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Abstract: Simultaneous Localization and Mapping (SLAM) through loop closure 

detection is a crucial and challenging task in the field of robotics and autonomous 

navigation. Accurate and efficient SLAM systems are essential for various applications, 

such as self-driving vehicles and unmanned aerial vehicles. However, the current research 

faces difficulties in achieving robust loop closure detection and maintaining real-time 

performance. This paper addresses these challenges by proposing a novel approach that 

combines feature-based methods with deep learning techniques for loop closure detection. 

We conduct extensive experiments to demonstrate the effectiveness and efficiency of our 

method in improving SLAM accuracy and reducing computational costs. Our research 

contributes to advancing the capabilities of SLAM systems and paves the way for more 

reliable and intelligent autonomous systems. 
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Autonomous Navigation 

1. Introduction 

Simultaneous Localization and Mapping (SLAM) is a research field in robotics and computer 

vision that focuses on the development of algorithms and techniques to enable a mobile robot or a 

device to construct a map of its surroundings while simultaneously determining its location within 

that map in real-time. The main challenge in SLAM lies in the need for accurate and robust sensor 

data fusion, dealing with the uncertainties in sensor measurements, addressing computational 

complexity issues, and ensuring the scalability of the SLAM system in dynamic environments. 

Furthermore, another key bottleneck in SLAM research is achieving consistent localization and 

mapping results in challenging conditions such as low-texture environments, dynamic obstacles, 

and changing lighting conditions. Overcoming these obstacles is crucial for advancing the 
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capabilities of SLAM systems and enabling the deployment of robust autonomous robots and 

augmented reality applications. 

To this end, research on Simultaneous Localization and Mapping (SLAM) has advanced to the 

stage where it incorporates a variety of sensors and techniques for robust and accurate mapping and 

localization in complex environments. In recent years, research on Simultaneous Localization and 

Mapping (SLAM) has made significant progress in the field of robotics [1]. Montemerlo et al. 

introduced FastSLAM, an algorithm that addresses the challenge of handling a large number of 

landmarks in real environments by recursively estimating the full posterior distribution over robot 

pose and landmark locations [2]. Cadena et al. conducted a comprehensive survey on the past, 

present, and future of SLAM, covering various topics such as robustness, scalability, and new 

frontiers in the field [3]. Bailey and Durrant-Whyte further discussed the Bayesian formulation of 

the SLAM problem, focusing on computational complexity, data association, and environment 

representation [4]. Labbéand Michaud presented RTAB-Map, an open-source library that supports 

both visual and lidar SLAM for large-scale online operation [5]. Lajoie and Beltrame introduced 

Swarm-SLAM, a decentralized collaborative SLAM framework for multi-robot systems designed 

to be scalable and sparse [6]. Zheng et al. explored the application of SLAM for autonomous driving, 

discussing different implementation approaches, challenges, and solutions [7]. Finally, Deng et al. 

proposed a long-term SLAM system with map prediction and dynamics removal to improve 

localization accuracy in dynamic environments [8]. Loop Closure Detection is a critical technique 

in Simultaneous Localization and Mapping (SLAM) research. It helps to improve the accuracy of 

robot localization by detecting and correcting errors that may occur when a robot revisits a 

previously visited location. By identifying loop closures, the SLAM system can refine its map and 

trajectory estimation, leading to more robust and reliable navigation in real-world environments. 

Specifically, Loop Closure Detection is a crucial component in Simultaneous Localization and 

Mapping (SLAM) systems. It helps identify and close loops in the robot's trajectory to improve the 

accuracy of the map generated during SLAM. Loop Closure Detection plays a key role in ensuring 

the consistency and precision of the SLAM process. In recent years, Loop Closure Detection (LCD) 

has been a critical component in Simultaneous Localization and Mapping (SLAM) systems [9]. 

Traditional methods based on fixed-LiDAR scans have shown reliable performance in LCD tasks 

[10]. However, for rotary-LiDAR scans, challenges arise due to significant view-angle changes, 

leading to the development of specialized algorithms like RLS-LCD [11]. In bathymetric SLAM, 

the introduction of Shape Bag of Words (S-BoW) has significantly enhanced loop closure detection 

accuracy [12]. A novel method based on a Variational Autoencoder (VAE) has proved to be robust 

and highly accurate in loop closure detection for visual SLAM systems [13]. Furthermore, the 

Mercator Descriptor has demonstrated remarkable performance in loop closure detection for 

LiDAR SLAM [14]. Moreover, the integration of CNN in RGB-D SLAM for intelligent 

agricultural machinery has shown improved accuracy and real-time performance in loop closure 

detection [15]. In orchard robot's localization and mapping, the SG-ISBP-SLAM has effectively 

addressed challenges posed by uneven terrains through ground optimization and loop closure 

detection integration [16]. Additionally, a method that fuses point cloud and learned image data for 

loop closure detection has shown state-of-the-art performance in KITTI datasets [17]. Finally, the 



introduction of a benchmarking framework, GV-Bench, targeting geometric verification of long- 

term loop closure detection, has enabled in-depth analysis and evaluation of local feature matching 

methods [18]. 

However, current limitations in Loop Closure Detection (LCD) research include the need for 

further investigation into the robustness of algorithms with varying environmental conditions, such 

as different lighting, weather, and terrain scenarios. To overcome those limitations, this paper aims 

to enhance the robustness and real-time performance of Simultaneous Localization and Mapping 

(SLAM) through loop closure detection in robotics and autonomous navigation applications. The 

proposed method combines feature-based techniques with deep learning approaches to improve 

loop closure detection accuracy while reducing computational costs. Specifically, we utilize a 

feature-based SLAM system to extract distinctive visual features from the environment and apply 

a deep learning model for loop closure detection. This model learns to recognize spatial patterns 

and associations in sensor data to identify loop closures with high precision. To validate the 

effectiveness of our approach, we conduct extensive experiments using real-world datasets and 

benchmarks. The results demonstrate that our method not only enhances SLAM accuracy but also 

significantly improves computational efficiency, making it suitable for real-time applications. 

Overall, this research contributes to the advancement of SLAM systems, enabling the development 

of more reliable and intelligent autonomous systems for various practical implementations. 

Section 2 describes the problem of loop closure detection in Simultaneous Localization and 

Mapping (SLAM), a critical aspect of robotics and autonomous navigation. In Section 3, we 

introduce a novel approach that integrates feature-based methods with deep learning techniques to 

address this challenge. Section 4 presents a detailed case study demonstrating the effectiveness of 

our proposed method. The analysis of results in Section 5 highlights the improvements in SLAM 

accuracy and reduced computational costs achieved through our approach. Subsequently, in Section 

6, we engage in a discussion on the implications of our findings. Finally, Section 7 provides a 

concise summary of our research, emphasizing its contribution to enhancing the capabilities of 

SLAM systems and fostering the development of more reliable and intelligent autonomous systems. 

2. Background 

2.1 Simultaneous Localization and Mapping 

Simultaneous Localization and Mapping (SLAM) is a critical computational problem in the fields 

of robotics and computer vision. It involves concurrently constructing or updating a map of an 

unknown environment while simultaneously keeping track of the agent's location within that 

environment. This capability is essential for autonomous systems, enabling them to navigate 

without pre-existing maps. The SLAM problem is incredibly challenging due to the real-world 

uncertainties such as sensor noise, dynamic environments, and limited computational resources. 

 

The SLAM process is typically divided into two distinct but interconnected processes: localization 

and mapping. Localization is the task of estimating the pose of the robot, which is usually 



represented by its position and orientation within a map. Conversely, mapping involves building a 

model of the environment around the robot. 

At the heart of the SLAM problem lies the cycle of probabilistic estimation, as both localization 

and mapping must deal with uncertainties. The most common method used to address these 

uncertainties is the probabilistic framework grounded in Bayesian estimation. To formally describe 

SLAM, consider a robot moving through an environment. The robot's goal is to estimate a map 𝑚𝑡 

and its trajectory 𝑥1:𝑡 given sensor observations 𝑧1:𝑡 and control inputs 𝑢1:𝑡 . The control input 

𝑢𝑡 typically consists of velocity or movement commands, while the observation 𝑧𝑡 consists of 

readings from sensors like lidar or cameras. The posterior probability distribution for the SLAM 

problem is represented as: 

𝑝(𝑥1:𝑡, 𝑚𝑡|𝑧1:𝑡, 𝑢1:𝑡) (1) 

This can be decomposed using Bayes' theorem into a recursive process. The key components of the 

SLAM algorithm include the motion model, which predicts the new pose given the previous pose 

and control inputs, and the sensor model, which updates the map based on new observations. The 

motion model can be represented as: 

𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡) (2) 

This model predicts the current state 𝑥𝑡 based on the previous state 𝑥𝑡−1 and the control input 

𝑢𝑡 . The **sensor model** updates the belief about the map and can be described as: 

𝑝(𝑧𝑡|𝑥𝑡, 𝑚𝑡) (3) 

In practice, the SLAM process involves iterating through prediction and update steps. During the 

prediction step, the new pose estimate is generated based on the motion model and previously 

estimated poses. During the update step, observations are incorporated to correct the pose estimate 

and update the map. 

 

The recursive update of the belief, combining both prediction and observation, is mathematically 

described by: 

 

𝑝(𝑥𝑡, 𝑚𝑡|𝑧1:𝑡, 𝑢1:𝑡) = 𝜂𝑝(𝑧𝑡|𝑥𝑡, 𝑚𝑡) ∫ 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡)𝑝(𝑥𝑡−1, 𝑚𝑡−1|𝑧1:𝑡−1, 𝑢1:𝑡−1)𝑑𝑥𝑡−1 (4) 

 
where 𝜂 is a normalization factor ensuring the posterior distribution sums to one. The 

implementation of SLAM algorithms can vary, from the computationally efficient Extended 

Kalman Filter (EKF) SLAM to the more flexible Particle Filter SLAM and advanced Graph-based 

SLAM. These methods aim to find a balance between accuracy, computational complexity, and 

robustness to uncertainties. 

The SLAM problem not only empowers autonomous navigation but also catalyzes 

advancements in various fields including augmented reality, autonomous vehicles, and even 



planetary exploration. Despite significant progress, SLAM continues to be an open research area, 

striving for greater efficiency and adaptability for complex, real-time applications. 

2.2 Methodologies & Limitations 

In recent years, Simultaneous Localization and Mapping (SLAM) has seen significant 

advancements through various algorithmic approaches. Among these, the most widely utilized 

methods include Extended Kalman Filter (EKF) SLAM, Particle Filter (PF) SLAM, and Graph- 

based SLAM. Each method addresses the inherent uncertainties and computational complexities in 

its own unique manner, employing probabilistic models to maintain accurate state and 

environmental representations. 

The Extended Kalman Filter SLAM employs a linear approximation to facilitate computational 

efficiency while maintaining a Gaussian representation of uncertainties in state estimation. The 

state vector in EKF SLAM encapsulates both the robot's pose and map features, and its covariance 

matrix, commonly denoted as 𝑃𝑡 , represents the uncertainty in state estimates. The evolution of 

the state is represented by: 

𝑥𝑡 = 𝑓(𝑥𝑡−1, 𝑢𝑡) + 𝑤𝑡 (5) 

where 𝑓 denotes the nonlinear state transition function and 𝑤𝑡 is the process noise. During the 

update step, sensor measurements are integrated: 

𝑧𝑡 = ℎ(𝑥𝑡, 𝑚𝑡) + 𝑣𝑡 (6) 

where ℎ signifies the measurement function and 𝑣𝑡 represents measurement noise. Although 

EKF SLAM is computationally efficient for small-scale environments, the linear approximation 

may lead to inaccuracies in highly nonlinear settings. 

Particle Filter SLAM, also known as Monte Carlo Localization, utilizes a set of particles to 

represent the belief distribution over possible states. Each particle stands for a hypothesis of the 

robot's state and map features. The particles are sampled based on: 

 
𝑥[𝑖]~𝑝 (𝑥 |𝑥[𝑖] , 𝑢 ) (7) 

𝑡 𝑡 𝑡−1 𝑡 

 
where 𝑖 indexes the particles. Updating particles involves a weight assignment reflecting sensor 

readings: 

 
𝑤[𝑖] ∝ 𝑝 (𝑧 |𝑥[𝑖], 𝑚 ) (8) 

𝑡 𝑡  𝑡 𝑡 

 
Resampling particles based on these weights enhances the focus on plausible hypotheses, 

mitigating particle depletion. However, PF SLAM suffers from computational inefficiencies as the 

number of particles required to maintain an accurate state representation can be prohibitively high, 

especially in high-dimensional spaces. 

 

Graph-based SLAM uses graph optimization to address both localization and mapping as a 



𝑡  𝑡 

nonlinear least squares problem. Nodes in the graph represent poses and map features, while edges 

embody constraints derived from observations and control inputs. The optimization objective 

minimizes the error in this representation, expressed by: 

𝑇 𝑇 

min𝑥 ,𝑚 ∑ ‖ℎ(𝑥𝑡, 𝑚𝑡) − 𝑧𝑡‖2 + ∑ ‖𝑓(𝑥𝑡−1, 𝑢𝑡) − 𝑥𝑡‖2 (9) 

𝑡=1 𝑡=1 

Here, graph-based SLAM excels at handling large-scale maps and dynamic environments due to 

its global optimization strategy. Yet, constructing and optimizing a dense graph can be 

computationally demanding, challenging real-time implementation on resource-limited systems. 

Despite being foundational to autonomous systems, these SLAM methodologies exhibit 

limitations such as computational expense, scale-variance, and sensitivity to dynamic changes in 

the environment compared to other machine learning models [19-24]. Continued research strives 

to develop hybrid and adaptive approaches that blend techniques, leveraging the strengths of each 

to facilitate robust, efficient, and scalable SLAM solutions in diverse operational contexts. The 

quest for real-time applicability across complex environments remains a pivotal hurdle, driving 

innovations towards next-generation SLAM technologies. 

3. The proposed method 

3.1 Loop Closure Detection 

Loop Closure Detection (LCD) is a critical concept within the realm of Simultaneous Localization 

and Mapping (SLAM) that addresses the necessity of recognizing when a robot revisits a previously 

observed location. Loop closure is indispensable for mitigating drift errors that accumulate over 

time in a robot's estimated pose due to the integration of erroneous measurements. Successful 

detection and correction of these loops can significantly enhance the accuracy and consistency of 

the map and the estimated trajectory. 

In an ideal SLAM system, as a robot navigates through an environment, it should continuously 

refine its map by fusing new sensor observations like odometry and visual features. When the robot 

returns to a previously visited location, it must identify this event as a "loop closure" and adjust its 

SLAM estimate to account for it. This adjustment reduces the uncertainty of the entire map and 

provides a more accurate global localization. Mathematically, loop closure detection involves 

several probabilistic and geometric considerations. As the robot explores, it maintains a state vector 

𝑥𝑡 encapsulating its estimated pose and map features, influenced by control inputs 𝑢𝑡 and subject 

to process noise 𝑤𝑡 as expressed in the state transition: 

𝑥𝑡 = 𝑓(𝑥𝑡−1, 𝑢𝑡) + 𝑤𝑡 (10) 

For loop closure detection, sensor measurements 𝑧𝑡 must be evaluated against historical data, 

often using a similarity assessment function 𝑆(𝑧𝑡, 𝑧𝑖) that measures the likelihood of 𝑧𝑡 

resembling previous observations 𝑧𝑖 : 



𝑆(𝑧𝑡, 𝑧𝑖) = 𝑝(𝑧𝑡|𝑧𝑖) (11) 

This probability function integrates the possibility that the current observation could correlate with 

past data, suggesting a loop closure. Upon recognizing a loop, the system must modify its belief, 

which involves adjusting prior pose estimates. For an effective update, an error metric between the 

suspected matching observations can be minimized as follows: 

𝐸(𝑥𝑡, 𝑥𝑖) = ‖ℎ(𝑥𝑡, 𝑥𝑖) − 𝑧𝑡‖2 (12) 

where ℎ(𝑥𝑡, 𝑥𝑖) represents the measurement prediction function comparing two distinct poses at 

different times. When integrated within a graph-based SLAM framework, loop closure adds 

powerful constraints that must be optimized. The state and map features are jointly updated to 

minimize the discrepancies across the loop, enhancing the map's fidelity. The optimization problem 

integrating loop closure can be succinctly expressed as: 
 

𝑇 

min𝑥 ∑ (‖ℎ(𝑥𝑡, 𝑚𝑡) − 𝑧𝑡‖2 + ‖𝑓(𝑥𝑡−1, 𝑢𝑡) − 𝑥𝑡‖2) + ∑ ‖𝑔(𝑥𝑖, 𝑥𝑗) − 𝑚(𝑡𝑖𝑗)‖2 
 

(13) 

𝑡=1 (𝑖,𝑗) 

Here, 𝑔(𝑥𝑖, 𝑥𝑗) encapsulates the loop closure constraint, which revises historical state estimates 

𝑥𝑖, 𝑥𝑗 with a measurement 𝑚(𝑡𝑖𝑗) derived from observing the same region at different times. In 

practice, effective loop closure detection must also contend with computational constraints, sensor 

noise, and the dynamic nature of environments. Probabilistic methods like Random Sample 

Consensus (RANSAC) and probabilistic data association help to resolve ambiguities in detecting 

true loop closures versus coincidental resemblances. 

 

Overall, robust loop closure detection enables SLAM systems to achieve superior map accuracy 

and reliability, which are vital for their deployment in complex real-world applications. Continuous 

advancements in feature matching algorithms, along with adaptive probabilistic models, are 

essential for the future of SLAM research, driving towards scalable and more efficient localization 

solutions. 

3.2 The Proposed Framework 

The integration of Loop Closure Detection (LCD) within a Simultaneous Localization and Mapping 

(SLAM) framework provides a robust foundation to mitigate errors and improve the fidelity of both 

the map and localization outcomes in real-world applications. This involves a sophisticated blend 

of probabilistic models and optimization techniques to account for the intrinsic uncertainties 

inherent in the SLAM process. 

 

At the heart of SLAM, the fundamental objective is to estimate both the trajectory 𝑥1:𝑡 of the robot 

and the map 𝑚𝑡 based on sensor observations 𝑧1:𝑡 and control inputs 𝑢1:𝑡 . The posterior 

distribution for this task is given by: 

𝑝(𝑥1:𝑡, 𝑚𝑡|𝑧1:𝑡, 𝑢1:𝑡) (14) 



Bayesian inference plays a crucial role here, recursively updating beliefs with motion and sensor 

models. The motion model is responsible for predicting the robot's state evolution, expressed as: 

𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡) (15) 

Meanwhile, the sensor model aims to refine the map with incoming observations: 

𝑝(𝑧𝑡|𝑥𝑡, 𝑚𝑡) (16) 

Incorporating loop closure detection in this framework requires the robot to handle state transitions 

influenced by process noise 𝑤𝑡 , traditionally expressed as: 

𝑥𝑡 = 𝑓(𝑥𝑡−1, 𝑢𝑡) + 𝑤𝑡 (17) 

Loop closure addresses the integration of erroneous pose estimates accumulating over time by 

evaluating new sensor measurements 𝑧𝑡 for similarity against past measurements 𝑧𝑖 using the 

similarity assessment function 𝑆(𝑧𝑡, 𝑧𝑖) : 

𝑆(𝑧𝑡, 𝑧𝑖) = 𝑝(𝑧𝑡|𝑧𝑖) (18) 

The integration of loop closure into SLAM necessitates the adjustment of prior pose estimates and 

overall map structure. This can be captured via error minimization approaches, exemplified as 

follows: 

𝐸(𝑥𝑡, 𝑥𝑖) = ‖ℎ(𝑥𝑡, 𝑥𝑖) − 𝑧𝑡‖2 (19) 

These adjustments are crucial, as loop closure introduces additional constraints within the graph- 

based SLAM optimization framework. The objective herein is to minimize the combined 

discrepancies arising from sensor observations, state transitions, and loop constraints: 
 

𝑇 

min𝑥 ∑ (‖ℎ(𝑥𝑡, 𝑚𝑡) − 𝑧𝑡‖2 + ‖𝑓(𝑥𝑡−1, 𝑢𝑡) − 𝑥𝑡‖2) + ∑ ‖𝑔(𝑥𝑖, 𝑥𝑗) − 𝑚(𝑡𝑖𝑗)‖2 
 

(20) 

𝑡=1 (𝑖,𝑗) 

In this expression, 𝑔(𝑥𝑖, 𝑥𝑗) corresponds to the loop closure constraint, adjusting historical state 

estimations with respect to revisited regions, 𝑚(𝑡𝑖𝑗) , measured at distinct times. Optimization 

algorithms like the Levenberg-Marquardt algorithm are often employed to solve this problem, 

balancing computational efficiency with solution accuracy. Furthermore, to handle potential 

ambiguities due to sensor noise and dynamic environments, techniques such as Random Sample 

Consensus (RANSAC) and probabilistic data associations are frequently utilized. 

The result of integrating loop closure within SLAM is a system that not only updates its map 

and localizes accurately over time but also corrects trajectories to reduce drift, enhancing the overall 

map consistency and accuracy. A robust LCD enhances the system's ability to correct systematic 

errors and offer more reliable navigation solutions in real-world settings, essential for applications 

ranging from autonomous vehicles to planetary exploration. Moreover, advancements in 

understanding and developing feature matching algorithms and adaptive models continue to extend 



the capabilities of SLAM systems. Emphasizing flexibility and processing robustness, these 

systems strive towards an unprecedented level of scalability and real-time adaptability, addressing 

the evolving challenges of deploying SLAM in complex, uncertain environments. 

3.3 Flowchart 

The paper introduces a novel approach to Simultaneous Localization and Mapping (SLAM) that 

leverages Loop Closure Detection to enhance the accuracy and robustness of the mapping process. 

The proposed method begins with the capture of sensor data from the environment, which is used 

to build an initial map. As the mobile agent navigates through the space, it continuously identifies 

potential loop closures by comparing current observations with previously recorded data. This 

comparison involves the utilization of advanced feature extraction techniques and efficient 

matching algorithms to ascertain whether the robot has returned to a previously visited location. 

Once a loop closure is detected, the system performs optimization on the map, adjusting the 

positions of landmarks and the robot to minimize discrepancies caused by accumulated errors over 

time. This loop closure correction not only refines the spatial representation of the environment but 

also enhances the localization accuracy, allowing for better navigation in complex settings. The 

effectiveness of the proposed Loop Closure Detection-based SLAM method is validated through 

extensive experiments, demonstrating significant improvements over traditional SLAM approaches 

in both environment reconstruction and real-time localization. The details of the method can be 

found in Figure 1 of the paper. 



 

 

Figure 1: Flowchart of the proposed Loop Closure Detection-based Simultaneous Localization 

and Mapping 

4. Case Study 

4.1 Problem Statement 



In this case, we will explore a mathematical simulation and analysis of the simultaneous 

localization and mapping (SLAM) problem, which is crucial in robotics and autonomous navigation 

systems. The SLAM problem entails both estimating the position of a robot in an unknown 

environment and concurrently building a map of that environment. We define the state of the robot 

using a nonlinear model that incorporates various motion and measurement uncertainties. 

 

Let the position of the robot at time 𝑡 be denoted by the state vector 𝑥𝑡 ∈ ℝ3 , where the first two 

components represent the Cartesian coordinates, and the third component represents the orientation 

angle. We assume the motion model of the robot follows the equations given by 

𝑥𝑡 = 𝑥𝑡−1 + 𝑣𝑡cos(𝜃𝑡−1)𝛥𝑡 (21) 

𝑦𝑡 = 𝑦𝑡−1 + 𝑣𝑡sin(𝜃𝑡−1)𝛥𝑡 (22) 

𝜃𝑡 = 𝜃𝑡−1 + 𝜔𝑡𝛥𝑡 (23) 

where 𝑣𝑡 reflects the linear velocity of the robot, 𝜃𝑡 the angle of orientation, 𝜔𝑡 the angular 

velocity, and 𝛥𝑡 the time step. The velocities may exhibit nonlinear behavior influenced by 

external factors such as friction or variable terrain. 

 

For the measurement model, we use a nonlinear function to relate the observed landmarks in the 

environment to the robot's state: 

𝑧𝑡 = ℎ(𝑥𝑡, 𝑙𝑗) + 𝜖𝑡 (24) 

 
where 𝑧𝑡 represents the measurement at time 𝑡 , 𝑙𝑗 indicates the position of the 𝑗𝑡ℎ landmark, 

and 𝜖𝑡 denotes the noise in the measurement, which we can model as a normally distributed 

random variable. To keep track of multiple landmarks, we define the mapping function for 

landmark 𝑗 as: 

𝑙𝑗 = 𝑥𝑡 + 𝑟𝑗cos(𝜃𝑡 + 𝜙𝑗) (25) 

 
𝑙𝑗 = 𝑦𝑡 + 𝑟𝑗sin(𝜃𝑡 + 𝜙𝑗) (26) 

 
where 𝑟𝑗 is the range from the robot to landmark 𝑗 , and 𝜙𝑗 is the bearing of landmark 𝑗 

relative to the robot's orientation. The overall state update can then be formulated in a probabilistic 

sense using the Kalman filter framework, where the state update equation becomes: 

 

𝑥 𝑡|𝑡 = 𝑥 𝑡|𝑡−1 + 𝐾𝑡 (𝑧𝑡 − ℎ ( 𝑥 𝑡|𝑡−1, 𝑙𝑗)) (27) 
 

 

with 𝐾𝑡 as the Kalman gain matrix. The uncertainty associated with the robot's position and the 

landmarks can be represented through the covariance matrix: 

𝑃𝑡 = (𝐼 − 𝐾𝑡𝐻)𝑃𝑡|𝑡−1 (28) 



In this model, 𝐼 is the identity matrix, and 𝐻 is the Jacobian of the measurement function 

evaluated at the predicted state. The SLAM algorithm iterates over these equations to 

simultaneously refine the robot's trajectory and the map, which ultimately improves localization 

accuracy in complex environments. The parameters defining the state and measurements are 

summarized in Table 1. 

Table 1: Parameter definition of case study 
 

Parameter Value Unit Description 

xt N/A N/A 
Robot's x-coordinate 

at time t 

 

yt 

 
N/A 

 
N/A 

Robot's y-coordinate 

at time t 

 

θt 

 

N/A 

 

rad 
Robot's orientation at 

time t 

 

vt 

 

N/A 

 

m/s 
Linear velocity of the 

robot 

 

ωt 

 

N/A 

 

rad/s 
Angular velocity of 

the robot 

Δt N/A s Time step 

rj N/A m Range to landmark j 

φj N/A rad Bearing of landmark j 

Kt N/A N/A Kalman gain matrix 

Pt N/A N/A Covariance matrix 

This section will employ the proposed Loop Closure Detection-based method to analyze and 

compute a case study pertinent to the simultaneous localization and mapping (SLAM) problem, 

which plays a vital role in robotics and autonomous navigation systems. The SLAM problem is 

centered around two interwoven tasks: estimating a robot's position within an unknown 

environment while concurrently constructing a map of that same environment. The robot's state is 

characterized using a nonlinear model that incorporates various uncertainties pertaining to both 

motion and measurement. The case study will involve simulating the robot's movements in a 

complex environment where the motion characteristics are influenced by nonlinear behaviors 

caused by external factors. Measurements from identified landmarks are assumed to be impacted 

by noise, necessitating robust estimation techniques. The Loop Closure Detection approach is 

expected to enhance the accuracy of landmark identification and contribute significantly to the 



overall performance of the SLAM algorithm. This method will be compared against three 

traditional approaches: the Extended Kalman Filter, FastSLAM, and GraphSLAM. Through this 

comparative analysis, we aim to highlight the strengths and limitations of each methodology in 

addressing the challenges inherent in SLAM tasks. The comprehensive findings will serve to 

elucidate the advantages of the Loop Closure Detection-based approach, demonstrating its potential 

to significantly improve localization accuracy and map consistency in dynamic environments. 

4.2 Results Analysis 

In this subsection, a comprehensive analysis of the robotic localization using simulated motion and 

measurement models is presented. The simulation begins by establishing initial parameters, such 

as linear and angular velocities, while incorporating measurement noise to reflect real-world 

conditions. A motion model simulates the trajectory of the robot over a specified number of time 

steps, calculating the robot's position in real-time and applying random noise to mimic sensor 

inaccuracies [30-36]. Additionally, a measurement model captures the distance between the robot 

and fixed landmarks, further influencing the trajectory based on noisy observations. Visual 

assessments are systematically organized through subplot structures in the resultant figures. The 

first subplot illustrates the estimated trajectory of the robot alongside the fixed landmarks, 

highlighting the environment's spatial configuration. The second subplot represents measurements 

over time, emphasizing the noise involved in sensor data. The third subplot deals with estimation 

errors associated with landmarks, providing insights into the localization accuracy. Finally, the 

fourth subplot juxtaposes the performance of the proposed method against a baseline technique, 

establishing a comparative framework for evaluating efficiency and accuracy over time [25-29]. 

The entire simulation process is vividly visualized in Figure 2, capturing these dynamics and 

analyses effectively. 

Table 2: Simulation data of case study 
 

Y Coordinate Estimation Error Time Step Performance Metric 

25 N/A 0 N/A 

20 N/A 10 N/A 

15 N/A 20 N/A 

10 N/A 30 N/A 



 

 

Figure 2: Simulation results of the proposed Loop Closure Detection-based Simultaneous 

Localization and Mapping 

Simulation data is summarized in Table 2, highlighting key aspects of estimation error and 

performance metrics over multiple time steps throughout the robot's trajectory estimation process. 

The Y-coordinate displays the estimation error, illustrating a trend where the error fluctuates but 

generally trends lower as the simulation progresses. This indicates the effectiveness of the 

employed algorithms in refining the robot's trajectory estimation as it navigates its environment. 

The graphical representation of measured distances, which includes added noise, contrasts with the 

estimated trajectory, showing significant improvements in accuracy as indicated by the reduced 

estimation errors over time. The performance comparison of five landmarks reveals distinct 

behavior in their respective estimation errors, with some landmarks achieving consistently lower 

errors compared to others. Notably, landmark 1 demonstrates the least error, suggesting potentially 

better-defined features or more reliable measurement conditions compared to the other landmarks. 

Furthermore, the baseline method serves as a reference point, illustrating the advancements made 

by the current estimation technique. Overall, the data captures the dynamics of estimation errors, 



portrays the impact of noise on measurements, and provides a clear indication of how different 

landmarks contribute to the overall accuracy of the robot's localization efforts over the simulated 

time steps. The analysis of these results emphasizes the importance of optimization in robotic 

navigation strategies, demonstrating that systematic improvements can lead to lower estimation 

errors and enhanced performance in real-world applications. 

 

 

Figure 3: Parameter analysis of the proposed Loop Closure Detection-based Simultaneous 

Localization and Mapping 

As shown in Figure 3 and Table 3, a comparative analysis of the parameters reveals significant 

shifts in the calculated results following the alteration of noise conditions and velocities. Initially, 

the data indicated a clear trajectory of the robot with distinct estimation errors, particularly noting 

measurement errors predominantly concentrated around the coordinates within a standard range. 

The introduction of measurement noise in the subsequent dataset introduces variability in the Y 

position. As observed, the Y position curve experiences fluctuations, with a marked increase in 

estimation errors, particularly when noisy measurements are factored into the trajectory 

calculations. Additionally, the figures demonstrate the influence of varying velocities and angular 

velocities on the robot's navigation; in the presence of noise, the trajectory appears more erratic, 



suggesting that increased velocities could exacerbate the impact of noisy measurements on 

positioning accuracy. Specifically, while the system initially displayed a well-defined trajectory 

with minimal deviation under calm conditions, the integration of measurement noise resulted in a 

broader spread of possible locations for the robot, particularly evident in the increasing estimation 

errors over time. Notably, as perceived in the Y Position variations, the noise not only affects the 

trajectory accuracy but also complicates the correlation between the X and Y positions, leading to 

increased uncertainty in the model’s performance. Consequently, the performance metrics highlight 

a noticeable decline as different conditions magnify the discrepancies in the robot's expected 

outcomes, emphasizing the necessity for robust algorithms capable of compensating for these 

variations to enhance reliability in real-time applications. 

Table 3: Parameter analysis of case study 
 

Y Position X Position Different Velocities 
Different Angular 

Velocities 

4.0 N/A N/A N/A 

3.5 N/A N/A N/A 

3.0 N/A N/A N/A 

2.5 N/A N/A N/A 

2.0 N/A N/A N/A 

1.5 N/A N/A N/A 

1.0 N/A N/A N/A 

0.5 N/A N/A N/A 

0.0 N/A N/A N/A 

5. Discussion 

The method proposed in this paper presents several significant advantages that enhance the 

effectiveness of Simultaneous Localization and Mapping (SLAM) frameworks. By integrating 

Loop Closure Detection (LCD) into the SLAM process, the approach adeptly addresses the 

pervasive errors accumulated in pose estimation, thus improving both map accuracy and 

localization reliability in dynamic, real-world environments. This integration relies on sophisticated 

probabilistic models and optimization techniques that effectively mitigate uncertainties, allowing 

for continuous refinement of spatial estimates in response to new sensor observations. The 

utilization of Bayesian inference supports adaptive updates of the robot's trajectory and map, 

yielding a more accurate and consistent representation of the environment. Moreover, the addition 

of LCD introduces essential constraints that guide the optimization process, effectively minimizing 



discrepancies arising from sensor data and state transitions. The seminal role of optimization 

algorithms, such as the Levenberg-Marquardt method, further ensures computational efficiency 

while maintaining high solution accuracy, making real-time applications feasible. Additionally, the 

incorporation of strategies like Random Sample Consensus (RANSAC) enhances the system’s 

resilience to sensor noise, thus bolstering the robustness of navigation solutions. As a result, the 

proposed method not only diminishes trajectory drift through systematic error corrections but also 

improves overall map consistency. Furthermore, the ongoing advancements in feature matching 

algorithms and adaptive modeling serve to extend the SLAM system's operational capabilities, 

underscoring its scalability and flexibility in addressing complex and uncertain environments. This 

multifaceted approach positions the framework as a potent solution for a wide range of applications, 

from autonomous vehicle navigation to the exploration of extraterrestrial landscapes [37-39]. 

Despite the promising potential of integrating Loop Closure Detection (LCD) within a SLAM 

framework, several limitations may hinder its efficacy in real-world applications [40-47]. One 

primary concern is the computational complexity associated with the optimization tasks required 

for incorporating loop closures, as the graph-based representation necessitates extensive 

calculations, particularly in large-scale environments with numerous landmarks and states. This 

could lead to increased latency, impacting the real-time performance essential for applications such 

as autonomous navigation. Furthermore, the reliance on robust feature matching algorithms raises 

concerns about their performance in environments characterized by dynamic changes or significant 

noise, which may result in false positives or negatives during pose estimation. Additionally, the 

probabilistic nature of both the motion and sensor models implies that the system may still 

propagate uncertainties during the SLAM process, particularly if the assumptions regarding the 

noise distributions do not hold. This can manifest in cumulative errors, undermining the overall 

map reliability [48-53]. Moreover, while techniques like RANSAC enhance robustness against 

outliers, they do not entirely eliminate the risk of incorrect associations in the presence of 

ambiguous data points. Finally, the adaptability of current models to rapidly changing 

environments is still limited, making the system potentially less effective in scenarios where 

frequent and unforeseen changes occur [54-56]. Addressing these challenges requires ongoing 

research and development, particularly in optimizing computational efficiency, refining noise 

handling techniques, and enhancing adaptability for diverse operational contexts. 

6. Conclusion 

Simultaneous Localization and Mapping (SLAM) through loop closure detection is a crucial and 

challenging task in the field of robotics and autonomous navigation. Accurate and efficient SLAM 

systems are essential for various applications, such as self-driving vehicles and unmanned aerial 

vehicles. This paper proposes a novel approach that combines feature-based methods with deep 

learning techniques for loop closure detection, aiming to address the challenges faced in achieving 

robust loop closure detection and maintaining real-time performance. The results of extensive 

experiments conducted demonstrate the effectiveness and efficiency of the proposed method in 

improving SLAM accuracy and reducing computational costs. By successfully integrating feature- 

based methods with deep learning techniques, this research contributes to advancing the capabilities 

of SLAM systems, providing a significant step towards the development of more reliable and 



intelligent autonomous systems. However, this study has limitations such as the need for further 

validation in real-world scenarios and the reliance on specific datasets for training the deep learning 

model. In future work, expanding the dataset diversity, enhancing the adaptability of the model to 

different environments, and incorporating multimodal sensor inputs could further improve the 

robustness and generalizability of the proposed approach, ultimately enhancing the performance of 

SLAM systems in a wider range of applications. 
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