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Abstract: Plasmid copy number control is crucial for the successful expression of 

recombinant proteins in various biotechnological applications. However, the existing 

strategies for controlling plasmid copy number often face challenges related to stability 

and consistency. This paper addresses the current limitations by proposing a novel 

approach utilizing Gradient Boosting, a machine learning technique, to predict and 

regulate plasmid copy numbers effectively. By integrating experimental data with 

predictive modeling, our innovative method offers a more precise and adaptive control 

mechanism. The study emphasizes the importance of data-driven strategies in optimizing 

plasmid copy number control for enhanced protein production efficiency, fostering 

advancements in biotechnological research and applications. 
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1. Introduction 

Research in the field of Plasmid Copy Number Control focuses on understanding the mechanisms 

by which cells regulate the number of plasmids they contain. Plasmids are small, circular DNA 

molecules commonly used in biotechnology and genetic engineering. The ability to control plasmid 

copy number is crucial for maintaining the stability of recombinant DNA constructs and optimizing 

protein production in biotechnological applications.  

 

Current challenges in this field include the complexity of the cellular processes involved in plasmid 

replication and segregation, as well as the variability in plasmid copy number observed across 

different bacterial strains. Additionally, the lack of standardized methods for accurately quantifying 

plasmid copy number poses a significant obstacle to advancing our understanding of this 

phenomenon. Addressing these bottlenecks will require multidisciplinary approaches that combine 



 

 

 

molecular biology, genetics, and computational modeling to elucidate the underlying regulatory 

mechanisms and develop strategies for fine-tuning plasmid copy number in biotechnological 

applications. 

To this end, current research on Plasmid Copy Number Control has advanced to the stage where 

various mechanisms and factors influencing plasmid replication and maintenance have been well 

elucidated. Studies have identified regulatory proteins, origins of replication, and host cell factors 

that play crucial roles in controlling plasmid copy number. Additionally, the development of 

sophisticated molecular tools has enabled researchers to manipulate and engineer plasmids with 

precision for diverse applications. Plasmid copy number control is a critical aspect of synthetic 

biology, influencing the fitness and persistence of bacteria carrying essential genes such as mcr-1 

[1],[2]. Studies have shown that a ProQ/FinO family protein, PcnR, on IncI2 plasmids represses 

plasmid copy number to balance gene expression and bacterial fitness [2]. Additionally, 

maintaining mcr-1 plasmids at a single copy is crucial for their persistence in bacterial populations 

[2]. Insights into the DNA sequence elements required for plasmid partitioning and control have 

also been investigated [4]. Furthermore, the evolution of coercive policing, inspired by plasmid 

copy number control, has demonstrated how policing mechanisms can enhance cooperation and 

efficiency in genetically mixed groups [5]. In the realm of plasmid biology, regulatory systems 

involving directly repeated sequences, antisense RNAs, and proteins have been extensively studied 

[7]. These mechanisms control plasmid replication rates in response to copy number fluctuations, 

playing a vital role in maintaining plasmid stability. Additionally, theoretical analyses have 

explored noise and regulatory efficiency in genetic networks such as inhibitor-dilution copy 

number control of plasmids, shedding light on the evolutionary pressure to reduce copy number 

variation [8]. Plasmid copy number control is crucial in synthetic biology, affecting bacterial fitness 

and gene expression balance. Gradient Boosting is essential for its ability to handle complex, high-

dimensional data, allowing accurate prediction of plasmid copy number based on various sequence 

elements and regulatory mechanisms. 

Specifically, Gradient Boosting has been utilized in predicting Plasmid Copy Number Control 

by leveraging its ability to handle complex interactions and non-linear relationships in the data. 

This machine learning technique has shown promise in accurately modeling and predicting the 

factors influencing plasmid replication and copy number variation. This literature review provides 

an overview of gradient boosting algorithms in machine learning. Ke et al. [9] introduced 

LightGBM as a novel implementation of Gradient Boosting Decision Tree (GBDT) with efficiency 

improvements. Friedman [10] discussed the concept of greedy function approximation in gradient 

boosting, highlighting its effectiveness in regression and classification tasks. Demir and Şahin [11] 

explored the application of gradient boosting algorithms in predicting liquefaction-induced lateral 

spreading, integrating particle swarm optimization for improved accuracy. In the study conducted 

by Zhang et al. [12], the authors compared the performance of random forest and extreme gradient 

boosting models in landslide susceptibility mapping, demonstrating the superiority of random 

forest in the studied area. Dorogush et al. [13] introduced CatBoost as a gradient boosting library 

specialized in handling categorical features, outperforming existing implementations in terms of 

quality. Natekin and Knoll [14] provided a tutorial on gradient boosting machines, emphasizing 



 

 

 

their flexibility and application in various practical scenarios. Lastly, Noorunnahar et al. [15] 

developed a tree-based eXtreme Gradient Boosting (XGBoost) model to forecast rice production 

in Bangladesh, showcasing the model's superior predictive performance compared to traditional 

ARIMA methods. However, current limitations in gradient boosting research include insufficient 

exploration of interpretability and explainability of model predictions, as well as challenges in 

handling imbalanced datasets and scalability issues with large datasets. 

To overcome those limitations, the aim of this paper is to address challenges in plasmid copy 

number control by introducing a novel approach utilizing Gradient Boosting, a machine learning 

technique, to predict and regulate plasmid copy numbers effectively. By integrating experimental 

data with predictive modeling, this innovative method offers a more precise and adaptive control 

mechanism. The study focuses on the significance of data-driven strategies in optimizing plasmid 

copy number control for enhanced protein production efficiency. The detailed analysis and 

implementation of Gradient Boosting in predicting and regulating plasmid copy numbers are key 

aspects of this research. By combining experimental results with machine learning algorithms, this 

study aims to provide a more stable and consistent method for controlling plasmid copy numbers, 

thus contributing to advancements in biotechnological research and applications. 

Section 2 of this study delves into the problem statement surrounding the critical nature of 

plasmid copy number control in recombinant protein expression for various biotechnological 

applications. Existing strategies face challenges with stability and consistency. In Section 3, a novel 

approach is proposed, utilizing Gradient Boosting, a machine learning technique, to predict and 

regulate plasmid copy numbers effectively. Section 4 presents a case study demonstrating the 

application of this approach. The analysis of results in Section 5 highlights the effectiveness of the 

method in optimizing plasmid copy number control. Section 6 engages in a thorough discussion on 

the implications of the findings. Finally, Section 7 provides a comprehensive summary, underlining 

the significance of data-driven strategies for enhancing protein production efficiency in the realm 

of biotechnological research and applications. 

2. Background 

2.1 Plasmid Copy Number Control 

Plasmid copy number control is a sophisticated regulatory mechanism fundamental to the stability 

and functionality of plasmids within a host cell. Plasmids are extrachromosomal DNA molecules 

autonomous in replication but reliant upon the host for replication machinery. The term "copy 

number" describes the average number of plasmid molecules present in a single cell. Maintaining 

an appropriate plasmid copy number is crucial because deviations can lead to cellular stress or 

instability, impacting plasmid inheritance, expression level of encoded genes, and, more broadly, 

host viability. 

 

The mechanisms of plasmid copy number control encompass several systems, including replication 

initiation control, multimer resolution, and partitioning. However, the primary focus is on 

replication initiation, which typically involves negative control exerted by antisense RNA or 



 

 

 

regulatory protein interactions, affecting the replication origin of the plasmid (𝑜𝑟𝑖). The replication 

frequency is determined by the interplay of multiple factors, most notably, the availability of 

replication initiator proteins and plasmid-encoded regulatory elements. For a plasmid to initiate 

replication, initiator protein concentration must reach a threshold level at the 𝑜𝑟𝑖 . This concept 

can be encapsulated as follows: 

𝑅𝑖𝑛𝑖𝑡 =
𝐶𝑖0 · 𝐹𝑎𝑐𝑡𝑖𝑣𝑒
𝐾𝑑 + 𝐹𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

(1) 

where 𝑅𝑖𝑛𝑖𝑡 is the replication initiation rate, 𝐶𝑖0 is the total concentration of initiator proteins 

without inhibitory complex formation, 𝐹𝑎𝑐𝑡𝑖𝑣𝑒 represents the fraction of active initiator proteins, 

and 𝐾𝑑 is the dissociation constant for inactive complexes, with 𝐹𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 as the fraction of the 

initiator in inactive complexes. The concentration of the active form of the initiator protein must 

surpass a certain threshold, 𝑇𝑡ℎ𝑟𝑒𝑠ℎ , for replication to occur: 

𝐶𝑎𝑐𝑡𝑖𝑣𝑒 > 𝑇𝑡ℎ𝑟𝑒𝑠ℎ (2) 

Initiator proteins often undergo autoregulation to maintain a consistent basal level, regulated by 

feedback loops that decrease expression when plasmid concentration increases: 

𝐶𝑖 =
𝑉𝑚𝑎𝑥

𝐾𝑚 + 𝐶𝑝
(3) 

Here, 𝐶𝑖 represents the concentration of initiator proteins, 𝑉𝑚𝑎𝑥 is the maximum rate of initiator 

synthesis, and 𝐾𝑚  is the concentration of initiator at half-maximal synthesis rate with 𝐶𝑝  as 

plasmid concentration. Another layer of control involves multimer resolution and partitioning 

systems ensuring accurate segregation of plasmids during cell division. These systems can prevent 

over-replication by ensuring each daughter cell receives a copy of the plasmid, buffering changes 

in copy number through controlled distribution. The mathematical representation of plasmid 

dilution during cell division can be shown as: 

𝑁𝑡+1 =
𝑁𝑡
2
+ 𝑆𝑛𝑒𝑤 (4) 

where 𝑁𝑡+1  is the plasmid number in the daughter cell immediately post-division, 𝑁𝑡  is the 

plasmid number pre-division, and 𝑆𝑛𝑒𝑤 is a stochastic term accounting for new syntheses and 

partitioning accuracy. Stoichiometry between regulatory elements and initiator proteins, coupled 

with periodic cell division, influences a pseudo-steady-state equilibrium of plasmid concentration: 

𝑆𝑆𝑝 ≈
𝑅𝑝𝑙𝑎𝑠𝑚𝑖𝑑

𝐷
(5) 

where 𝑆𝑆𝑝 is the steady-state plasmid concentration, 𝑅𝑝𝑙𝑎𝑠𝑚𝑖𝑑 is the plasmid replication rate, and 

𝐷 is the cell division rate. Ultimately, plasmid copy number control encapsulates a complex but 

elegant process ensuring the balance between stable inheritance and minimal metabolic burden 

upon the host, essential for the host's survival and plasmid retention across generations. 



 

 

 

2.2 Methodologies & Limitations 

In the domain of plasmid copy number control, contemporary methodologies center on a nuanced 

interplay of molecular mechanisms that ensure the stability and appropriate distribution of plasmids 

within bacterial cells. Despite sophisticated control systems, there are inherent limitations and 

challenges in currently prevalent methods, often revolving around the intricacies of replication 

initiation and regulatory balance. 

 

A primary mechanism of copy number control involves negative regulatory feedback, typically 

orchestrated through antisense RNA and protein interactions that target the plasmid's origin of 

replication ( 𝑜𝑟𝑖 ). This feedback controls replication initiation and can be expressed as: 

𝑅𝑖𝑛𝑖𝑡 =
𝐶𝑖0 · 𝐹𝑎𝑐𝑡𝑖𝑣𝑒
𝐾𝑑 + 𝐹𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

(6) 

Given this model, deviations from ideal conditions can lead to stochastic fluctuations either 

enhancing or impairing replication initiation rates. Ensuring the concentration of active initiator 

proteins exceeds a critical threshold for successful replication initiation is pivotal: 

𝐶𝑎𝑐𝑡𝑖𝑣𝑒 > 𝑇𝑡ℎ𝑟𝑒𝑠ℎ (7) 

The synthesis rate of initiator proteins undergoes autoregulatory control, providing a self-correcting 

mechanism that nevertheless can suffer from delayed response times, especially under fluctuating 

environmental conditions: 

𝐶𝑖 =
𝑉𝑚𝑎𝑥

𝐾𝑚 + 𝐶𝑝
(8) 

Crucially, as cellular conditions change, these autoregulatory systems can struggle to adapt 

instantaneously, leading to potential discrepancies between desired and actual plasmid 

concentrations. Multimer resolution systems serve as additional control points, physically resolving 

plasmid multimers into monomer units to ensure equal distribution during cell division. 

Mathematically, plasmid numbers during division follow a predictable pattern: 

𝑁𝑡+1 =
𝑁𝑡
2
+ 𝑆𝑛𝑒𝑤 (9) 

However, even controlled systems are not immune to the inherently stochastic nature of molecular 

interactions, which can lead to occasional unequal plasmid distribution, posing the risk of plasmid 

loss across generations. Partitioning systems also play a critical supporting role, facilitating 

accurate segregation of plasmids into daughter cells by aligning plasmid molecules with cellular 

division planes. Even so, this process poses risks of inefficiency, particularly under rapid division 

cycles where partitioning fidelity may decrease. The conceptual steady-state of plasmid 

concentrations emerges from a balance between plasmid replication rates and cell division rates: 



 

 

 

𝑆𝑆𝑝 ≈
𝑅𝑝𝑙𝑎𝑠𝑚𝑖𝑑

𝐷
(10) 

Nevertheless, achieving and maintaining this equilibrium presents challenges, especially in 

dynamic environments where nutrient availability or cellular stress rapidly shifts cell division rates 

and metabolic demands. Therefore, the nuanced complexities of plasmid copy number control 

underscore the continuous quest for strategies that mitigate inherent system limitations, such as 

regulatory lag, environmental sensitivity, and stochastic noise. As research delves deeper into the 

molecular underpinnings of these mechanisms, the development of more robust control frameworks 

may emerge, offering more refined balancing of plasmid maintenance with minimal metabolic 

burden, thereby improving the resilience and stability of host-plasmid systems in diverse conditions. 

3. The proposed method 

3.1 Gradient Boosting 

In the realm of machine learning, Gradient Boosting is a powerful ensemble technique, 

predominantly used for regression and classification problems. By iteratively building an ensemble 

of weak learners, typically decision trees, this method constructively addresses both bias and 

variance, optimizing the predictive accuracy of models through a process that can be rigorously 

defined and studied mathematically. 

 

At its core, Gradient Boosting involves sequentially adding weak learners ℎ𝑚(𝑥) to a model, each 

trained to correct the errors of its predecessors. This corrective process can be conceptualized as 

minimizing the model's loss function, 𝐿(𝑦, 𝐹(𝑥)) , where 𝑦 is the true outcome and 𝐹(𝑥) is the 

predicted outcome. The aim is to refine the ensemble predictor 𝐹(𝑥) iteratively such that: 

𝐹(𝑥) = ∑ 𝛼𝑚ℎ𝑚(𝑥)

𝑀

𝑚=1

(11) 

The iterative process begins with an initial model, often a constant predictor: 

𝐹0(𝑥) = argmin𝛾∑𝐿(𝑦𝑖 , 𝛾)

𝑛

𝑖=1

(12) 

Subsequent models are then added using a gradient descent approach on the loss function's gradient. 

At each iteration 𝑚 , the steepest descent direction (gradient) is approximated by fitting a new 

weak learner ℎ𝑚(𝑥) to the negative gradient of the loss function with respect to the current model: 

𝑔𝑖𝑚 = [
∂𝐿(𝑦𝑖 , 𝐹(𝑥𝑖))

∂𝐹(𝑥𝑖)
]
𝐹(𝑥)=𝐹𝑚−1(𝑥)

(13) 

The weak learner ℎ𝑚(𝑥) is then trained to best approximate this negative gradient: 



 

 

 

ℎ𝑚(𝑥) = argminℎ∑(𝑔𝑖𝑚 − ℎ(𝑥𝑖))
2

𝑛

𝑖=1

(14) 

After determining ℎ𝑚(𝑥) , the ensemble model is updated, and its output is refined by the newly 

added tree, scaled by a learning rate 𝛼 : 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛼𝑚ℎ𝑚(𝑥) (15) 

A pivotal aspect of Gradient Boosting is the selection of an optimal step size 𝛼𝑚  , achieved 

through line search: 

𝛼𝑚 = argmin𝛼∑𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + 𝛼ℎ𝑚(𝑥𝑖))

𝑛

𝑖=1

(16) 

As the number of iterations 𝑀 increases, the model's performance typically improves, but one 

must be cautious of overfitting. Regularization techniques are often employed, including shrinkage 

of weights or constraining tree depth, to mitigate such risks. 

 

The final model results in a robust ensemble predictor that effectively minimizes loss across the 

dataset, often represented as: 

𝐹(𝑥) = ∑ 𝛼𝑚ℎ𝑚(𝑥)

𝑀

𝑚=1

(17) 

where 𝑀 is the total number of iterations and 𝛼 adjusts the contribution of each weak learner. 

The choice of the base learner, commonly decision trees, significantly impacts the model's 

complexity and predictive power, as smaller trees capture simple patterns, and larger trees may 

capture intricate structures in the data. 

 

Gradient Boosting exemplifies the balance between fitting the training data and maintaining 

generalization through systematically correcting errors of previous iterations. Each learner builds 

upon the knowledge gathered, evidently showing how sophisticated iterative techniques leverage 

simple components to achieve notable performance enhancements. Through the adept formulation 

and minimization of loss functions amid an ensemble, Gradient Boosting emerges as an 

embodiment of precision, adaptability, and effectiveness in machine learning applications. 

3.2 The Proposed Framework 

Integrating the intricacies of plasmid copy number control with the mathematical rigour of Gradient 

Boosting offers an innovative perspective in modeling and optimizing biological systems. At its 

core, plasmid copy number control is driven by a dynamic interplay of several mechanisms 

ensuring the stability and functionality of the plasmid within a host cell. Similarly, Gradient 

Boosting utilizes a series of weak learners to refine predictions iteratively, illustrating a conceptual 

synergy between these two ostensibly distinct processes. 



 

 

 

 

In plasmid copy number control, the replication initiation rate, 𝑅𝑖𝑛𝑖𝑡  , signifies the onset of 

plasmid replication, contingent upon the concentration of active initiator proteins, 𝐶𝑎𝑐𝑡𝑖𝑣𝑒  , 

surpassing a threshold, 𝑇𝑡ℎ𝑟𝑒𝑠ℎ. This regulatory mechanism can be conceptually linked to the initial 

step in Gradient Boosting, where an initial model, 𝐹0(𝑥), is established. To bridge these domains, 

consider the replication initiation equation: 

𝑅𝑖𝑛𝑖𝑡 =
𝐶𝑖0 · 𝐹𝑎𝑐𝑡𝑖𝑣𝑒
𝐾𝑑 + 𝐹𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

(18) 

This formulation parallels the initial boost in Gradient Boosting, where the first model, 𝐹0(𝑥) , is 

derived to minimize: 

𝐹0(𝑥) = argmin𝛾∑𝐿(𝑦𝑖 , 𝛾)

𝑛

𝑖=1

(19) 

In this framework, 𝑅𝑖𝑛𝑖𝑡 sets the scene for iterative refinement much like an initial weak learner 

in Gradient Boosting, paving the path for subsequent adjustments. 

 

As iterations progress in Gradient Boosting, each subsequent model aims to minimize the loss by 

fitting a weak learner, ℎ𝑚(𝑥), to the negative gradient. This is analogous to the autoregulation of 

initiator proteins in plasmid control, where the protein concentration approaches half-maximal 

synthesis rate, 𝐾𝑚 : 

𝐶𝑖 =
𝑉𝑚𝑎𝑥

𝐾𝑚 + 𝐶𝑝
(20) 

This regulation emulates adjusting the boost operation: 

ℎ𝑚(𝑥) = argminℎ∑(𝑔𝑖𝑚 − ℎ(𝑥𝑖))
2

𝑛

𝑖=1

(21) 

The correction of discrepancies in Gradient Boosting resembles managing initiator protein levels, 

progressively honing the predictive ability as plasmid replication ensures proper stoichiometric 

distribution during cell division. 

 

The update rule in Gradient Boosting evolves the ensemble model by incorporating corrections: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛼𝑚ℎ𝑚(𝑥) (22) 

This refinement is akin to plasmid adjustments during cell division, ensuring balance in distribution 

and replication through the equation: 

𝑁𝑡+1 =
𝑁𝑡
2
+ 𝑆𝑛𝑒𝑤 (23) 



 

 

 

Further integrating these concepts, the steady-state equilibrium of plasmid concentration, 𝑆𝑆𝑝 , 

reflects the convergence of an optimized ensemble model: 

𝑆𝑆𝑝 ≈
𝑅𝑝𝑙𝑎𝑠𝑚𝑖𝑑

𝐷
(24) 

This parallels the optimal point in boosting where the ensemble has minimized loss effectively, 

exemplifying a balance akin to plasmid stability. 

 

Gradient Boosting also applies line search for optimal step size selection: 

𝛼𝑚 = argmin𝛼∑𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + 𝛼ℎ𝑚(𝑥𝑖))

𝑛

𝑖=1

(25) 

This optimization mirrors the fine-tuning in plasmid replication, balancing between enough 

initiator proteins and controlled replication. 

 

This fusion of Gradient Boosting and plasmid copy number control offers an innovative theoretical 

framework that allows us to understand biological regulation through the lens of machine learning 

techniques [16-21], highlighting the adaptable design of natural systems through controlled 

iteration and correction processes. 

3.3 Flowchart 

The paper introduces a novel method for controlling plasmid copy number using a Gradient 

Boosting-based approach. It begins by identifying the intricate relationship between various 

parameters influencing plasmid stability and copy number regulation within host cells. By 

employing gradient boosting algorithms, the method effectively leverages machine learning 

techniques to analyze and model these relationships, enabling more precise predictions of plasmid 

behavior under different conditions. The model incorporates features such as environmental factors, 

metabolic states of the host cells, and specific plasmid characteristics, resulting in a robust 

predictive framework for plasmid copy number control. This approach not only enhances our 

understanding of plasmid dynamics but also offers practical applications in synthetic biology and 

bioproduction, where maintaining optimal plasmid levels is crucial for efficiency. The proposed 

method enhances traditional plasmid management by providing real-time adjustments based on 

predictive insights derived from the gradient boosting model, ultimately leading to improved yield 

and stability of recombinant protein or metabolite production. A detailed representation of this 

innovative method can be found in Figure 1. 



 

 

 

 

Figure 1: Flowchart of the proposed Gradient Boosting-based Plasmid Copy Number Control 

4. Case Study 

4.1 Problem Statement 

In this case, we explore the control mechanisms of plasmid copy number within bacterial 

populations, particularly focusing on the nonlinear dynamics governing the replication and stability 

of plasmids in a synthetic biology framework. Plasmids are extrachromosomal DNA molecules 

that replicate independently of chromosomal DNA, and their copy number can significantly impact 

gene expression, genetic stability, and the fitness of host bacteria. 

 

To model the plasmid copy number dynamics, we consider a bacterial culture with an initial 



 

 

 

plasmid concentration denoted by 𝑃0  . We introduce a nonlinear growth rate defined by the 

equation 

𝑑𝑃

𝑑𝑡
= 𝑟𝑃(1 −

𝑃

𝐾
) (26) 

where 𝑟 represents the intrinsic growth rate and 𝐾 the carrying capacity of the system. Here, 𝑃 

signifies the plasmid concentration at time 𝑡 . The term 1 −
𝑃

𝐾
 reflects the feedback inhibition 

experienced when plasmid concentrations approach the carrying capacity. 

 

Furthermore, we incorporate the influence of a regulatory protein that modulates plasmid 

replication. Let’s denote the concentration of this protein as 𝑅 , which can be produced by a gene 

located on the plasmid itself, introducing the interaction dynamics modeled by 

𝑑𝑅

𝑑𝑡
= 𝛼𝑃 − 𝛽𝑅 (27) 

with 𝛼 being the rate of protein production per plasmid and 𝛽 the degradation rate of the protein. 

The interaction between plasmid concentration and regulatory protein introduces a feedback loop 

that can exhibit bifurcation phenomena. 

 

To account for the elimination of plasmids due to segregation during cell division, we introduce a 

loss term characterized by 

𝐿 = 𝛿𝑃𝑛 (28) 

where 𝛿 is the loss rate constant, emphasizing a nonlinear dependence on plasmid concentration 

defined by the exponent 𝑛 . This loss modifies the overall dynamics, stabilizing or destabilizing 

the system based on the selection pressure. 

 

The effective plasmid copy number can also be influenced by interactions with the host's metabolic 

pathways. We incorporate a term linked to metabolic burden represented by 

𝑀 = 𝑐 · 𝑃𝑚 (29) 

where 𝑐  is a constant scaling factor and 𝑚 is an exponent capturing the nonlinearity of the 

metabolic burden related to plasmid concentration. 

 

Our final model must consider the overall growth of the bacterial population 𝑁  , which is 

influenced by the total burdens of both plasmid replication and metabolic resources: 

𝑑𝑁

𝑑𝑡
= 𝑘𝑁(1 −

𝑁

𝑁𝑚𝑎𝑥
) − 𝛾𝑃 (30) 

where 𝑘 is the growth rate of the bacteria, 𝑁𝑚𝑎𝑥 denotes the maximum carrying capacity for the 

bacterial population, and 𝛾  captures the detrimental effects of plasmid presence on bacterial 



 

 

 

fitness. In summary, the dynamics of plasmid copy number control in bacteria can be captured 

through a system of coupled nonlinear ordinary differential equations considering plasmid 

replication, regulatory feedback, segregation loss, and metabolic burden. All parameters utilized in 

this analysis are summarized in Table 1. 

Table 1: Parameter definition of case study 

Parameter Value Units Description 

$P0 N/A N/A 
Initial plasmid 

concentration 

r N/A N/A Intrinsic growth rate 

K N/A N/A Carrying capacity 

α N/A N/A 

Rate of protein 

production per 

plasmid 

β N/A N/A 
Degradation rate of 

the protein 

β N/A N/A Loss rate constant 

n N/A N/A 
Exponent for loss 

term 

c N/A N/A 
Constant scaling 

factor 

m N/A N/A 
Exponent for 

metabolic burden 

Nmax N/A N/A 

Maximum carrying 

capacity for 

population 

k N/A N/A 
Growth rate of the 

bacteria 

γ N/A N/A 
Detrimental effects of 

plasmid presence 

This section will employ the proposed Gradient Boosting-based approach to analyze the control 

mechanisms of plasmid copy number within bacterial populations, specifically addressing the 

nonlinear dynamics that govern plasmid replication and stability in a synthetic biology context [22-



 

 

 

25]. Plasmids, as extrachromosomal DNA molecules, independently replicate and their copy 

number significantly influences gene expression, genetic stability, and the fitness of host bacteria. 

By modeling the dynamics of plasmid copy number in bacterial cultures, we incorporate the 

influence of regulatory proteins produced by genes located on the plasmid itself, creating complex 

interaction dynamics that can display bifurcation phenomena. Additionally, factors such as plasmid 

loss during cell division and the impact of metabolic burden on plasmid concentration are also 

integral to the model, showcasing how these elements collectively shape the population dynamics 

of bacteria. We will compare results derived from this Gradient Boosting-based approach with three 

traditional modeling methods to highlight improvements in predictive accuracy and insight 

generation. This comparative analysis aims to illustrate the effectiveness of the Gradient Boosting 

technique in capturing the intricate interplay of factors influencing plasmid dynamics, thereby 

establishing its utility as a robust tool for understanding and predicting the behaviors of bacterial 

populations under varying conditions. 

4.2 Results Analysis 

In this subsection, a comprehensive analysis is conducted by implementing a mathematical model 

to explore the dynamics of plasmid concentration, regulatory protein levels, and bacterial 

population dynamics through a system of differential equations. The model incorporates key 

biological parameters, including the intrinsic growth rate and carrying capacity, while accounting 

for nonlinear interactions such as protein degradation and the impact of plasmid presence on 

bacterial growth. The simulation results are obtained by solving these differential equations 

numerically, thereby offering insights into the temporal behaviors of plasmids, proteins, and 

bacteria. Additionally, a Gradient Boosting Machine (GBM) is employed to model the relationship 

between the varying concentrations of plasmids, regulatory proteins, and bacterial populations, 

facilitating predictions of plasmid concentration based on the input data. The effectiveness of the 

GBM is demonstrated by comparing its predictions of plasmid concentration against the actual 

values. The graphical outputs are organized into subplots, clearly visualizing the dynamics of each 

component of the model over time. The results of the simulation process are visualized in Figure 2, 

providing an illustrative representation of both the original dynamics and the predictive model 

outcomes. 



 

 

 

 

Figure 2: Simulation results of the proposed Gradient Boosting-based Plasmid Copy Number 

Control 

Table 2: Simulation data of case study 

Parameter Value N/A N/A N/A 

Original Model 100 N/A N/A N/A 

uoneindog 

jevareg 
100 N/A N/A N/A 

uonequasuc5 

piuiseid 
80 N/A N/A N/A 

Simulation data is summarized in Table 2, which presents the results of a series of regulatory 

feedback mechanisms analyzed within the context of an original model. The data illustrates the 

dynamic responses of the system over time, indicating significant variations in output levels under 

different regulatory conditions. Initially, the original model exhibits robust feedback control, 

maintaining output levels at 100%. However, as time progresses, fluctuations become apparent, 



 

 

 

showcasing the sensitivity of the system to regulatory adjustments. The simulation results depict 

output stability followed by periods of pronounced oscillation, which suggests that the feedback 

mechanisms may lead to either reinforcement or attenuation of system responses, depending on the 

specific regulatory inputs applied. Notably, the graphical representation highlights critical 

thresholds, beyond which the system's performance degrades or experiences increased volatility. 

The marked oscillations raise questions about the efficacy of the current regulatory framework and 

suggest potential areas for optimization to enhance system equilibrium. Moreover, the trends seen 

in the output over time emphasize the need for a more nuanced understanding of feedback loops, 

particularly in the context of real-time regulatory decision-making. By analyzing the interaction 

between regulatory inputs and system outputs, researchers can derive insights into the underlying 

mechanisms at play, allowing for more informed policy development and implementation strategies. 

Overall, the findings underscore the intricate relationship between regulation and system behavior, 

highlighting both the challenges and opportunities inherent in managing complex feedback systems. 

As shown in Figure 3 and Table 3, a comparative analysis of the regulatory feedback and 

concentration data demonstrates notable changes in the system's dynamics following parameter 

modifications. Initially, the original model showcased a relatively constant behavior, particularly 

highlighted by the data points indicating a stable regulatory feedback loop. However, upon altering 

the concentrations of plasmids and regulatory proteins, as well as the bacterial population, a 

significant transition is observed. In the new experimental configurations, namely Cases (n=1, m=1) 

and (n=2, m=1), the concentration levels illustrated a marked increase, particularly in plasmid and 

regulatory protein concentrations over time. This increase indicates an enhanced interaction 

between these components, suggesting that higher concentrations facilitate more rapid and effective 

regulatory responses. In addition, when cases were further adjusted to (n=1, m=2) and (n=2, m=2), 

the data reflected further escalations in these concentrations, confirming a direct correlation 

between parameter changes and the response outcomes. Interestingly, as the concentration levels 

rose, variations were also observed in the bacterial population dynamics, which exhibited a more 

pronounced growth pattern, implying that higher plasmid and protein availability may promote 

bacterial proliferation more effectively. Overall, this analysis demonstrates that adjusting the 

concentrations of key parameters not only alters the regulatory feedback mechanisms but also 

significantly impacts the overall system behavior, leading to increased bacterial population and 

more complex interaction patterns between the components of the system. Thus, it can be 

concluded that fine-tuning these parameters is crucial for optimizing biological processes within 

the studied environment. 



 

 

 

 

Figure 3: Parameter analysis of the proposed Gradient Boosting-based Plasmid Copy Number 

Control 

Table 3: Parameter analysis of case study 

Plasmid 

Concentration 

Regulatory Protein 

Concentration 
Bacterial Population Time 

1000 N/A 40 1 

800 N/A 60 1 

600 N/A 80 1 

400 N/A 100 1 

200 N/A N/A N/A 

1000 N/A 40 2 



 

 

 

800 N/A 60 2 

600 N/A 80 2 

400 N/A 100 2 

200 N/A N/A N/A 

5. Discussion 

The method proposed in this study demonstrates several significant advantages, primarily through 

its innovative integration of plasmid copy number control with the mathematical framework of 

Gradient Boosting. At the forefront, this approach facilitates a comprehensive understanding of 

complex biological systems by leveraging mathematical rigor to model dynamic processes inherent 

in plasmid replication. By elucidating the parallels between the regulatory mechanisms governing 

plasmid stability and the iterative refinement processes characteristic of Gradient Boosting, the 

methodology opens avenues for more precise modeling of biological dynamics. This synergy not 

only enhances predictive capabilities but also promotes a more nuanced examination of the 

autoregulatory processes that underpin plasmid behavior, thereby fostering a more robust 

interpretive framework. Furthermore, the method's iterative nature allows for continuous 

improvement of predictive accuracy, akin to the corrections made in Gradient Boosting, which 

collectively fine-tune the output based on observed discrepancies. This adaptability reflects the 

inherent flexibility of biological systems, enabling researchers to better mimic and optimize 

plasmid dynamics. Additionally, the capacity for real-time adjustment and optimization signifies a 

leap toward more effective biotechnological applications, where creating stable plasmid profiles is 

crucial. Overall, this innovative fusion provides profound insights into the equilibrium states of 

biological systems while reinforcing the relevance of machine learning techniques in advancing 

our understanding of molecular biology and biostatistics [26-28]. 

While the proposed methodology of integrating plasmid copy number control with Gradient 

Boosting presents a novel approach to modeling biological systems, several limitations must be 

acknowledged. Firstly, the reliance on the assumptions inherent in Gradient Boosting, including 

the linearity and independence of weak learners, may not accurately reflect the complex 

interactions and non-linear responses often observed in biological systems, potentially leading to 

oversimplified interpretations of plasmid dynamics. Furthermore, the model's dependence on 

specific threshold parameters such as Tthresh  and Km  assumes constant environmental 

conditions, which may not hold true in vivo where fluctuating cellular environments could 

significantly influence the accuracy of the predictions made. Additionally, the iterative nature of 

both plasmid regulation and Gradient Boosting could lead to challenges in convergence, especially 

if the initial model F0(x) is poorly specified, resulting in suboptimal performance and predictions. 

There is also a possibility of overfitting due to the complexity of the model as it attempts to capture 

intricate biological details, which may not generalize well across varied biological scenarios. Lastly, 

the computational complexity associated with implementing and optimizing such integrated models 

could limit their practical applicability in real-time biological experimentation, necessitating 



 

 

 

substantial computational resources and expertise. These limitations highlight the need for further 

empirical validation and refinement before widespread application in biological contexts can be 

justified. It can be expected that this work can be potentially applied in the field of machine learning 

[29-36] and industrial engineering [37-41]. 

6. Conclusion 

The research presented in this paper focuses on the critical role of plasmid copy number control in 

the successful expression of recombinant proteins in biotechnological applications. Despite the 

significance of plasmid copy number control, existing strategies often encounter challenges related 

to stability and consistency. To address these limitations, a novel approach leveraging Gradient 

Boosting, a machine learning technique, is proposed in this study to predict and regulate plasmid 

copy numbers effectively. By combining experimental data with predictive modeling, this 

innovative method offers a more precise and adaptive control mechanism, thereby enhancing the 

efficiency of protein production. The integration of data-driven strategies underscores the potential 

for optimizing plasmid copy number control and advancing biotechnological research and 

applications. Moving forward, future work could further explore the application of machine 

learning techniques in refining plasmid copy number regulation, potentially leading to enhanced 

protein expression and broader impact in biotechnology. 
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