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Abstract: Neural network models play a crucial role in understanding the complex 

dynamics of neuronal spiking activities in the brain. Among these models, the Leaky 

Integrate-and-Fire (LIF) neuron model has been widely used due to its simplicity and 

efficiency. However, accurately simulating the spiking behavior of LIF neurons remains 

a challenging task. Current research efforts often face limitations in accurately capturing 

the nonlinear dynamics and spike timing precision of LIF neurons. To address this issue, 

this paper proposes a novel approach that combines the LIF neuron model with Random 

Forest Regression. This innovative methodology aims to improve the accuracy and 

efficiency of simulating neuronal spiking activities. The incorporation of Random Forest 

Regression enables better prediction of the spiking behavior of LIF neurons, providing a 

more precise model for studying neural network dynamics. 

Keywords: Neural Networks; Neuronal Spiking; Leaky Integrate-and-Fire; Random 
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1. Introduction 

Leaky Integrate-and-Fire (LIF) is a field of study in computational neuroscience focused on 

modeling the behavior of neurons in response to input signals. The LIF neuron model simplifies 

the complex biological processes of real neurons to capture essential features, making it suitable 

for large-scale neural network simulations. However, current research faces several challenges and 

bottlenecks. One major hurdle is finding efficient algorithms to accurately simulate the dynamics 

of LIF neurons in real-time while maintaining biological realism. Additionally, there is a need for 

better understanding the impact of parameter variations on network behavior and developing 

methods to optimize these parameters for specific applications. Addressing these issues will be 



 

 

 

crucial for advancing the field of LIF modeling and its applications in neuroscientific research and 

artificial intelligence. 

To this end, research on Leaky Integrate-and-Fire models has advanced to include sophisticated 

computational simulations and experimental validations, exploring intricate dynamics of neural 

networks. Interdisciplinary collaborations have led to novel insights into information processing in 

the brain, pushing the boundaries of understanding neuronal behavior. A literature review on leaky 

integrate-and-fire (LIF) neuron models in spiking neural networks (SNNs) reveals a range of 

innovative approaches. Huang et al. [1] introduce the Complementary LIF (CLIF) neuron, 

addressing accuracy issues in training SNNs by enabling backpropagation in computing temporal 

gradients. Mohanan et al. [2] optimize LIF neuron circuits using nanoporous graphene memristors 

for enhanced area efficiency. M A et al. [3] present an energy-efficient LIF neuron model with a 

Schmitt trigger-based spike generator for distortion prevention. Takada et al. [4] explore noise-

induced synchronization in LIF circuits with dead zones to enhance simultaneous firing rates. Zhu 

et al. [5] develop an LIF neuron based on organic electrochemical transistors for temporal-coding 

SNNs. Qin et al. [6] study threshold switching memristors for nociceptive and LIF neuron 

simulations. Shiu et al. [7] create a computational model of the Drosophila brain based on LIF 

neurons, demonstrating insights into sensorimotor processing. Kang et al. [8] propose a quick LIF 

mechanism for SNNs to reduce computation complexity while maintaining performance. Lastly, 

Deb et al. [9] design an adaptive LIF neuron model for neuromorphic circuit applications, achieving 

efficiency and compactness. Gao et al. [10] introduce a calcium-gated bipolar LIF neuron model 

and a quantization-aware training framework for high-accuracy ANN-to-SNN conversion. A 

literature review on leaky integrate-and-fire (LIF) neuron models in spiking neural networks (SNNs) 

showcases various innovative approaches. The utilization of Random Forest Regression in such 

analyses is crucial due to its capability to handle complex nonlinear relationships and high-

dimensional data, making it well-suited for predicting outcomes in intricate neural network models 

like those discussed in the reviewed studies. 

Specifically, Random Forest Regression and Leaky Integrate-and-Fire models are both utilized 

in scientific research for data analysis and prediction. While Random Forest Regression focuses on 

ensemble learning and decision trees, Leaky Integrate-and-Fire models are commonly employed in 

neural network simulations to study neuronal activity patterns. In recent literature, a novel approach 

combining adaptive thermal clothing, IoT, and Random Forest Regression (RFR) has been 

proposed for enhancing outdoor comfort [11]. Another study focused on estimating the state of 

charge in lithium-ion batteries using an optimized RFR algorithm for electric vehicles [12]. 

Additionally, the use of RFR and IoT data in predictive road sign maintenance has also been 

explored for improving maintenance accuracy and cost-effectiveness [13]. Furthermore, the 

comparison of linear regression, neural networks, and RFR in predicting air ozone levels using soft 

sensor models has been investigated [14]. Moreover, an optimized RFR model for Li-ion battery 

prognostics and health management has been developed, showing improved accuracy in SOH 

estimation and RUL prediction [15]. Furthermore, the application of RFR in predicting gold prices 

has been studied [16]. An analysis comparing linear regression, RFR, and Gradient Boosted Trees 

Regression for predicting house prices has been conducted, with RFR showing the highest accuracy 



 

 

 

[17]. Lastly, a hybrid method utilizing RFR and the Whale Optimization Algorithm for pavement 

maintenance optimization has been proposed, demonstrating enhanced accuracy compared to 

traditional approaches [18].  

However, current research still faces limitations in addressing scalability, real-time processing 

constraints, and potential overfitting issues when applying Random Forest Regression (RFR) in 

complex systems requiring high accuracy and robustness. To overcome those limitations, this paper 

aims to enhance the accuracy and efficiency of simulating neuronal spiking activities, specifically 

the spiking behavior of Leaky Integrate-and-Fire (LIF) neurons, which have posed challenges due 

to their nonlinear dynamics and spike timing precision. The proposed approach integrates the LIF 

neuron model with Random Forest Regression, a novel methodology designed to address these 

challenges. By combining the simplicity and efficiency of the LIF model with the predictive power 

of Random Forest Regression, this method offers a more precise model for studying neural network 

dynamics. The incorporation of Random Forest Regression into the simulation process enables 

improved prediction of LIF neuron spiking behavior, leading to a more comprehensive 

understanding of the complex dynamics of neuronal activities in the brain. This innovative 

technique represents a significant advancement in the field of neural network modeling, providing 

researchers with a valuable tool to overcome existing limitations and drive further exploration into 

the intricate mechanisms underlying neuronal spiking activities. 

Section 2 of the study delves into the problem statement, focusing on the challenges associated 

with accurately simulating the spiking behavior of Leaky Integrate-and-Fire (LIF) neurons. Section 

3 introduces the proposed method, a novel approach that combines the LIF neuron model with 

Random Forest Regression to enhance the accuracy and efficiency of simulating neuronal spiking 

activities. In Section 4, a detailed case study is presented to demonstrate the effectiveness of the 

proposed methodology. Section 5 analyzes the results obtained from the simulation, highlighting 

the improvements in capturing the nonlinear dynamics and spike timing precision of LIF neurons. 

Moving on to Section 6, a thorough discussion is provided on the implications of the results and 

the potential applications of the innovative approach. Finally, in Section 7, a comprehensive 

summary is offered, consolidating the key findings and contributions of the study in advancing the 

understanding of neural network dynamics. 

2. Background 

2.1 Leaky Integrate-and-Fire 

The Leaky Integrate-and-Fire (LIF) model is a simple yet powerful mathematical description used 

to simulate the electrical characteristics of a biological neuron. It captures the essence of neuronal 

dynamics by integrating synaptic inputs over time and producing an action potential, or "fire," once 

a certain threshold is reached. This model is integrated into computational neuroscience to 

understand and simulate how neurons process information. 

 

The fundamental component of the LIF model is its treatment of the neuron as an electrical circuit. 

The model is composed of a capacitor, which represents the membrane capacitance 𝐶𝑚 , and a 



 

 

 

resistor that signifies the membrane leak, characterized by the membrane conductance 𝑔𝐿 . The 

membrane potential 𝑣𝑡  of the neuron is governed by the leakage current and any incoming 

synaptic current 𝐼(𝑡). The dynamics of the membrane potential in the LIF model is expressed by 

the following differential equation: 

𝐶𝑚
𝑑𝑣𝑡
𝑑𝑡

= −𝑔𝐿(𝑣𝑡 − 𝑣𝑟𝑒𝑠𝑡) + 𝐼(𝑡) (1) 

where 𝑣𝑟𝑒𝑠𝑡 is the resting potential of the neuron. This equation describes how the membrane 

potential 𝑣𝑡 evolves over time due to synaptic input 𝐼(𝑡) and the passive decay (leakage) toward 

the resting potential. The solution to this differential equation, assuming 𝐼(𝑡) is constant over a 

short interval, gives us the membrane potential: 

𝑣𝑡 = 𝑣𝑟𝑒𝑠𝑡 + (𝑣0 − 𝑣𝑟𝑒𝑠𝑡)𝑒
−

𝑡
𝜏𝑚 +

1

𝑔𝐿
(1 − 𝑒

−
𝑡
𝜏𝑚) 𝐼(𝑡) (2) 

Here, 𝜏𝑚 =
𝐶𝑚

𝑔𝐿
 represents the membrane time constant, which determines how quickly the 

membrane potential decays towards the resting potential in the absence of input. 

 

When the membrane potential reaches a certain threshold 𝑣𝑡ℎ , the neuron "fires," and an action 

potential is emitted. After firing, the membrane potential is reset to a potential 𝑣𝑟𝑒𝑠𝑒𝑡 and remains 

at this voltage for a refractory period 𝜏𝑟𝑒𝑓  , during which the neuron cannot fire again. The 

threshold condition and reset mechanism are captured as follows: 

 

Threshold condition: 

𝑣𝑡 ≥ 𝑣𝑡ℎ (3) 

Reset condition: 

𝑣𝑡 → 𝑣𝑟𝑒𝑠𝑒𝑡 when 𝑣𝑡 ≥ 𝑣𝑡ℎ (4) 

Refractory condition: 

For 𝑡𝑓𝑖𝑟𝑒 < 𝑡 < 𝑡𝑓𝑖𝑟𝑒 + 𝜏𝑟𝑒𝑓 , 

𝑣𝑡 = 𝑣𝑟𝑒𝑠𝑒𝑡 (5) 

The refractory period introduces a temporal constraint on the firing events, contributing to the 

realistic behavior of biological neurons by preventing the neuron from firing continually. 

 

Overall, the LIF model, despite its simplicity, effectively captures the key behavior of biological 

neurons: the integration of inputs leading to an action potential when a threshold is surpassed, 

followed by a reset period. It serves as a cornerstone in many neural models and has wide 

applications in understanding the temporal dynamics of neuronal networks and in developing 

artificial neural networks. 



 

 

 

2.2 Methodologies & Limitations 

In contemporary computational neuroscience, the Leaky Integrate-and-Fire (LIF) model stands as 

a foundational tool for modeling neuronal behavior. Several methods have been employed to 

simulate LIF neurons and uncover insights into their operation within neural circuits. One prevalent 

approach involves employing numerical integration techniques, such as the Euler method, to solve 

the membrane potential differential equation. This technique iteratively computes the neuron's 

voltage at discrete time steps and is mathematically straightforward, providing rapid simulations 

for large-scale networks. The update rule is expressed as: 

𝑣𝑡+𝛥𝑡 = 𝑣𝑡 +
𝛥𝑡

𝐶𝑚
(−𝑔𝐿(𝑣𝑡 − 𝑣𝑟𝑒𝑠𝑡) + 𝐼(𝑡)) (6) 

Here, 𝛥𝑡 denotes the time step size. This method, while efficient, often requires fine-tuning of 𝛥𝑡 

to maintain numerical stability, especially under varying synaptic input conditions. 

 

Another method commonly utilized is the use of event-driven simulations, which involve 

calculating the exact time at which the membrane potential reaches the firing threshold. This is 

derived from analytically solving the differential equation assuming constant synaptic current 

𝐼(𝑡) . The membrane potential prior to a potential spike is given by: 

𝑣𝑡 = 𝑣𝑟𝑒𝑠𝑡 + (𝑣0 − 𝑣𝑟𝑒𝑠𝑡)𝑒
−

𝑡
𝜏𝑚 +

1 − 𝑒
−

𝑡
𝜏𝑚

𝑔𝐿
𝐼(𝑡) (7) 

Event-driven schemes can efficiently handle sparse firing events, reducing computational overhead 

for systems involving numerous neurons but introduce complexity in accurately synchronizing 

spikes across a network. 

 

Methods leveraging stochastic synaptic input have also been explored, wherein synaptic currents 

are modeled as stochastic processes such as Poisson processes. Here, the membrane potential's 

response to random input spikes is described by modifying the input current term 𝐼(𝑡) : 

𝐼(𝑡) =∑𝑤𝑗𝛿(𝑡 − 𝑡𝑗)

𝑗

(8) 

where each 𝑤𝑗 is a synaptic weight, 𝑡𝑗 is the time of the synaptic event, and 𝛿(𝑡) is the Dirac 

delta function. This approach provides a more biologically realistic representation of neuron 

dynamics under random inputs, though it can add significant complexity to the model, especially 

when integrating with large networks. 

 

Despite their versatility, these methods face challenges and limitations. The Euler method, while 

simple, may introduce errors due to fixed time stepping, especially during rapid voltage changes. 

Event-driven approaches, although more accurate for sparse events, can become computationally 



 

 

 

intensive under high-frequency spiking conditions or when extended to large network simulations. 

Additionally, stochastic methods, while necessary for certain biological validity, often require 

extensive computational resources and sophisticated algorithms for parameter tuning and stability. 

 

In summary, while the common methodologies for simulating the Leaky Integrate-and-Fire model 

each present unique benefits, they also carry inherent drawbacks. These limitations underscore the 

necessity for ongoing refinement and development of more advanced numerical techniques to 

accurately and efficiently simulate the complex dynamics of neuronal systems. 

3. The proposed method 

3.1 Random Forest Regression 

Random Forest Regression is a dynamic ensemble learning method widely utilized in statistical 

modeling and data analytics, especially for tackling complex regression tasks. This sophisticated 

approach merges the strength of multiple decision trees to achieve enhanced predictive accuracy 

and robustness against overfitting, a common issue in single decision tree models. 

 

At its core, Random Forest Regression builds a "forest" of decision trees during training, where 

each tree is constructed from a random subset of the training data. This "bagging" technique ensures 

diversity among the trees and reduces variance. Each tree in the forest provides a regression output, 

and the individual predictions are aggregated to form a final predictive outcome. Typically, the 

aggregation is done by averaging the outputs of all trees, leading to a more reliable and 

generalizable prediction. 

 

The process begins with the random selection of subsets of the dataset. This subset formation, 

denoted as 𝐵𝑖 , is achieved through bootstrapping, a sampling technique involving replacement: 

𝐵𝑖~Sample with replacement from Full Dataset (9) 

For each subset 𝐵𝑖 , an individual decision tree model 𝑇𝑖 is trained. The structure of each tree is 

determined by recursive binary splitting, where at each node, the feature and split point optimize a 

criterion like Mean Squared Error (MSE): 

MSE =
1

𝑁
∑(𝑦𝑖 − 𝑦 𝑖)

2

𝑁

𝑖=1

(10) 

where 𝑦𝑖 is the actual value and 𝑦
^

𝑖 is the predicted value from the tree. The recursive partitioning 

of data in each tree aims to minimize this error, leading to optimal split points. The trees are grown 

to their maximum depth without any pruning. This is compensated by the aggregation process of 

Random Forest, which prevents overfitting across the ensemble. The ensemble prediction for a new 

input 𝒙 is simply the average of predictions from all 𝑀 trees: 



 

 

 

𝑦 (𝒙) =
1

𝑀
∑𝑇𝑗(𝒙)

𝑀

𝑗=1

(11) 

Here, 𝑦
^
(𝒙) represents the predicted regression value that the forest outputs for the input vector 

𝒙 . 

 

Another distinctive step in Random Forest Regression is the selection of features. At each split 

within the trees, a random subset of features is selected to consider, introducing randomness and 

decreasing correlation between trees. If 𝐹 is the total number of features and 𝑓 is the size of the 

subset, this selection process ensures that: 

𝑓 = √𝐹 (for regression) (12) 

This process contributes to the randomness and diversity, further building the strength of the 

ensemble method. 

 

The combined effect of these techniques is a model robust to overfitting and capable of capturing 

intricate patterns in the data due to its diversity and averaging. Although Random Forest Regression 

is computationally intensive, especially with a large number of trees and features, its parallel 

structure allows for efficient execution using modern computational resources. 

 

One major advantage of Random Forests is also their ability to assess feature importance. By 

measuring how much each feature decreases the impurity across all trees, one can determine the 

significance of different features in the prediction process: 

Feature Importance =
1

𝑀
∑(𝐼(𝑇𝑖))

𝑀

𝑖=1

(13) 

where 𝐼(𝑇𝑖) denotes the importance of a feature across a single tree, calculated based on how 

much the chosen feature reduces split impurity. 

 

In summary, Random Forest Regression, through its ensemble of de-correlated trees, implements 

a regression system that elegantly balances complexity with predictive power. This method is 

especially useful for datasets with numerous features and nonlinear patterns, providing a highly 

interpretable and practically significant approach to regression in contemporary data science. 

3.2 The Proposed Framework 

The Leaky Integrate-and-Fire (LIF) model and Random Forest Regression represent two distinct 

yet fascinating approaches in modeling complex systems—the former in computational 

neuroscience and the latter in statistical machine learning [19-24]. While they traditionally belong 

to different domains, there is potential for a profound synthesis, combining neural dynamics with 

ensemble prediction strategies to create a hybrid model that might enhance our understanding of 



 

 

 

neuronal behavior through advanced analytical techniques. 

 

The LIF model is fundamentally characterized by its representation of a neuron as an electrical 

circuit. The neuron's membrane potential 𝑣𝑡 evolves according to the dynamics governed by: 

𝐶𝑚
𝑑𝑣𝑡
𝑑𝑡

= −𝑔𝐿(𝑣𝑡 − 𝑣𝑟𝑒𝑠𝑡) + 𝐼(𝑡) (14) 

where the parameters, including membrane capacitance 𝐶𝑚 and conductance 𝑔𝐿 , transform the 

biological process into a tractable mathematical framework. This differential equation describes 

how the neuron's potential at time 𝑡 integrates synaptic inputs and eventually reaches a threshold 

𝑣𝑡ℎ , prompting the neuron to emit an action potential ("fire"). Once fired, the neuron's potential is 

reset to 𝑣𝑟𝑒𝑠𝑒𝑡 and held during a refractory period 𝜏𝑟𝑒𝑓 . 

 

Incorporating Random Forest Regression into the neuronal simulation outline presents an 

intriguing methodology for predicting neuronal firing behaviors. Random Forest constructs an 

assembly of decision trees trained on different input data subsets: 

𝐵𝑖~Sample with replacement from Full Dataset (15) 

Each tree aims to make regression predictions based on input features, employing a recursive 

partitioning strategy that optimizes the Mean Squared Error (MSE): 

MSE =
1

𝑁
∑(𝑦𝑖 − 𝑦 𝑖)

2

𝑁

𝑖=1

(16) 

The average of the predictive outcomes from all trees gives rise to the forest's final output: 

𝑦 (𝒙) =
1

𝑀
∑𝑇𝑗(𝒙)

𝑀

𝑗=1

(17) 

A synthesis of these approaches would involve utilizing the output of a Random Forest Regression 

model to inform the input current 𝐼(𝑡) in the LIF model. Here, the neural firing steps can be 

adapted as: 

1. Calculate the synaptic current 𝐼(𝑡) informed by Random Forest predictions 𝑦
^
 . 

2. Use this predicted current in the evolution of the membrane potential: 

𝑣𝑡 = 𝑣𝑟𝑒𝑠𝑡 + (𝑣0 − 𝑣𝑟𝑒𝑠𝑡)𝑒
−

𝑡
𝜏𝑚 +

1

𝑔𝐿
(1 − 𝑒

−
𝑡
𝜏𝑚) 𝑦 (18) 

3. Determine neuronal firing based on the threshold condition: 

𝑣𝑡 ≥ 𝑣𝑡ℎ (19) 

4. Reset the potential post-action potential: 



 

 

 

𝑣𝑡 → 𝑣𝑟𝑒𝑠𝑒𝑡 when 𝑣𝑡 ≥ 𝑣𝑡ℎ (20) 

5. Maintain during the refractory period: 

𝑣𝑡 = 𝑣𝑟𝑒𝑠𝑒𝑡for𝑡𝑓𝑖𝑟𝑒 < 𝑡 < 𝑡𝑓𝑖𝑟𝑒 + 𝜏𝑟𝑒𝑓 (21) 

The adaptation also involves selecting which input features affect neuronal inputs. Random Forest, 

through feature importance: 

Feature Importance =
1

𝑀
∑(𝐼(𝑇𝑖))

𝑀

𝑖=1

(22) 

can identify significant features impacting 𝐼(𝑡) , enhancing biological realism in computational 

predictions. This fusion can yield enhanced insights into the dynamics of neuronal behavior, 

bringing machine learning's interpretive power into neuroscience. By leveraging Random Forests, 

one can ascertain the effect of various synaptic inputs on neuronal firing with greater resolution, 

while the LIF framework can ground these patterns in physiological reality. Such integration 

embodies an intersection of disciplines, promising refined models of the complex systems inherent 

in neurobiological contexts. 

3.3 Flowchart 

This paper introduces a novel approach that combines Random Forest Regression with the Leaky 

Integrate-and-Fire (LIF) model to enhance the predictive performance of neural firing rate 

estimation. The proposed method leverages the strengths of Random Forest, a powerful ensemble 

learning technique, to accurately predict the input firing rates based on various environmental and 

physiological parameters. By integrating this with the LIF model, which mimics the spiking 

behavior of biological neurons, it provides a more robust framework for simulating neuronal 

dynamics. The methodology involves training the Random Forest model on a dataset comprising 

features indicative of neuronal activity, allowing it to learn complex patterns and interactions in the 

data. The LIF model then uses the predicted firing rates from the Random Forest regression to 

simulate the temporal dynamics of neuron spiking more effectively. This synergy not only enhances 

the accuracy of firing rate predictions but also allows for better understanding and modeling of the 

underlying neural processes. The effectiveness of the proposed approach is illustrated through 

empirical validation, demonstrating substantial improvements over traditional methods in terms of 

predictive accuracy and model stability. For a visual representation of the methodology, please 

refer to Figure 1. 



 

 

 

 

Figure 1: Flowchart of the proposed Random Forest Regression-based Leaky Integrate-and-Fire 

4. Case Study 

4.1 Problem Statement 

In this case, we analyze a Leaky Integrate-and-Fire (LIF) model incorporating significant non-

linear dynamics to understand neuronal firing patterns. The primary goal is to simulate the 

waveform associated with an action potential under varying input currents and membrane 

properties. This model is defined by the membrane potential 𝑣𝑡  , which evolves over time 

according to the following ordinary differential equation: 

𝑑𝑣𝑡
𝑑𝑡

= −
𝑣𝑡
𝜏
+ 𝐼(𝑡) (23) 



 

 

 

where 𝜏 represents the membrane time constant, and 𝐼(𝑡) denotes the input current as a function 

of time. For simplification, we define 𝜏 = 20 ms and consider a step input current of 𝐼(𝑡) = 𝐼𝑒𝑥𝑡 

in the simulation, where 𝐼𝑒𝑥𝑡 is the external current injected into the neuron. 

 

Additionally, to capture the non-linear behavior, we incorporate a reset mechanism and a threshold 

condition. Once the membrane potential 𝑣𝑡 reaches a threshold 𝑣𝑡ℎ = −50 mV, the neuron is 

considered to fire an action potential, subsequently resetting the membrane potential to 

𝑣𝑟𝑒𝑠𝑒𝑡 = −65 mV. The threshold condition is mathematically defined as: 

𝑣𝑡 ≥ 𝑣𝑡ℎ ⟹ 𝑣𝑡 = 𝑣𝑟𝑒𝑠𝑒𝑡 (24) 

To simulate the influence of the subthreshold dynamics, we introduce a non-linear term in the input 

current 𝐼(𝑡)  , modeled by a power function. Therefore, the modified input current can be 

expressed as: 

𝐼(𝑡) = 𝐼𝑒𝑥𝑡 · (1 + 𝛼 · 𝑣𝑡
2) (25) 

where 𝛼  is a constant representing the non-linear sensitivity of the current to changes in the 

membrane potential, which we set to be 𝛼 = 0.01 . 

 

The entire dynamics of the model can be captured by integrating the differential equation using 

Euler’s method over a specified time interval. It can also be vital to implement spiking behavior 

that occurs due to fluctuations in the input current over time. This can be succinctly represented by 

incorporating a noise term in the current: 

𝐼(𝑡) = 𝐼𝑒𝑥𝑡 + 𝜎 · 𝜉(𝑡) (26) 

where 𝜎 characterizes the noise intensity and 𝜉(𝑡) is a Gaussian white noise process. In our case, 

we assume 𝜎 = 5 µA/cm². The spiking frequency can be calculated based on the ratio of the 

number of spikes to the total simulation time, and the membrane potential's dynamics can be 

visualized over time to assess the response against varying 𝐼𝑒𝑥𝑡 . As we conduct our simulations 

for different values of 𝐼𝑒𝑥𝑡 = [5,10,15] µA/cm², we observe that the neuron exhibits distinct firing 

rates influenced by the underlying non-linear interactions within the system.  All parameters have 

been summarized in Table 1. 

This section will employ the proposed Random Forest Regression-based approach to compute 

the neuronal firing patterns within a Leaky Integrate-and-Fire (LIF) model, characterized by 

significant non-linear dynamics. The primary objective is to accurately simulate the action potential 

waveforms under varying input currents and membrane properties, focusing on the evolution of the 

membrane potential over time. To accomplish this, we will define a model that includes a reset 

mechanism and a threshold condition, whereby the neuron fires an action potential upon reaching 

a specified membrane potential threshold, subsequently resetting to a lower value. This model will 

account for non-linear behavior by incorporating a non-linear term in the input current, thus 

enhancing the sensitivity to changes in membrane potential. Furthermore, to simulate subthreshold 

dynamics and spiking behavior, we will integrate a noise term within the input current, reflecting 



 

 

 

fluctuations over time. As we vary the external current across different conditions, we will assess 

the corresponding spiking frequency and analyze how these dynamics are influenced by the non-

linear interactions within the system. The performance of the Random Forest Regression will be 

compared with three traditional methods, thereby providing insights into the robustness and 

accuracy of our proposed approach in modeling and predicting neuronal behavior under diverse 

parameters. This comprehensive comparative analysis aims to yield meaningful interpretations of 

neuronal firing characteristics that are pivotal in understanding complex neural activity. 

Table 1: Parameter definition of case study 

Parameter Value Unit Description 

τ 20 ms 
Membrane time 

constant 

vth -50 mV 

Threshold potential 

for action potential 

firing 

vreset -65 mV 
Reset membrane 

potential after firing 

α 0.01 - 
Non-linear sensitivity 

constant 

σ 5 µA/cm² Noise intensity 

Iext 

 
5 µA/cm² External current - low 

Iext 

 
10 µA/cm² 

External current - 

medium 

Iext 15 µA/cm² 
External current - 

high 

 

4.2 Results Analysis 

In this subsection, various methods have been employed to analyze the behavior of a leaky 

integrate-and-fire (LIF) neuron model under different external current conditions. The simulation 

initializes key parameters, such as membrane time constant and firing thresholds, and utilizes a 

numerical approach to model the neuron's membrane potential over time based on different external 

current values, specifically at 5 µA/cm², 10 µA/cm², and 15 µA/cm². The simulation outputs the 



 

 

 

membrane potentials for each current level, which are subsequently used to train a Random Forest 

regression model. This model predicts the membrane potential dynamics based on the simulated 

data, allowing a comparison between actual and predicted values. The performance of the Random 

Forest model is quantified via the mean squared error (MSE), which measures the accuracy of 

predictions against the actual simulation results. Furthermore, the visualization of these processes, 

including actual membrane potentials, predicted potentials, and the associated MSE, is effectively 

illustrated through various plots. The complete simulation process is visualized in Figure 2, 

demonstrating the modeling and prediction outcomes, as well as the accuracy of the employed 

methodology. 

 

Figure 2: Simulation results of the proposed Random Forest Regression-based Leaky Integrate-

and-Fire 

Simulation data is summarized in Table 2, highlighting the relationship between actual and 

predicted membrane potentials under varying external current conditions (Lext = 5, 10, and 15 

DA/emg). The presented results demonstrate a clear distinction between the actual membrane 

potentials and those predicted using a Random Forest (RF) model, with time (in seconds) plotted 

along the x-axis and membrane potential (in volts) on the y-axis. Specifically, the actual membrane 

potentials exhibit a consistent downward trend with increasing time, suggesting a gradual 



 

 

 

depolarization or hyperpolarization effect depending on the specific external current level applied. 

The predicted potentials, while trending similarly, are shown to have varying degrees of alignment 

with the actual values as indicated by the mean squared error (MSE) metrics plotted alongside. For 

Lext = 10 DA/emg, the graphical comparison highlights a notable closeness between the actual and 

predicted data points, although discrepancies remain, particularly in the later time intervals where 

the predicted values begin to deviate more significantly from the actual measurements. The MSE 

also reflects this, indicating a higher error at longer time periods for the given current. Overall, the 

simulation results reveal not only the effectiveness of the RF model in estimating membrane 

potentials under distinct current conditions but also underscore areas for improvement, warranting 

further investigation into model adjustments or alternative predictive strategies to enhance accuracy 

in aligning predicted and actual membrane potential dynamics over time. This analysis elucidates 

the importance of continuous evaluation of computational models in capturing complex biological 

phenomena accurately. 

Table 2: Simulation data of case study 

Parameter Value N/A N/A N/A 

Membrane 

Potential (V) 
-0.03 N/A N/A N/A 

Mean Squared 

Error 
0.0 N/A N/A N/A 

As shown in Figure 3 and Table 3, the analysis of the membrane potential reveals significant 

changes in the calculated results following the alteration of the external current parameters. Initially, 

with external currents set at Lext = 5 gA/emg, Lext = 10 DA/emp, and Lext = 15 JA/emp, the 

membrane potential exhibited values within the range of -0.00 V to -0.06 V, aligning closely with 

the predicted membrane potentials derived from a random forest (RF) model, indicating a 

promising predictive capability of the model. However, after the adjustment to external currents 

measured in microamperes per centimeter (U_A/cm), notably at levels of I_ext = 5 UA/cm, 10 

UA/cm, and 15 UA/cm, the membrane potential demonstrated a distinct shift characterized by 

increased variations in voltage readings. For instance, as I_ext increased to 10 UA/cm, the 

membrane potential approached higher positive values, reflecting a shift towards depolarization. In 

contrast, at I_ext = 15 UA/cm, the membrane potential recorded significant spikes nearing the 

threshold, suggesting a critical engagement in action potential dynamics and necessitating a reset 

phase to stabilize the system. This transition from a previously more linear response at lower 

currents to a more nonlinear behavior at higher currents underscores the critical influence of 

external inputs on membrane dynamics, which not only heightens the mean squared error (MSE) 

in predictive modeling but also indicates a complex interaction between electrical stimulus and 

neuronal response mechanisms. Overall, the alterations in external current parameters elucidate a 

pivotal relationship influencing membrane potential behavior, showcasing the intricate balance 

between excitatory and inhibitory signals within the cell. 



 

 

 

 

Figure 3: Parameter analysis of the proposed Random Forest Regression-based Leaky Integrate-

and-Fire 

Table 3: Parameter analysis of case study 

Membrane Potential 

(mV) 
I_ext (UA/cm) Time (ms) N/A 

200 5 400 N/A 

200 15 800 N/A 

N/A 10 0 N/A 

5. Discussion 

The proposed method that integrates the Leaky Integrate-and-Fire (LIF) model with Random Forest 

Regression boasts several significant advantages that enhance both the predictive power and 

interpretability of neuronal firing behaviors. Firstly, by employing Random Forest Regression, the 

methodology effectively harnesses ensemble learning to capture intricate relationships between 

multiple input features and neuronal outputs, resulting in robust predictions that account for 

variability in the synaptic inputs. This approach not only improves the accuracy of predictions 

regarding neuronal firing patterns but also allows for a nuanced understanding of which specific 

input features exert the most influence on neuronal behavior. Furthermore, the coupling of 

predictive outputs from Random Forests with the dynamic framework of the LIF model enriches 

the mathematical representation of biological processes, grounding theoretical constructs in 

physiological realism. This fusion facilitates the exploration of complex neuronal dynamics in a 

manner that transcends traditional models, aligning machine learning insights with neuroscientific 

principles and biostatistics [29-31]. Additionally, the incorporation of predictive analytics into the 

evolution of membrane potential offers a forward-thinking approach to simulating neuronal 

behavior, thus bridging the gap between computational neuroscience and statistical machine 



 

 

 

learning. In essence, this hybrid methodology not only enhances the interpretative capacity of 

neuronal simulations but also promises to yield deeper insights into the underlying mechanisms of 

neural functioning, thereby marking a significant advancement in the quest to model and 

understand complex biological systems. 

While the proposed synthesis of the Leaky Integrate-and-Fire (LIF) model with Random Forest 

Regression presents a novel approach to understanding neuronal behavior, several limitations need 

to be acknowledged. Firstly, the reliance on the LIF model's assumptions, including the 

simplification of neuronal dynamics into a single-compartment representation, may overlook 

critical biophysiological complexities inherent in neuronal behavior, potentially leading to 

inaccuracies when simulating real neuron firing patterns. Additionally, the Random Forest 

Regression model, although adept at handling diverse input data, is not immune to overfitting, 

particularly in scenarios with high-dimensional feature sets. This propensity for overfitting could 

hinder the generalizability of predictions, making the model less reliable across different neuronal 

conditions or datasets. Furthermore, the iterative nature of the synthesis means that the predictive 

accuracy of the Random Forest model directly impacts the performance of the integrated system; 

any errors in estimating synaptic inputs may cascade through to flawed predictions of neuronal 

firing. Another critical limitation is the interpretability of the hybrid model; while feature 

importance metrics from Random Forests can suggest which inputs are influential, the underlying 

biological mechanisms may remain obscure, potentially obscuring insights into the actual 

biological processes. Lastly, computational efficiency may be a concern, as combining these 

models requires extensive computational resources, particularly when training the Random Forest 

on large datasets. Consequently, the utility of the hybrid model may be restricted in real-time 

applications or scenarios where rapid inference is necessary. It is also expected that the method can 

be integrated within the fields of machine learning [32-39] and industrial engineering [40-44]. 

6. Conclusion 

Neural network models, particularly the Leaky Integrate-and-Fire (LIF) neuron model, have been 

instrumental in elucidating the intricate dynamics of neuronal spiking activities in the brain, owing 

to its simplicity and efficacy. Nonetheless, accurately replicating the spiking behavior of LIF 

neurons presents a persistent challenge. Existing research endeavors are often constrained by the 

limitations in capturing the non-linear dynamics and spike timing precision of LIF neurons. To 

overcome these challenges, this study introduces a pioneering methodology that merges the LIF 

neuron model with Random Forest Regression to enhance the precision and efficiency of simulating 

neuronal spiking activities. This novel approach stands out for its capacity to offer improved 

predictions of the spiking behavior of LIF neurons, thereby furnishing a more accurate model for 

investigating neural network dynamics. Despite these advancements, it is worth noting that this 

proposed model may have inherent limitations, such as potential constraints in scaling up to larger 

and more complex neural network systems. In the future, further exploration could involve 

expanding the application of Random Forest Regression in conjunction with other advanced 

machine learning techniques to develop more sophisticated models capable of simulating the 

intricate spiking behaviors of neurons in diverse neural network architectures, ultimately advancing 

our understanding of brain function and information processing. 
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