an efficient framework for motor design performance
optimization.

Keywords: Motor design; GNN; Adaptive weighting; MILP; Performance optimization;
Parameter dependency.
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1. Introduction

Motors, as a core component of modern industry and technology development, are widely used in
electric vehicles, intelligent manufacturing, aerospace, and other fields, driving the efficient
operation and functional realization of modern equipment. Especially with the rapid development
of electric vehicles and renewable energy technologies, the requirements for motors have been
continuously increasing, demanding not only higher efficiency and lower energy consumption but
also the ability to maintain stable performance under multi-objective and multi-constraint
conditions[1]. The key performance indicators in motor design include power output, efficiency,
thermal management, power-to-weight ratio, and cost, which often have complex trade-offs[2].
Therefore, optimizing motor design while meeting multiple performance requirements has become
an important research topic in modern motor design. Most traditional motor design methods rely
on designers' experience and repeated experiments, using rule-based simulation or finite element
analysis tools for performance prediction and adjustment[3]. While these methods can meet the
demands of motor design to some extent, with the increasing complexity of motor designs,
traditional methods are gradually exposing two major issues: one is the inefficiency of the design
process, relying on repeated experiments and iterations, which is not only time-consuming but also
prone to local optima[4]; the second is that traditional methods struggle to cope with the complex
dependencies in multi-parameter, multi-objective designs [5]. Especially in aspects such as motor
geometry design, material selection, and production processes, multiple design parameters often
interact to form complex dependency structures, which traditional methods struggle to capture
comprehensively.

To address these challenges, the introduction of machine learning and optimization techniques
in recent years has brought new opportunities to the field of motor design. In particular, Graph
Neural Networks (GNN)[6], as a deep learning model capable of effectively handling graph-
structured data, have shown significant advantages in capturing complex structural relationships
and high-dimensional data. The various parameters in motor design and their dependencies can be
naturally modeled as a graph structure, with design parameters as nodes and edges representing
dependencies between parameters. Through GNN's information propagation mechanism, the
interaction features between design parameters can be effectively extracted, providing critical
input for optimizing motor performance. This GNN-based design parameter modeling method
compensates for the shortcomings of traditional design methods in handling complex multi-
parameter dependencies. However, relying solely on GNN for design parameter modeling and
feature extraction is still insufficient to solve the global optimization problem in motor design[7].
Motor design often involves a complex combination of discrete and continuous variables, such as
material selection and motor structure design dimensions. These variables need to be reconciled
within a multi-objective optimization framework. Mixed-Integer Linear Programming (MILP), as
a powerful optimization tool capable of handling discrete and continuous variables, offers the
ability to find global optima while satisfying multiple constraints, overcoming the problem of
traditional optimization algorithms falling into local optima in complex design tasks[8]. By using
GNN-extracted design parameter features as input, MILP can further optimize the overall motor
design, ensuring that the design not only meets multi-objective performance requirements but also
finds the global optimal solution under constraint conditions. Additionally, the importance of
different parameters to motor performance varies with design environments and application needs,
making the reasonable setting of design weights crucial. Traditional optimization algorithms
usually use fixed parameter weights, which are difficult to dynamically adjust the importance of
parameters in different design scenarios, resulting in the neglect of certain key parameters in
specific contexts. To solve this problem, this paper introduces an adaptive weighting mechanism,
which dynamically adjusts the weights of various parameters during the design process, allowing
the optimization process to evaluate and adjust the contributions of each parameter in real-time.
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This method not only effectively improves the efficiency of motor design but also maintains a high
level of optimization performance in different application scenarios, solving the problems of
inefficiency, difficulty in global optimization, and lack of dynamic adjustment capability in
traditional design methods.

The structure of this paper is as follows: The introduction section provides the background,
existing challenges, and research motivation for motor design optimization. Next, the related work
section reviews traditional motor design methods, Graph Neural Networks (GNN), Mixed-Integer
Linear Programming (MILP), and adaptive weighting applications in optimization, and analyzes
the limitations of existing methods. Subsequently, the methodology section elaborates on the motor
optimization algorithm based on GNN, adaptive weighting, and MILP, including design parameter
modeling, dynamic weight adjustment, and global optimization implementation. The experiments
and results section demonstrates the effectiveness of the algorithm through comparative
experiments, verifying its application value in motor design. Finally, the conclusion summarizes
the main contributions of this paper and provides an outlook for future research directions. The
main contributions of this paper can be summarized as follows:

1. This paper proposes a novel method for modeling the multi-parameter relationships in motor
design using Graph Neural Networks (GNN). By treating the design parameters in motor design
as graph nodes and using GNN's feature propagation mechanism to capture the complex
dependencies between these nodes, the method addresses the challenge of traditional methods
failing to effectively handle multi-parameter dependencies and provides more accurate data
support for performance optimization.

2. This paper combines Mixed-Integer Linear Programming (MILP) technology with GNN-
extracted design features, proposing a method for achieving global optimization of motor design
under multi-objective and multi-constraint conditions. MILP can handle complex combinations of
discrete and continuous variables, ensuring that the global optimal solution is found under multiple
constraints, overcoming the problem of traditional optimization algorithms being prone to local
optima in complex design tasks.

3. An adaptive weighting mechanism is introduced, enabling the optimization algorithm to
dynamically adjust the importance of different parameters based on their actual impact on motor
performance. By adaptively adjusting parameter weights, the optimization process can more
flexibly adapt to different design scenarios and requirements, ensuring that key parameters are
fully considered in the optimization process, thus improving optimization accuracy and model
adaptability.

2. Related Work

The optimization of motor design performance is a complex problem involving multiple objectives
and constraints, and it has long attracted widespread attention from both academia and industry.
To address issues such as parameter dependencies, low optimization efficiency, and poor global
convergence in motor design, researchers have explored various methods, including traditional
parameter optimization techniques, the application of Graph Neural Networks (GNN) in design
optimization, the integration of Mixed-Integer Linear Programming (MILP), and adaptive weight
optimization mechanisms[9]. Traditional motor design methods largely rely on the experience of
designers and trial-and-error processes, utilizing numerical simulation tools such as Finite Element
Analysis (FEA) or Computational Fluid Dynamics (CFD) to predict motor performance. Hameyer
et al.[10] proposed a shape optimization method for fractional horsepower DC motors based on
stochastic methods. They emphasized the challenges posed by highly complex design parameters
and various constraints in the Automatic Optimization Design (AOD) of electromagnetic devices.
By combining numerical field computation techniques such as the Finite Element Method (FEM)
with stochastic optimization methods, a general and effective solution to these complex technical
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issues was provided. Huang et al.[11] proposed a thermal design and analysis method for in-wheel
motors based on oil spray cooling. Utilizing the flat structural characteristics of the in-wheel motor,
they designed an oil spray cooling system and simulated the transient process of oil spraying from
the nozzle onto the stator carrier and dripping onto the winding ends using a two-phase CFD
method with a volume of fluid model. The effectiveness of this cooling system and the simulation
method was validated through prototyping. These methods can provide estimates of various motor
performance metrics (such as efficiency, power output, and temperature rise), but due to the
complex manual tuning process, they are inefficient and struggle to find optimal solutions in large
parameter spaces. In addition, early motor optimization methods typically used heuristic
optimization algorithms, such as Genetic Algorithms (GA)[12] and Particle Swarm Optimization
(PSO)[13], which simulate biological evolution or natural group behavior to gradually optimize
design parameters. However, while heuristic algorithms can handle non-linear problems in motor
design, their limitation lies in often finding only local optima, and their efficiency is low when
dealing with complex multi-objective problems.

With the development of deep learning technologies, more and more research has applied these
techniques to motor design optimization. In particular, Graph Neural Networks (GNNs), which
propagate information through the structural features of graphs, can effectively aggregate
information between nodes and capture complex parameter relationships. This enables GNNs to
automatically extract features in multi-dimensional motor design optimization without the need
for manually preset feature engineering. Sabir et al. [14] proposed a GNN-based optimization
method, GNN-GA-AST, to address the nonlinear fifth-order induction motor model (FO-IMM)
problem. By discretizing the nonlinear FO-IMM with GNN, a fitness function with mean square
error as the objective was generated. This method also demonstrated consistency, effectiveness,
and rapid convergence in solving the FO-IMM problem through numerical experiments and
statistical analysis. Tang et al.[15] proposed a fault diagnosis method for induction motors based
on a Graph Cardinality Preserving Attention Network (GCPAT), which can operate under various
conditions, including steady-state and transient states. This helps engineers predict potential failure
modes during the design phase, optimizing motor structure and material selection, thereby
enhancing its reliability and lifespan. However, although GNNs can effectively model complex
parameter relationships in motor design, most existing studies focus on single-objective or small-
scale design problems. GNN’s modeling capabilities and optimization effects still need further
improvement when dealing with large-scale design problems with multiple objectives and
constraints.

Mixed-Integer Linear Programming (MILP) is a widely used technique for optimization
problems, capable of handling both discrete and continuous variables. In motor design, issues such
as material selection, geometric design, and manufacturing processes often involve mixed
variables. MILP provides an efficient optimization tool that ensures global optimal solutions under
complex multi-objective and multi-constraint conditions. By establishing objective functions and
linear constraints, it ensures that performance, cost, and manufacturing demands are met
throughout the design process. Yamanaka et al.[16] proposed a MILP method for optimizing fuel
consumption in Hybrid Electric Vehicle (HEV) power systems. By linearizing non-linear terms
and employing piecewise linear and multilayer perceptron regression methods to approximate fuel
consumption, the MILP optimization efficiently obtained Lagrange multipliers for design variables,
facilitating effective design revision strategies. Robuschi et al.[17] proposed an iterative linear
programming algorithm for calculating the optimal fuel energy management strategy of a parallel
HEV under specific driving cycles. The method first established a mixed-integer model that
included engine start-stop signals and gear shift commands, and by converting the fuel
optimization problem into linear programming, the optimal shift trajectory and energy
management strategy were quickly calculated, achieving a fuel-optimal control strategy with lower
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computational burden. However, a major limitation of MILP in motor design lies in its
computational complexity. As design parameters increase, MILP’s solution time may grow
exponentially, especially when dealing with complex nonlinear constraints, making the solving
process extremely complex.

Traditional motor design optimization methods often use fixed weights, which cannot adjust
the importance of parameters in real-time according to changing design needs, leading to some
parameters being overlooked or overly considered in certain scenarios, thus affecting optimization
results[18]. The adaptive weight mechanism dynamically adjusts the weights of design parameters
during the optimization process by assessing their contribution to the final performance in real-
time, allowing the optimization algorithm to respond more flexibly to different design needs and
scenarios. In multi-objective optimization problems, adaptive weights can enhance the algorithm’s
sensitivity to local performance requirements while maintaining global optimization objectives,
improving optimization efficiency[19]. However, the application of adaptive weight mechanisms
in motor design optimization is still in its early stages. Effectively implementing dynamic weight
adjustments and integrating them with other optimization algorithms require further
exploration[20]. Although the aforementioned methods have made some progress in motor design
optimization, they still have some limitations. Traditional heuristic algorithms tend to fall into local
optima, GNNSs, while effective at modeling complex parameter dependencies, are not yet mature
in large-scale optimization problems. MILP has strong capabilities for solving global optimization
problems but suffers from high computational complexity, and adaptive weight mechanisms still
face challenges in dynamically adjusting weights during the optimization process. This paper
combines GNN, adaptive weights, and MILP to construct a motor design optimization framework
that handles complex design parameter relationships, dynamically adjusts optimization weights,
and achieves global optimal solutions. By using GNN to model motor design parameters, this
approach addresses the issue of traditional optimization methods being unable to effectively
capture multi-parameter dependencies. The introduction of an adaptive weight mechanism
enhances the model’s flexibility across different design scenarios. The integration of MILP ensures
the ability to solve for the global optimum, significantly improving the effectiveness and efficiency
of motor design optimization.

3. Method

Figure 1 illustrates the overall architecture of the motor optimization design algorithm proposed in
this paper. First, the input is transformed into a graph representation, and a Graph Neural Network
(GNN) is used to model the complex parameter relationships in motor design. Combined with
Mixed-Integer Linear Programming (MILP) for prediction, it outputs the marginal probability of
the variables. During this process, an adaptive weighting mechanism dynamically adjusts the
importance of each parameter, ensuring that parameters with a significant impact on performance
are prioritized in different design scenarios. Next, the algorithm selects key variables based on
marginal probability, applies a rounding strategy to obtain an initial solution, and further refines
this solution through trust-region search to approach the global optimum. The final output is a
near-optimal design solution, achieving multi-objective optimization and efficient optimization
under multiple constraints in motor design.
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Figure 1. Overall algorithm architecture.

3.1 Graph Neural Network Architecture

In motor design optimization, there are often complex dependencies among design parameters. To
effectively model these dependencies, a Graph Neural Network (GNN) is used to extract features
and optimize the design solution. The network architecture is shown in Figure 2. First, the motor
design parameters are modeled as an undirected graph G = (V,E), where V represents the set of
nodes, with each node v € V corresponding to a design parameter. E represents the set of edges,
and an edge (u,v) € E represents the dependency or interaction between design parameters u
and v. Each node v has an initial feature vector h‘(,o) € RY, representing the attributes of the
parameter. The weight of the edge wy, represents the strength of the relationship between
parameters u and v, which can be set based on physical constraints, empirical rules, or historical
data.
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Figure 2. GNN network architecture diagram.

To update and propagate the features of the nodes, this paper uses a Graph Convolutional
Network (GCN) to implement feature propagation and aggregation. The basic idea of GCN is to
update each node's representation by aggregating the features of its neighboring nodes. The feature
vector of each node in the 1-th layer is updated through its neighboring nodes' features, with the
specific update formula as follows:

hf”l) =J{ z Wuv \N(I)hél) +W(I)hEI)J (1)
ueN (v) vy

where h§,l+1) is the feature vector of node v inthe I+ 1-th layer, N (v) is the set of neighbors

of node v, wy, is the weight of the edge (u,v), d, and d, represent the degrees of nodes v
and u respectively, WO is the weight matrix of the 1-th layer, and o is a nonlinear activation
function.



To avoid numerical instability during feature propagation, a normalized form of the graph
Laplacian matrix is used for neighborhood featurei aggr(%gation:

A=D 2AD 2 2)
where A is the adjacency matrix of the graph, and D is the degree matrix. This ensures stability
during information transfer in feature propagation. To capture the global dependencies among
design parameters, a multi-layer GNN architecture is used. The features of each node depend on
the features of its neighboring nodes in each layer, and through stacking multiple layers, the
features of a node can aggregate information from farther neighbors, forming a global feature
representation. The feature update formula for the 1-th layer is:

H™ =& (AH ("W(')2 3)
where HO s the feature matrix of all nodes, the output of the 1-th layer, and W® s the
learnable weight matrix of the I-th layer. By stacking multiple GNN layers, the features of nodes
can aggregate information from farther nodes layer by layer. After multiple layers of GNN feature
extraction, the final feature representation of each node contains global information from itself and
its neighboring nodes. To achieve global optimization, these node features are further processed
into a global feature representation z € RY, which is used as the input to the subsequent
optimization module. The final global feature representation can be obtained by pooling the feature
vectors of all nodes:

z=Pool({h™™ [veV}) (4)
where h(L) is the node feature after L layers of GNN. By using GNN, the complex dependencies
among motor design parameters are effectively modeled.

3.2 Mixed-Integer Linear Programming Architecture

In motor design optimization, it is necessary to handle both continuous and discrete decision
variables. Therefore, MILP is used to handle these mixed-type variables and achieve global
optimization under multiple objectives and constraints. The network architecture is shown in
Figure 3. MILP defines an objective function and combines linear constraints to find the optimal
solution globally, making it an effective tool for addressing complex motor design optimization
problems. The MILP problem can be formulated as the following optimization problem:

min f(x,y)=c'x+d"y (5)
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Figure 3. MILP algorithm architecture diagram.

where x € R" are continuous variables, y € Z™ are integer variables, and ¢ € R"* and d € R™
are the coefficient vectors of the objective function, representing the design parameters to be
7



optimized. The goal of MILP is to minimize the objective function f(x,y), subject to a series of
linear constraints:

Ax+ By <b (6)
where A € RP*™, B € RP*™ and b € RP. These constraints represent the physical, performance,
or material limitations during the design process, such as power limits, thermal management
requirements, or material properties.

In motor design optimization, the objective function typically includes multiple sub-objectives,
such as minimizing loss, maximizing efficiency, and controlling costs. By weighting these
objectives, a composite optimization objective is formed:

min f(x,y) =410 Y)+ 24,06 y) ++ A4 £ (X, Y) @)

where f;,f,, ..., fi are different objective functions, and A4,2,,...,A; are the weights of each
objective, which can be adjusted according to design needs. The objective function is defined
according to different design requirements. The efficiency maximization function improves the
motor's energy conversion efficiency and reduces operating losses. This goal is usually achieved
by optimizing design parameters such as motor geometry and winding structure. The
corresponding objective function can be defined as the negative value of motor efficiency:

fefficiency (X! y) = _U(X! y) (3)

where n(x,y) represents the motor's efficiency, which is a function of design parameters x and
y. The cost minimization function reduces the total cost of motor manufacturing, including material
and manufacturing costs. The objective function can be expressed as the weighted sum of material
and manufacturing costs:

fcost (X' y) = amaterial ’ Cmaterial (X’ y) + amanufacture ' Cmanufacture (X1 y) (9)

where Coaerial % Y) and Coanufacture (% y) are the material and manufacturing costs, and  aaterial
and Qanufacture @€ the weight coefficients. The thermal management optimization function
controls the motor's temperature rise to prevent damage due to overheating. The corresponding
objective function can be defined as:

fthermal(x’ y) =T(X’ y) (10)

where T(x,y) represents the maximum temperature rise of the motor under the given design
conditions. To ensure that the optimization results are feasible in real-world applications, power
constraints ensure that the motor's output power meets design requirements:

I:z)utput (X’ y) 2 I:)required (1 1)

where Py (X, y) is the output power of the motor design, and P.equireq IS the minimum power
requirement. Temperature constraints limit the motor's maximum operating temperature to prevent
overheating:



where T, is the maximum allowable temperature. Material and geometry constraints limit the
selection of materials and geometric dimensions within reasonable ranges:

Loin S L(X, Y) <L (13)

Mo, SMXY)SM ., (14)

where L(x,y) and M(x,y) represent the geometric dimensions and mass of the motor. Finally,
CPLEX is used to solve the MILP problem and find the optimal design parameters x*,y* that
minimize the objective function while satisfying all constraints. This method not only captures the
complex dependencies among parameters but also performs global optimization, ensuring optimal
performance under multi-objective and multi-constraint conditions.

3.3 Adaptive Weighting

The adaptive weighting mechanism dynamically adjusts the weight values by evaluating the
contribution of each design parameter to the final objective function in real-time. This ensures that
each parameter receives appropriate attention during different optimization stages. By
automatically adjusting the importance of parameters according to their impact on performance,
the optimization algorithm can flexibly handle complex design scenarios. The adaptive weighting
mechanism expresses the optimization of the objective function as follows:

k
min f(x,y,w) => w f,(x,y) (15)
i=1

where w; is the adaptive weight of the i-th objective function f;(x,y), and f(x,y,w) is the
weighted composite objective function. The adaptive weights w; are dynamically updated during
the optimization process.

At the start of the optimization, the weights w; of all design parameters are initialized based
on the design task's priorities. In the absence of specific priorities, the weights of all objective
functions can be initialized to the same value:

1 .
w==, Vi (16)
k
where k is the number of objective functions. If the designer has prior knowledge of the
importance of different objectives, the weights w; can be assigned based on experience:

W = ka’IOI’Ityi (17)

> priority
j=1
where priority, is the priority of the i-th objective function.

As the optimization process progresses, the influence of design parameters on the objective
function may change, necessitating dynamic weight adjustment. This paper employs a gradient-
based feedback mechanism to adjust the weights by evaluating the impact of each design parameter
on the current objective function. The basic idea of weight updating is to adjust the weight



corresponding to each objective function based on its rate of change during the optimization
process. The weight update formula is as follows:

of,  ox
\Ni(t+l) :\Ni(t) _a_|. (18)
OX awi(t)
where wi(t) is the weight of the i-th objective at the t-th iteration, a is the learning rate

controlling the speed of weight update, and % represents the gradient of the design parameter x
with respect to the objective function f;. Through this gradient descent mechanism, parameters
with greater influence on the objective function receive higher weights, while parameters with less
impact have their weights reduced. The adaptive weighting mechanism dynamically adjusts
parameter weights, enabling the optimization algorithm to effectively balance different design
objectives, thus improving overall optimization performance in motor design.

4. Experiment

4.1 Experimental Data

Dataset 1 mainly focuses on optimizing the geometric design parameters of the motor[21],
including seven key stator geometric parameters such as tooth head overhang 1, height of tooth
head, tangential groove width, stator inner diameter, tooth head overhang 2, tooth width near air
gap, and iron length, which vary during the simulation, while other electrical parameters (such as
the number of slots, phase voltage, and phase current) remain constant. The generation of Dataset
1 is based on geometric models created using Computer-Aided Design (CAD). These geometric
design parameters are then input into simulation software, which converts them into pixelized
images, with each pixel representing different motor material components (such as air, metal,
magnet, etc.). Through the simulation process, 68,099 samples were generated, and key
performance indicators (KPIs) were derived for each design, including active part costs, critical
field strength, maximum torque, maximum power, efficiency, and more. Table 1 lists the key
performance indicators (KPIs) for Dataset 1, including costs of active parts, critical field strength,
maximum torque, maximum power, efficiency, etc. By analyzing these KPIs, the impact of
geometric parameter variations on motor performance can be assessed, and the design can be
optimized accordingly.

Dataset 2 expands upon the modeling scope of Dataset 1, covering both stator and rotor
geometric parameters[22]. The model for Dataset 2 includes 12 variables, representing the design
of the full-pole cross-section of the motor. By modeling both the stator and rotor simultaneously,
the samples generated from this dataset can more comprehensively reflect the overall performance
of the motor. Similar to Dataset 1, these geometric parameters are transformed into pixelized
images for simulation. A total of 7,744 samples were generated. Table 2 lists the KPIs for Dataset
2, including total cost, maximum torque, maximum power at maximum rpm, iron losses, copper
losses, and the mass of different components. Dataset 2 is particularly suitable for studying the
synergy between stator and rotor parameters and provides more detailed feedback during the
optimization process.
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Tablel. Dataset 1 KPI introduction.

KPI Parameter Description Unit
zZ; Total cost Euro
Zy Critical magnetic field kA/m
Z3 Peak torque Nm
Zy Maximum power W
Zs Efficiency rating %
Zg Torque fluctuation Nm
Z Ripple behavior -
Zg Converter losses W
Zg Acoustic noise level dBA
Z10 Highest magnet temperature K
Z11 Peak winding temperature K

Table2. Dataset 2 KPI introduction.

KPI Parameter Description Unit
q1 Total cost Euro
q> Peak torque kA/m
q3 Maximum power at top speed Nm
qas Iron losses W
qs Copper losses W
qe Maximum torque ripple Nmp
q; Iron mass Kg
qs Copper mass Kg
qo Magnet mass Kg
d10 Torque ripple characteristics unitless

4.2 Evaluation Metrics

To evaluate the model's performance, two key evaluation metrics are employed: the dimensionless
Mean Relative Error (MRE) and the Pearson Correlation Coefficient (PCC). These two metrics
assess the accuracy of the model's predictions and the correlation between the input-output
mappings from different perspectives. The Mean Relative Error is used to evaluate the relative
error between the predicted and true values of the model. It is suitable for multi-output nonlinear
regression problems where each Key Performance Indicator (KPI) has different dimensions. MRE
is calculated using the following formula:

1 Ntest ( ) - (I)

MRE = —>" ) (.)y' |><100 (19)
Ny 5= yi ‘
test =1 j

where yj(i) is the true value of the i-th test sample, yl(l) is the predicted value of the model, and

N¢estiS the number of test samples. MRE is expressed as a percentage to measure the degree of
11



deviation in the prediction results. This metric quantifies the accuracy of the model's predictions,
with lower values indicating more accurate predictions.

The Pearson Correlation Coefficient (PCC) is used to measure the linear correlation between
the input parameters and the target output. By calculating the correlation between the true values
and the predicted values, PCC reflects the accuracy of the model's mapping to the target output.
The formula is:

Mtest

2 (v =9)(9-7))

PCC=—12 (20)

Sor-syEn-5)

t
1=. i=1

where y; and §7] are the mean values of the true and predicted values, respectively. The PCC
ranges from [-1, 1], with values closer to 1 indicating a stronger linear correlation between the
model's predictions and the true values, implying better model performance.

4.3 Experimental Comparison and Analysis

Verify the effectiveness of the motor design performance optimization algorithm based on graph
neural network representation and adaptive weights through experiments. We selected key
performance indicators (KPIs) from the motor design task and divided them into Dataset 1 and
Dataset 2. Using these datasets, we compared the performance of four models: GNN, MILP, AW,
and the final fusion model. The experiments employed Mean Relative Error (MRE) and Pearson
Correlation Coefficient (PCC) as evaluation metrics. MRE measures the error between the model's
predicted values and the actual values, while PCC assesses the correlation between the predicted
results and the actual values.

Table 4 provides a detailed comparison of the four models' performance on Dataset 1,
primarily measuring model performance through MRE and PCC. First, the GNN model showed
good performance across various indicators, but had a relatively high MRE value. For example,
for the z; indicator, MRE was 1 and PCC was 0.91, indicating that the GNN model has strong
correlation on this indicator but significant prediction error. For other indicators, such as z; and
zs, MREs were 0.61 and 0.56, with PCCs of 0.91 and 0.86, respectively, showing that the GNN
predicts certain indicators accurately, but overall error still needs improvement. In comparison, the
MILP model has certain advantages in handling global optimization problems, but MRE increased
for some indicators; for example, for z, and z,, MREs were 1.34 and 1.3, with PCCs of 0.89 and
0.87, indicating that the MILP model tends to get trapped in local optima for these indicators,
leading to increased prediction error. The AW model (adaptive weight model) enhances prediction
accuracy by dynamically adjusting weights. For indicators z3, zs, and zg, the AW model
achieved PCCs of 0.95, 0.92, and 0.93, showing strong correlation for these indicators. However,
MRE increased for some indicators, such as z,, where MRE reached 1.91, indicating that in
certain cases, adjusting the adaptive weights may lead to increased prediction error. The final
model integrates the advantages of GNN, MILP, and AW, performing well across multiple
indicators, significantly reducing MRE and improving PCC. Additionally, Figure 4 clearly
demonstrates the final model's predictive capability across different performance indicators,
validating the model's effectiveness in motor design performance optimization.

Table 5 presents the performance comparison of each model on Dataset 2. It can be observed
that the final model significantly reduced MRE across all indicators, indicating its predictive
accuracy is notably superior to other models. Meanwhile, PCC improved to above 0.9 in most
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cases, suggesting that the final model's predictions have a stronger correlation with actual values.
Particularly for indicators q; and qs, the final model saw the greatest reduction in MRE,
dropping to 0.43 and 0.19, while PCC increased to 0.96 and 0.93, respectively. This indicates that
the final model not only improved prediction accuracy when processing Dataset 2 but also
demonstrated more stable performance across different indicators. In contrast, the GNN, MILP,
and AW models exhibited more dispersed performance in terms of MRE and PCC, failing to
achieve the same level of optimization. Additionally, Figure 5 illustrates the prediction results of
the final model across various indicators on Dataset 2, showing the distribution of predicted values
compared to actual values, indicating the final model's high prediction accuracy for these indicators.

Table4. Comparison of related indicators on dataset 1.

Model GNN MILP AW Final Model

MRE PCC MRE PCC MRE PCC MRE PCC
Z; 1 0.91 0.67 0.93 0.91 0.93 0.13 0.98
Zy 1.3 0.82 1.34 0.89 1.91 0.89 0.54 0.94
Z3 0.61 0.91 0.79 0.9 1.02 0.95 0.22 0.99
Zy 0.79 0.92 1.3 0.87 0.68 0.92 0.14 0.96
Zs 0.56 0.86 1.01 0.86 1.65 0.92 0.08 0.94
Zg 1.96 0.89 2.53 0.91 291 0.91 1.38 0.98
Z 1.97 0.83 2.6 0.85 1.86 0.87 1.22 0.95
Zg 0.78 0.9 0.64 0.93 0.56 0.93 0.26 0.98
Zg 1.09 0.88 1.3 0.87 1.21 0.89 0.34 0.97
Z10 0.43 0.89 1.41 0.93 1.14 0.96 0.16 0.98
Z11 1.22 0.83 1.5 0.89 1.64 0.93 0.42 0.95

Table5. Comparison of related indicators on dataset 2.
Model GNN MILP AW Final Model

MRE PCC MRE PCC MRE PCC MRE PCC
q1 0.99 0.9 1.85 0.89 1.64 0.92 0.43 0.96
q; 0.6 0.88 0.6 0.9 0.95 0.91 0.32 0.94
qs 1.11 0.84 1.4 0.85 1.73 0.85 0.19 0.93
q4 0.94 0.9 1.47 0.92 0.96 0.88 0.26 0.96
qs 0.38 0.83 0.4 0.89 1.66 0.88 0.13 0.95
qe 1.04 0.89 0.82 0.86 1.39 0.91 0.47 0.94
q7 1.29 0.81 1.35 0.83 1.73 0.88 1.06 0.92
qs 1.15 0.9 1.1 0.91 1.54 0.91 0.37 0.96
qo 1.14 0.85 1.61 0.89 1.54 0.9 0.42 0.94

10 0.45 0.9 1.33 0.93 1.57 0.9 0.23 0.97
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Figure 4. Metrics predictions for the final model on dataset 1.
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Figure 5. Metrics predictions for the final model on dataset 2.

5. Conclusion

In this paper, we proposed a novel motor design performance optimization algorithm that
integrates Graph Neural Networks (GNN), Mixed-Integer Linear Programming (MILP), and an
adaptive weighting mechanism. The algorithm addresses several key challenges in modern motor
design, including the complexity of multi-parameter dependencies, the difficulty of global
optimization, and the need for dynamic weight adjustment in multi-objective scenarios. Through
the use of GNN, the algorithm effectively captures the intricate relationships between various
design parameters, allowing for a more accurate representation of motor characteristics. MILP
ensures global optimization across both continuous and discrete variables, overcoming the
limitations of traditional optimization algorithms that often fall into local optima. The introduction
of adaptive weighting further enhances the model’s ability to adjust the importance of different
parameters in real-time, ensuring that the design process remains flexible and adaptive to different
performance requirements. Experimental results on two datasets demonstrated that the proposed
algorithm significantly improves both accuracy and global optimization performance compared to
traditional methods. The final integrated model consistently outperformed standalone GNN, MILP,
and adaptive weighting models, achieving lower Mean Relative Error (MRE) and higher Pearson
15



Correlation Coefficient (PCC) in multiple KPIs. In conclusion, this work presents an efficient and
scalable framework for motor design optimization, capable of handling the increasing complexity
and performance demands in fields such as electric vehicles and intelligent manufacturing. Future
research could explore further improvements in optimization techniques and applications to more
diverse motor designs and configurations, enhancing the algorithm’s adaptability and
generalization across different industrial domains.
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