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Abstract: This paper presents a predictive Energy Management Strategy (EMS) for 
series hybrid electric vehicles based on an improved Soft Actor-Critic (SAC) algorithm. 
First, the Informer model is used to predict the vehicle's short-term speed trajectory, 
providing foresight to guide the optimization of the energy management strategy. Second, 
by incorporating a prioritized experience replay strategy, the convergence of the SAC 
algorithm is accelerated, and its performance is enhanced. Finally, a simulation 
environment based on real driving cycles was constructed, and the simulation results 
demonstrate that our method effectively reduces fuel consumption, achieving 
approximately a 6.1% performance improvement over the original SAC algorithm. This 
not only validates the superiority of our approach over traditional methods in terms of 
fuel efficiency but also provides new insights into energy management for hybrid electric 
vehicles. 
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1. Introduction 

With the rapid development of the global automotive industry, energy shortages and environmental 
pollution have become two major bottlenecks restricting sustainable development. The traditional 
dependency of fuel-powered vehicles on oil has not only accelerated the depletion of limited energy 
resources but has also triggered a series of severe environmental challenges, such as global 
warming caused by greenhouse gas emissions and deteriorating air quality from harmful exhaust 
pollutants [1][2]. Against this backdrop, Hybrid Electric Vehicles (HEV), which integrate both fuel 
and electric propulsion, have emerged as a new transportation solution and are widely regarded as 
a critical technological transition from conventional gasoline-powered vehicles to fully electric 
vehicles [3][4][5]. 
 
HEV typically consist of two or more power sources, making the energy management system an 
indispensable component. With appropriate control strategies, HEV can efficiently operate by 
coordinating multiple power sources, thereby reducing fuel consumption and greenhouse gas 
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emissions. Generally, energy management strategies for HEV can be broadly classified into three 
categories: rule-based approaches, optimization-based approaches, and learning-based approaches. 
 
Rule-based methods include deterministic and fuzzy rule-based strategies. These methods are 
widely applied in HEVs due to their simplicity and real-time performance advantages. Li et al. [6] 
proposed a novel Q-learning strategy based on deterministic rules for real-time energy management 
in HEV, which meets the driver's traction demands while reducing fuel consumption and load 
fluctuations and enhancing adaptability to different driving cycles. Phillips [7] designed a 
supervisory controller for energy management. By analyzing various operational modes of the 
vehicle and dynamic control strategies, a logical structure was constructed to guide the smooth 
transition between different modes. Lv et al. [8] introduced a fuzzy control-based energy 
management strategy for plug-in parallel HEV. This strategy, building upon rule-based algorithms, 
employs fuzzy control for smoother control effects, effectively mitigating the rate of decline in the 
battery state of charge (SOC) and significantly reducing fuel consumption. Gao et al. [9] proposed 
a power management strategy based on a fuzzy logic controller, optimizing the hybrid degree and 
membership functions using the golden ratio cutoff rule to achieve the optimal power distribution 
between batteries and supercapacitors. However, further applications are hindered by limited 
optimality and dependence on expert knowledge, while preset rules constrain flexibility under 
varying driving conditions. 
 
Optimization-based energy management strategies can be categorized into global optimization and 
real-time optimization. Global optimization includes Dynamic Programming (DP), Genetic 
Algorithms (GA), and convex optimization; real-time optimization encompasses Model Predictive 
Control (MPC), Pontryagin’s Minimum Principle (PMP), and Equivalent Consumption 
Minimization Strategies (ECMS). Tang et al. [10] proposed an improved dynamic programming 
algorithm capable of accurately identifying regions containing multiple optimal state-of-charge 
trajectories, thereby reducing computational complexity while ensuring fuel economy. Shi et al. 
[11] drew on dynamic programming strategies to design a reference SOC curve and adaptive 
adjustment mechanism, allowing the SOC to linearly decrease with driving distance and reach a 
minimum value at the end of the trip. Farajpour et al. [12] used experimental methods to ascertain 
the characteristics of built-in Permanent Magnet Synchronous Motors and simulated the motor 
inverter system using artificial neural networks, calculating the kinetic energy required to drive the 
vehicle based on a longitudinal vehicle model. Genetic algorithms were utilized to determine 
optimal operational criteria for minimizing force required at the axle and power losses in electronic 
devices. Li et al. [13] emphasized the crucial role of convex optimization in electric vehicle design 
and control, summarizing various convex optimization methods used for component sizing and 
energy management, and discussing their application prospects in enhancing electric vehicle 
efficiency and reducing costs. Zhang et al. [14] proposed an improved adaptive equivalent 
minimization strategy that adjusts the equivalent factor by predicting future driving conditions to 
enhance the fuel economy of plug-in hybrid vehicles. Although these methods provide avenues for 
optimizing vehicle performance under specific conditions, the high computational costs of these 
EMSs, as well as their limited adaptability to complex driving cycles, hinder the attainment of 
optimal solutions. In recent years, learning-based approaches have offered more optimal solutions 
for EMS, primarily through Reinforcement Learning (RL) algorithms that present an alternative 
solution to challenging control problems in both virtual and real-world environments. Research in 
the area of energy management for HEV has also shown that reinforcement learning exhibits strong 
learning capabilities and adaptability under complex driving cycles while consuming fewer 
computational resources [15].  



Zhou et al. [16] proposed a new model-free multi-step reinforcement learning EMS featuring three 
multi-step learning strategies: sum to terminal, average to neighbors, and cycle to terminal. 
Compared to well-designed model-based predictive energy management control strategies, the 
proposed energy management method could increase predictive length by 71% in hardware-in-the-
loop experiments and save at least 7.8% of energy under identical driving conditions. Additionally, 
Liu et al. [17] designed a Q-learning-based adaptive energy management method for hybrid electric 
tracked vehicles. Results demonstrated that this approach exhibited stronger adaptability, 
optimality, and learning capability than stochastic dynamic programming, effectively reducing 
computation time. Xiong et al. [18] utilized the same algorithm to achieve optimal power 
distribution between the battery and supercapacitor in plug-in HEV, significantly reducing energy 
loss by 16.8%. Wu et al. [19] employed a Deep Q-Learning (DQL) algorithm for power distribution, 
which not only addressed the curse of dimensionality encountered in Q-learning but achieved better 
fuel economy. Wang et al. [20] proposed an energy management strategy based on a mutation-
protected deep Q-network (MPD) designed to enhance hydrogen economy in fuel cell vehicles and 
reduce fuel cell degradation. By quantifying the mutations in driving cycles and combining them 
with driving conditions, the MPD-EMS achieved approximately 11% and 6% reductions in 
hydrogen consumption compared to other learning-based EMSs, as well as about 21% and 13% 
reductions in fuel cell degradation. Compared to DQL, further exploration by Wu and Tan et al. 
[21][22] revealed that employing the Deep Deterministic Policy Gradient (DDPG) algorithm with 
continuous state and action representations, along with prioritized experience replay algorithms, 
improved EMS learning efficiency, yielding results nearly equivalent to DP performance. 
 
Moreover, building on the aforementioned studies, the development of vehicle intelligence and 
connectivity technologies has made incorporating vehicle speed prediction into energy 
management strategies a focal point of research. Vehicle speed prediction can provide anticipatory 
information for energy management strategies by estimating future driving conditions, thereby 
optimizing power source allocation and enhancing fuel economy and emissions performance. Sun 
et al.[23] proposed a Markov chain-based speed prediction method, which created a speed state 
transition matrix to predict future speeds over a short period, subsequently applied to energy 
management strategies for dynamic adaptation to changes in driving conditions. Zhang et al. [24] 
employed an autoregressive integrated moving average (ARIMA) model to forecast future vehicle 
speeds, integrating this data with dynamic programming to optimize HEV energy management 
strategies and improve fuel economy. Liu et al. [25] constructed a vehicle speed prediction model 
using Support Vector Machines (SVM) while optimizing energy distribution with Model Predictive 
Control (MPC), significantly enhancing vehicle operational efficiency. Chen et al. [26] utilized 
Long Short-Term Memory (LSTM) networks to process time-series data for vehicle speeds, 
establishing a real-time prediction model that provided accurate future speed sequences, thereby 
optimizing HEV energy management performance. Wang et al. [27] introduced a traffic-
cooperative speed prediction method that utilized traffic signal states and preceding vehicle 
information to anticipate future speeds, successfully reducing fuel consumption in conjunction with 
a rule-optimized energy management strategy. Ding et al. [28] developed a future speed prediction 
model based on random forest algorithms by integrating vehicular network information, achieving 
a more efficient energy allocation strategy through predictive insights. Wang et al. [29] integrated 
an LSTM speed prediction model with Deep Reinforcement Learning (DRL) algorithms to design 
an end-to-end energy management framework, wherein future speed information provided by the 
prediction module significantly improved the strategy's anticipatory and robust performance. Zou 
et al. [30] designed a fuzzy logic-based predictive controller incorporating future speed as an input 
variable, effectively enhancing HEV energy management adaptability under complex driving 
conditions. 



However, existing research presents room for improvement in the integration of speed prediction 
information with reinforcement learning algorithms, particularly regarding the construction of 
reinforcement learning state spaces and enhancing algorithm learning efficiency. The main 
contributions of this paper are as follows: 
l We design a vehicle speed prediction module that integrates predicted speed sequences into 

the reinforcement learning state space, providing anticipatory traffic information to facilitate 
proactive energy allocation strategy planning, achieving predictive performance in energy 
management. 

l We propose a hybrid vehicle energy management strategy based on the SAC algorithm and 
develop a prioritized experience replay mechanism to enhance the learning efficiency and 
performance of the reinforcement learning algorithm. 

l We conduct simulation experiments under real driving cycles, with experimental results 
demonstrating that the proposed method surpasses classical baseline models in controlled 
experiments. 

2. Modeling of Series Hybrid Electric Vehicle 

This study focuses on the study of Series Hybrid Electric Vehicles (SHEV), with the power system 
structure illustrated in Figure 1. The system primarily consists of an internal combustion engine, 
generator, battery pack, electric motor, and main reduction gear. The internal combustion engine 
drives the generator to produce electrical energy, which can be utilized directly to power the electric 
motor or stored in the battery. The electric motor is ultimately responsible for delivering energy to 
the wheels to propel the vehicle. The battery pack serves not only to store regenerative braking 
energy and excess energy but also to allow charging from an external power source. This structure 
effectively decouples the internal combustion engine from the drive wheels, simplifying the control 
strategy of the powertrain. 

 

 
Figure 1 Power System Structure of SHEV 



A. Powertrain Model of Series Hybrid Electric Vehicle 

This study analyzes a mid-size passenger vehicle, with its key parameters listed in Table 1. As 
illustrated in Figure 1, the energy supply for the electric traction motor is derived from two sources: 
the engine-generator set (EGS) and the lithium-ion battery (LIB) pack. Therefore, the powertrain 
of the SHEV can be divided into two sub-models: the engine-generator set model and the lithium-
ion battery model. The following sections will elaborate on these two sub-models in detail. 

 

Table 1: Key Parameters of the Series Hybrid Electric 
Vehicle (SHEV) Specifications 

Symbol Parameter Value 
𝑃!"#$%& Peak power of the gasoline engine 56 kW 
𝑊#!"$%& Peak speed of the generator 4000 rpm 
𝑇$'($%& Peak torque of the traction motor 320 Nm 
𝑊$'(

$%& Peak speed of the traction motor 7200 rpm 
𝑚 mass of the SHEV 2100 kg 
𝐴) Windward area 2.42 m2 
𝑅)* Wheel radius 0.287 m 
𝑖+ Main reducer ratio 3.64 
𝐶" Nominal capacity of battery pack 7.42 kWh 

B. Engine-Generator Set (EGS) Model 

This study focuses on analyzing the role of the engine-generator set (EGS) and the lithium-ion 
battery (LIB) in the energy distribution process, assuming that the electric motor's driving force is 
uniformly distributed between the front and rear axles. The energy demand of the motor depends 
on the vehicle's mass, speed, and acceleration, which are critical to the energy management 
system’s energy allocation function. Under given vehicle speed 𝑣 and acceleration 𝑎, the total 
power demand 𝑃,!- can be expressed as: 

𝑃,!- = 𝑣 ⋅ 𝐹('(%. (1) 
where 𝐹('(%. represents the total resistance experienced by the vehicle during motion, including 
inertial resistance, rolling resistance, grade resistance, and aerodynamic drag, computed as follows: 

 
𝐹('(%. = 𝐹% + 𝐹, + 𝐹/ + 𝐹) 

𝐹% = 𝑚 ⋅ 𝑎
𝐹, = 𝜇𝑚𝑔cos	 𝜃
𝐹/ = 𝑚𝑔sin	 𝜃

𝐹) =
𝐴)𝐶0𝑣1

21.15

 (2) 

 
here, 𝐹% is the inertial resistance determined by mass 𝑚 and acceleration 𝑎; 𝐹, is rolling resistance, 
with 𝜇 assumed to be 0.01; 𝐹/ is the grade resistance, with 𝜃 being the road slope angle (assumed 
to be 0 in this study); 𝐹) represents aerodynamic drag, where 𝐴) is the windward area and 𝐶0 is 
the drag coefficient (set to 𝐶0 = 0.65  for this study); gravitational acceleration 𝑔  is taken as 
9.8	m/s1. 

 



Assuming that the engine-generator set (EGS) can respond rapidly after receiving a control signal, 
the energy conversion between the engine and the generator can be described through a quasi-static 
fuel consumption model and power transmission model, with efficiency obtained from efficiency 
maps. The relationship between torque and speed between the engine and the generator is 
represented as follows: 

𝑇!"# = 𝑇#!",𝑊!"# = 𝑊#!" (3) 
Based on the current torque and speed, the output power of the engine and generator can be 
computed using the following equations: 

𝑃!"# = 𝑇!"# ⋅ 𝑊!"#
𝑃#!" = 𝑇#!" ⋅ 𝑊#!" ⋅ 𝜂#!"

 (4) 

where 𝜂#!" denotes the efficiency of the generator. 

 

The fuel consumption rate can be calculated using the lower heating value 𝐺  and the engine's 
efficiency 𝜂!"# as follows: 

𝑚2̇ =
𝑃!"#

𝐺 ⋅ 𝜂!"#
 (5) 

where 𝐺 = 4.25 × 103J/kg. 

 

The torque and speed of the engine and generator must satisfy the following boundary conditions: 

𝑇!"#$/" ≤ 𝑇!"# ≤ 𝑇!"#$%& , 𝑇#!"$/" ≤ 𝑇#!" ≤ 𝑇#!"$%& ,
𝑊!"#$/" ≤ 𝑊!"# ≤ 𝑊!"#$%& ,𝑊#!"$/" ≤ 𝑊#!" ≤ 𝑊#!"$%& .

 (6) 

 

The electric traction power is jointly supplied by the generator and the lithium-ion battery, 
considering the inverter efficiency 𝜂/"4. The total power demand can thus be expressed as: 

𝑃,!- = (𝑃5%( + 𝑃#!") ⋅ 𝜂/"4 . (7) 
where 𝑃5%(  is the power provided by the lithium-ion battery, 𝑃#!" is the power supplied by the 
generator, and 𝜂/"4 denotes the inverter's efficiency, assuming a fully regenerative braking strategy. 

 

The aforementioned model enables the energy distribution between the engine-generator set and 
the battery, providing theoretical support for the energy management strategies of hybrid systems. 

C. Lithium-Ion Battery (LIB) Model 

The lithium-ion battery (LIB) employs a coupled electro-thermal-aging model for simulation, 
comprising three sub-models: a second-order RC circuit model, a dual-state thermal model, and an 
energy flux aging model. The circuit model is coupled with the thermal model to accurately 
describe the electrothermal dynamic characteristics of the LIB. Within the circuit model, the 
voltage source represents the open-circuit voltage (OCV), which is related to the battery's SOC, 
while the total ohmic resistance 𝑅6  represents the battery's equivalent internal resistance. 
Furthermore, LIB operation is influenced by polarization effects, including charge transfer, 
diffusion phenomena, and the effects of the passivation layer on the electrodes. To simulate these 
phenomena, two RC branches are used in the modeling. The governing equations for the circuit 
sub-model are as follows: 



 
𝑑𝑆𝑜𝐶(𝑡)
𝑑𝑡

=
𝐼(𝑡)

3600𝐶"
 (8) 

𝑑𝑉78(𝑡)
𝑑𝑡

= −
𝑉78(𝑡)

𝑅78(𝑡)𝐶78(𝑡)
+

𝐼(𝑡)
𝐶78(𝑡)

 (9) 

𝑑𝑉71(𝑡)
𝑑𝑡

= −
𝑉71(𝑡)

𝑅71(𝑡)𝐶71(𝑡)
+

𝐼(𝑡)
𝐶71(𝑡)

 (10) 

𝑉((𝑡) = 𝑉'9(𝑆𝑜𝐶) + 𝑉78(𝑡) + 𝑉71(𝑡) + 𝑅6𝐼(𝑡) (11) 
 
where 𝐼(𝑡) and 𝑉((𝑡) represent the current and terminal voltage of the battery at time 𝑡 respectively; 
𝑉78 and 𝑉71 are the polarization voltages of the two RC branches; 𝐶78 and 𝐶71 are the capacitances 
of the polarization branches, while 𝑅78 and 𝑅71 are the resistances of the branches; 𝑉'9 is the open-
circuit voltage, dependent on SOC; and 𝑅6 is the total equivalent internal resistance. 
 
According to the principle of thermal energy conservation, the temperature dynamics of the LIB 
can be described by the following thermal balance equations: 

𝐶9
𝑑𝑇9(𝑡)
𝑑𝑡

=
𝑇6(𝑡) − 𝑇9(𝑡)

𝑅9
+𝐻(𝑡) (12) 

𝐶6
𝑑𝑇6(𝑡)
𝑑𝑡

=
𝑇9(𝑡) − 𝑇6(𝑡)

𝑅9
+
𝑇2(𝑡) − 𝑇6(𝑡)

𝑅:
 (13) 

𝑇%(𝑡) =
𝑇9(𝑡) + 𝑇6(𝑡)

2
 (14) 

here, 𝑇6, 𝑇9, 𝑇%, and 𝑇2(𝑡) represent the surface, core, average, and ambient temperatures of the 
battery (in °C), respectively; 𝑅9 and 𝑅: denote the internal thermal resistance of the battery and the 
thermal resistance between the battery surface and the environment, respectively; 𝐶9 and 𝐶6 refer 
to the equivalent thermal capacities of the battery core and surface; and 𝐻(𝑡) denotes the rate of 
heat generation within the LIB, composed of ohmic heat, polarization heat, and irreversible entropy 
heat. The heat generation rate can be calculated as follows: 

𝐻(𝑡) = 𝐼(𝑡)V𝑉78(𝑡) + 𝑉71(𝑡) + 𝑅6𝐼(𝑡)W + 𝐼(𝑡)[𝑇%(𝑡) + 273]𝐸"(SOC, 𝑡) (15) 
where 𝐸"  represents the heat generated from the entropy change during the electrochemical 
reaction. 
 
Additionally, referencing the battery degradation assessment model based on energy flux proposed 
by Ebbesen et al.[31], the degradation characteristics of lithium-ion batteries under long-term 
charge-discharge cycles are analyzed. It is assumed that the battery can withstand a certain 
cumulative charge flow before reaching the end of its life, leading to the introduction of a dynamic 
evolution equation for the battery's state of health (SOH), expressed as: 

𝑑𝑆𝑂𝐻(𝑡)
𝑑𝑡

= −
∫  (+ |𝐼(𝜏)|𝑑𝜏
2𝑁(𝑐, 𝑇%)𝐶"

, (16) 

discretizing the above expression yields: 

Δ𝑆𝑂𝐻( = −
|𝐼(𝑡)|Δ𝑡

2𝑁(𝑐, 𝑇%)𝐶"
 (17) 

where 𝑁(𝑐, 𝑇%) is the equivalent charge-discharge cycles until the end of the battery's life, 𝐶" is the 
rated capacity of the battery, and Δ𝑡 is the duration of charge-discharge. 
 
At the same time, the capacity degradation of the battery is influenced by the rate 𝑐  and the 
operating temperature 𝑇%. Based on the Arrhenius equation, the capacity loss of the battery can be 
calculated as: 



Δ𝐶" = 𝐵(𝑐) ⋅ exp	 k−
𝐸%(𝑐)
𝑅𝑇%

l ⋅ 𝐴ℎ; (18) 

where Δ𝐶" denotes the percentage of capacity loss; 𝐵(𝑐) is the pre-exponential factor related to the 
rate, indicating the factors leading to Table 2; 𝐸%(𝑐) is the activation energy; 𝑅 is the ideal gas 
constant （8.314 J/mol⋅K); 𝑧 is the exponent factor; and 𝐴ℎ is the cumulative charge flow of the 
battery. 

Table 2: Dependence of Pre-exponential Factor on C-rate 
𝑐 0.5 2 6 10 

𝐵(𝑐) 31630 21681 12934 15512 
 
The activation energy 𝐸% can be expressed as: 

𝐸%(𝑐) = 31700 − 370.3 ⋅ 𝑐. (19) 
 
When the battery's capacity 𝐶" falls to 80% of its initial capacity, based on this definition and the 
definition of Δ𝑆𝑜𝐻(, the values of 𝐴ℎ and 𝑁 can be derived as follows: 

 

𝐴ℎ(𝑐, 𝑇%) = o
20
𝐵(𝑐)

⋅ exp p−
𝐸%(𝑐)
𝑅𝑇%

qr

8
;
, (20) 

 
at this point, the battery reaches its end of life (EOL), and the corresponding number of charge-
discharge cycles is given by: 

𝑁(𝑐, 𝑇%) = 3600 ⋅ 𝐴ℎ(𝑐, 𝑇%)/𝐶" (21) 
 
Finally, the change in SOH under specific current, temperature, and dynamic operating conditions 
can be calculated using Equation (17) to assess the aging status of the battery pack. 
 
Through the coupled simulation of the circuit, thermal, and aging models, the electrothermal 
characteristics and aging mechanisms of lithium-ion batteries can be accurately described, 
providing theoretical support for monitoring and predicting battery longevity. 

3. Methods 

The predictive EMS framework proposed in this paper is illustrated in Figure 2. It includes 
components for vehicle speed prediction using the Informer model, the application of the SAC 
algorithm, integration of a prioritized experience replay strategy, and the design of the SAC training 
strategy. 

 



 
Figure 2 Overall Architecture of the EMS for SHEV 

3.1 Vehicle Speed Prediction Based on Informer 

Vehicle speed prediction is a significant research issue in the field of intelligent driving. The 
objective is to accurately predict future speeds based on the vehicle's historical speed data. This 
problem holds considerable importance for autonomous driving systems, intelligent traffic 
management, and eco-driving. Accurate speed prediction can provide better driving decision 
support, enhancing safety and economic efficiency. 
 
In this work, we employ the Informer model for vehicle speed prediction. The Informer is an 
efficient time series prediction model based on an attention mechanism, which significantly 
improves the efficiency and accuracy of long-term predictions through the design of ProbSparse 
Self-Attention and a generative decoder. Compared to traditional time series prediction models 
such as LSTM and GRU, the Informer can handle long-term dependency issues and achieves 
significant advantages in computational complexity. 

3.1.1 Problem Description 

At the current time step 𝑡, the historical speed data set for the vehicle can be represented as: 
𝑋 = {𝑣( , 𝑣(<8, … , 𝑣(<=>8} ∈ ℝ= (22) 

where 𝑣( denotes the speed of the vehicle at time 𝑡, and 𝐿 represents the length of the historical 
observation window. 
 
The goal is to predict the speed data set for the next 𝑇 time steps: 

𝑌 = {𝑣(>8, 𝑣(>1, … , 𝑣(>?} ∈ ℝ? (23) 
 
By training the Informer model, we aim to learn the mapping relationship between the input 
historical speed data 𝑋 and the output future speed data 𝑌: 

𝑌 = 𝑓@ABCDEFD(𝑋; 𝜃) (24) 
where 𝜃 represents the model parameters. 



In this way, the model can learn the spatial and temporal characteristics of speed changes and 
capture the patterns of speed evolution across different time scales. 

3.1.2 Model Structure 

The Informer model mainly consists of two components: ProbSparse Self-Attention and a 
generative decoder. ProbSparse Self-Attention optimizes the attention computation mechanism, 
while the generative decoder enhances decoding efficiency through parallel computation. 
Specifically, in ProbSparse Self-Attention, the traditional self-attention mechanism of the 
Transformer model exhibits high computational complexity when processing long sequential data. 
The Informer reduces computational complexity by sparsifying the self-attention mechanism, 
prioritizing significant attention distributions. 
 
In the traditional self-attention mechanism, the attention scores are calculated as follows: 

Attention(𝑄, 𝐾, 𝑉) = softmax p
𝑄𝐾?

�𝑑G
q𝑉 (25) 

where 𝑄 ∈ ℝ(=!×0") is the query matrix, 𝐿- is the query sequence length, 𝑑G is the dimensionality 
of the keys; 𝐾 ∈ ℝ(="×0") is the key matrix, 𝐿G is the key sequence length; and 𝑉 ∈ ℝ(="×0#) is the 
value matrix, with 𝑑4 being the value dimensionality. 
 
This formula has a computational complexity of 𝑂(𝐿- ⋅ 𝐿G ⋅ 𝑑G). When both 𝐿- and 𝐿G are large 
(e.g., in long sequence data), the computational expense becomes very high. To reduce this 
computational complexity, the Informer introduces ProbSparse Self-Attention, which retains only 
the few attention scores that have the greatest influence on the final output. The underlying principle 
is based on the observation that the attention distribution is often sparse, meaning that most query 
points focus on only a few key points, with the remaining attention scores contributing little to the 
output. Specifically, ProbSparse Self-Attention utilizes importance score filtering and sparse 
attention computation for optimization. 
 
To identify the key points that have the greatest influence on the query points, the Informer defines 
the importance score 𝑈/ for each query point 𝑞/: 

𝑈/ =∥ 𝑞/ ∥1 (26) 
where ‖𝑞/‖1 denotes the L2 norm of the query point. By sorting 𝑈/, only the maximum subset 
corresponding to the key points 𝑘K is selected to construct the sparse attention matrix. 
 
Next, the attention scores are calculated based on the selected important key points: 

 

SparseAttention(𝑄, 𝐾, 𝑉) = softmax p
𝑄𝐾LMNDLF?

�𝑑G
q𝑉LMNDLF (27) 

where 𝐾67%,6! and 𝑉67%,6! are the filtered key and value matrices. 
 
Through the probabilistic sparse mechanism, the complexity of the attention computation decreases 
from the traditional 𝑂(𝐿- ⋅ 𝐿G ⋅ 𝑑G) to 𝑂(𝐿- ⋅ log	 𝐿G ⋅ 𝑑G). This optimization primarily benefits 
from two factors: the filtering step using 𝑈/ that computes only significant attention scores, and the 
sparsification of attention distributions, which significantly reduces unnecessary computations. 
 
In the generative decoder component, traditional decoders typically employ a step-by-step 
decoding strategy. This means the model predicts one future value at each time step, using the 
predicted value as input for the subsequent time step. This approach is less efficient and prone to 



cumulative error. To address this, the Informer introduces a generative decoder that produces 
multiple predictions for future time steps in a single pass, significantly enhancing decoding 
efficiency. 
 
In the stepwise prediction of traditional decoders, if we want to predict data for the next 𝑇 time 
steps �̂� = {�̂�(>8, �̂�(>1, … , �̂�(>?}, the prediction process of the traditional decoder is carried out 
incrementally: 

𝑣�(>/ = 𝑓OFPCQFD(𝑣�(>8, 𝑣�(>1, … , 𝑣�(>/<8, 𝑋; 𝜃) (28) 
where 𝑓R!9'0!, is the decoder model; 𝑋 is the historical input data; 𝜃 are the model parameters; 
and each predicted value �̂�(>/ serves as input for the next step until all 𝑇 predictions are completed. 
 
This stepwise prediction method presents two key issues: first, it is inefficient, as each step's 
prediction depends on the previous one, leading to 𝑇 cycles and a high time complexity; secondly, 
it is susceptible to cumulative errors, where the prediction error of each step affects the input for 
the next, causing the error to amplify progressively. 
 
By improving the generative decoder to generate predictions for all 𝑇 future time steps at once, we 
can avoid redundant calculations and cumulative error issues prevalent in stepwise predictions. The 
improved generative decoder's time complexity is 𝑂(𝑇 ⋅ 𝑑), where 𝑇 is the number of future time 
steps and 𝑑 is the feature dimension. In contrast, the traditional decoder's time complexity is 𝑂(𝑇1 ⋅
𝑑) due to the repeated calculations in each time step, thus providing a notable speed advantage for 
the generative decoder when handling long time sequences, while also eliminating cumulative error 
problems stemming from earlier-step inaccuracies, allowing for better global pattern focus and 
enhancing prediction accuracy and stability. The core formula for the generative decoder is: 

𝑌� = 𝑓OFPCQFD(𝑋; 𝜃) (29) 
where �̂� = {�̂�(>8, �̂�(>1, … , �̂�(>?}  denotes the model's predictions for the next 𝑇  time steps, 
generated all at once; 𝑋 represents the historical input data, indicating the vehicle's historical speed 
sequence {𝑣( , 𝑣(<8, … , 𝑣(<=>8}; and 𝜃 refers to the model parameters. 
 
The generative decoder directly inputs historical data 𝑋 into the decoder to generate the complete 
forecast sequence in one go, thus avoiding the repeated computations associated with stepwise 
decoding. The generative decoder is designed with a global attention mechanism to capture global 
temporal patterns within the historical input data 𝑋 and apply these patterns directly to future time 
step predictions without relying on sequential inputs. Specifically, the decoder's output can be 
expressed as follows: 

𝐻 = Attention(𝑄, 𝐾, 𝑉) (30) 
where 𝑄 = 𝑋2:(:,! is the query vector for future time steps; 𝐾 and 𝑉 are the key and value matrices 
of the historical input data; and 𝐻 is the hidden feature representation generated for the future time 
steps. 
 
Furthermore, a parallel prediction mechanism is employed to directly generate the feature matrix 
𝐻 for all future time steps via parallel computation, followed by a mapping function to produce the 
final predicted values: 

𝑌� = 𝑊𝐻 + 𝑏 (31) 
where 𝑊 and 𝑏 are the linear mapping weights of the decoder; �̂� is the prediction result generated 
in one pass by the decoder. 



3.2 Soft Actor-Critic Algorithm 

Reinforcement learning (RL) is a method for learning optimal decision-making policies through 
the interaction between an agent and its environment. Numerous studies have demonstrated the 
advantages of reinforcement learning in energy management for Hybrid Electric Vehicles (HEV), 
showcasing its significant application potential. The SAC algorithm emphasizes maximizing the 
entropy of the policy (i.e., the randomness of actions) while achieving the maximum reward based 
on the maximum entropy principle. This addresses the overestimation problem faced by traditional 
reinforcement learning algorithms like DDPG, thereby enhancing the model's exploration ability 
and decision robustness. SAC is particularly suited for continuous control tasks. 
The objective function for SAC is defined as: 

𝐽(𝜋) =�  
?

(S+

𝔼(6$,%$)∼V%[𝑟(𝑠( , 𝑎() + 𝛼ℋ(𝜋(⋅ |𝑠())], (32) 

where 𝑟(𝑠( , 𝑎() represents the reward function; ℋ(𝜋(⋅ |𝑠()) denotes the entropy of the policy; and 
𝛼  is the entropy regularization coefficient that balances the relationship between reward and 
entropy. 
 
The SAC algorithm primarily comprises several core modules: the policy network, value network, 
and automatic temperature adjustment. 

 
(1) Policy Network (Actor Network).  
The policy network outputs the parameters of the conditional distribution and generates continuous 
actions through Gaussian distributions. The objective of the policy is to maximize the cumulative 
reward that is regularized by entropy. The policy network functions to generate the probability 
distribution of actions taken by the agent in a given state, specifically using Gaussian distributions 
to generate continuous actions. The policy network of SAC employs the maximum entropy 
principle, aiming to maximize the reward and the entropy of the policy, thus enhancing exploration 
capability and improving decision robustness. The objective function of the policy network is 
defined as: 

𝐽W(𝜃) = 𝔼6$∼𝒟,%$∼W&[𝛼ℋ(𝜋(⋅ |𝑠()) − 𝑄(𝑠( , 𝑎()], (33) 
here, 𝜋Y(𝑎(|𝑠() is the action distribution generated by the policy network; 𝑄(𝑠( , 𝑎() is the current 
estimated value of the action from the value network; and ℋ(𝜋(⋅ |𝑠()) is the entropy of the policy, 
measuring the uncertainty of action selection, defined as: ℋ(𝜋(⋅ |𝑠()) = −𝔼%$∼W&[log	 𝜋Y(𝑎(|𝑠()]; 
the parameter 𝛼 is an entropy regularization coefficient that controls the influence of the entropy 
term on the objective function. 
 
The action 𝑎( outputted by the policy network is generated from a Gaussian distribution: 

𝑎( ∼ 𝜋Y(𝑎(|𝑠() = 𝒩(𝜇Y(𝑠(), 𝜎Y(𝑠()1), (34) 
here, 𝜇Y(𝑠()  is the mean output of the policy network, and 𝜎Y(𝑠()  is the standard deviation 
outputted by the policy network. The Gaussian distribution can be sampled using the 
reparameterization trick to reduce the variance of gradient estimates: 𝑎( = 𝜇Y(𝑠() + 𝜎Y(𝑠() ⋅ 𝜖, 𝜖 ∼
𝒩(0,1). 
 
By optimizing the objective function 𝐽W(𝜃), the policy network is capable of generating action 
distributions that not only have a high value but also incorporate a certain level of randomness. 

 
(2) Value Network (Critic Network).  
The value network assesses the value of the actions produced by the policy through two Q-networks 
(denoted as 𝑄8 and 𝑄1) to reduce overestimation bias. The value network's role is to evaluate the 
value of the actions generated by the current policy network. SAC introduces a double Q-network 



structure to counteract overestimation bias and enhance stability. Specifically, SAC trains two Q-
functions 𝑄8 and 𝑄1 simultaneously and employs the minimum of the two networks' values as the 
target value. The goal of the Q-network is to minimize the Bellman error, and its loss function is 
defined as: 

𝐽Z(𝜙) = 𝔼(6$,%$,,$,6$'()∼𝒟 ��𝑄[(𝑠( , 𝑎() − 𝑦(�
1 , (35) 

here, 𝑄[(𝑠( , 𝑎() is the current estimate from the Q-network; 𝑦( signifies the target Q-value, defined 
as: 
𝑦( = 𝑟( + 𝛾 ⋅ 𝔼%$'(∼W&Vmin�𝑄8(𝑠(>8, 𝑎(>8), 𝑄1(𝑠(>8, 𝑎(>8)� − 𝛼 log 𝜋Y(𝑎(>8|𝑠(>8)W, (36) 

in this expression, 𝑟(  represents the current immediate reward; 𝛾  is the discount factor, which 
measures the importance of future rewards; min(𝑄8, 𝑄1) is used to reduce the overestimation bias 
of value estimates; and 𝛼log	 𝜋Y(𝑎(>8|𝑠(>8) is the entropy term, which encourages the randomness 
of the policy. By optimizing the objective function 𝐽Z(𝜙), the value network can more accurately 
assess the value of each action, guiding updates to the policy network. 
 
(3) Automatic Temperature Adjustment.  
This component dynamically adjusts the entropy coefficient 𝛼  to maintain a balance between 
exploration and exploitation. SAC introduces the entropy regularization coefficient 𝛼 , which 
encourages the agent to explore more of the unknown state space during the initial phases of 
training when environmental information is limited. A larger 𝛼  value enhances exploration 
capability. Conversely, in the later training stages, as the agent begins to master high-value 
strategies, a smaller 𝛼 reduces randomness, heightening the policy's stability and enhancing its 
exploitation capability, thus achieving a balance between exploration and exploitation. To 
dynamically adjust 𝛼, SAC formulates an adaptive objective function that treats 𝛼 as a learnable 
parameter. The optimization objective for automatic temperature adjustment is to minimize the 
following loss function: 

𝐽(𝛼) = 𝔼%$∼W&[−𝛼log	 𝜋Y(𝑎(|𝑠() − 𝛼𝐻¢], (37) 
here, log	 𝜋Y(𝑎(|𝑠() represents the entropy of the policy, quantifying action randomness, and 𝐻‾  is 
a predefined target entropy value that determines the level of randomness within the policy; 𝛼 is 
the entropy coefficient to be optimized. 
 
By optimizing 𝐽(𝛼), SAC can automatically adjust the entropy coefficient, aligning the policy 
network's randomness with the exploration needs. Ultimately, the dynamically adjusted 𝛼 balances 
the exploration-exploitation relationship. These components enable SAC to exhibit stable, efficient 
learning capabilities across continuous control tasks. 

3.3 Prioritized Experience Replay 

Prioritized Experience Replay (PER) is an essential method for enhancing training efficiency in 
reinforcement learning. The traditional experience replay mechanism samples historical data 
uniformly, whereas PER introduces a prioritization mechanism to sample high-value experiences, 
making better use of limited experience data and rendering the learning process more efficient. 
PER measures the importance of experiences by calculating their Temporal Difference (TD) error, 
allowing the model to focus more rapidly on significant experiences and speeding up convergence. 
This can be expressed as: 

𝛿/ = 𝑟/ + 𝛾𝑄(𝑠/>8, 𝑎/>8) − 𝑄(𝑠/ , 𝑎/). (38) 
where 𝑟/  denotes the immediate reward; 𝑄(𝑠/ , 𝑎/) is the value estimate for the current state and 
action; 𝑄(𝑠/>8, 𝑎/>8) is the value estimate for the next state and action; and 𝛾 is the discount factor. 
 
The priority of the experience data 𝑝/ is defined as: 

𝑝/ = |𝛿/| + 𝜖, (39) 



where 𝜖 is a small constant to avoid zero priorities. 
 
In PER, the sampling probability for each experience is proportional to its priority, thereby 
increasing the likelihood of sampling experiences with higher priorities. The sampling probability 
is defined as: 

𝑃(𝑖) =
𝑝/\

∑  K 𝑝K\
, (40) 

where 𝛼 controls the effect of priority on sampling. When 𝛼 = 0, PER reduces to uniform sampling; 
∑K  𝑝K\ serves as a normalization factor, ensuring that the total sampling probabilities sum to 1. 
 
Furthermore, since non-uniform sampling introduces bias, a weighted correction of the updates for 
the samples is necessary. The importance-sampling re-weighting mechanism ensures unbiased 
updates of the model, meaning that high-priority samples do not overly influence the model's 
learning. The weight is defined as: 

𝑤/ = k
1

𝑁 ⋅ 𝑃(𝑖)l
]
, (41) 

where 𝑁 is the size of the experience pool; 𝛽 controls the degree of importance re-weighting and 
is typically increased from a low value to 1 over the course of training. 

3.4 SAC Training Strategy 

The SAC algorithm is a reinforcement learning framework based on the principle of maximum 
entropy, characterized by good stability, high exploration efficiency, and fast convergence speed. 
In this framework, the rational design of the state space, action space, and reward function is key 
to achieving effective energy management. 

3.4.1 State Space Design 

The state space serves as the foundation for the agent’s decision-making, necessitating a 
comprehensive representation of the HEV's operating state and environmental characteristics at the 
current moment. Based on the core requirements for HEV energy management and the vehicle 
dynamic model, this study designs the state space 𝑠(  as a vector containing the following key 
variables: 

𝐬( = VSOC( , 𝑃DF^,( , 𝑣( , 𝑎(W, (42) 
here, 𝑆𝑂𝐶( is the state of charge of the battery, which reflects the current energy level of the battery 
(typically ranging from 0.2 to 0.8); 𝑃,!-,( is the vehicle's power demand at the current moment, 
determined by driving conditions and road conditions; 𝑣( represents the vehicle's speed, indicating 
the current driving state; and 𝑎( is the vehicle's acceleration, further characterizing the vehicle's 
dynamic performance.  
 
By designing reasonable monitoring of vehicle state parameters, the state space can 
comprehensively capture the vehicle's dynamic characteristics, energy state, and external 
environmental information, thereby providing a complete decision-making basis for the SAC 
algorithm. 

3.4.2 Action Space Design 

The action space defines the range of decisions available to the agent. In this study, the action space 
𝑎( is defined as the engine’s output power 𝑃!"#,(, which is the sole variable that the agent decides 
upon at each time step: 



𝐚( = 𝑃FA_,( , (43) 
where 𝑃FA_,( is the engine output power at the current moment. 
 

In order to ensure the rationality of power distribution, the following constraint conditions must be 
satisfied: 

𝑃DF^,( = 𝑃FA_,( + 𝑃 Na,( , 
𝑃FA_,( ∈ [𝑃FA_,EbA, 𝑃FA_,ENc]. 

(44) 

 
The power from the battery 𝑃5%(,( will be automatically calculated from the action variable 𝑃!"#,( 
based on the vehicle's power demand as follows: 

𝑃 Na,( = 𝑃DF^,( − 𝑃FA_,(. (45) 
 
Moreover, the constraints regarding battery power and SOC must be adhered to 

𝑃 Na,( ∈ [𝑃 Na,$/", 𝑃 Na,$%&], SOC$/" ≤ SOC( ≤ SOC$%& . (46) 
 
Through the aforementioned design, the action space for the agent is simplified to controlling the 
engine's power output. Other variables (such as battery power) are regulated automatically by the 
dynamic model and constraints, thus simplifying the complexity for both algorithm training and 
practical application. 

3.4.3 Reward Function Design 

The design of the reward function directly determines the optimization direction of the SAC 
algorithm. In the context of HEV energy management, the reward function must take into account 
fuel consumption, the health status of the battery (changes in State of Health, SOH), and the 
management objectives regarding battery SOC. This study constructs a reward function of the 
following form: 

𝑟( = −�𝑤8 ⋅ �̇�BdFe,( +𝑤1 ⋅ ΔSOH( +𝑤f ⋅ |SOC( − SOCDFB|�, (47) 
where �̇�2:!.,( is the fuel consumption rate at the current moment (in g/s), computed from the engine 
efficiency model; Δ𝑆𝑂𝐻(  represents the change in the battery's State of Health at the current 
moment, which is usually related to the depth of discharge (DOD) and charge-discharge rate, 
calculated as Δ𝑆𝑂𝐻( = 𝑘 ⋅ (𝐷𝑂𝐷( ⋅ 𝐶,%(!,(1 ), where 𝑘 is an empirical coefficient, 𝐷𝑂𝐷( represents 
the current depth of discharge, and 𝐶,%(!,(  denotes the current charge-discharge rate; |𝑆𝑂𝐶( −
𝑆𝑂𝐶,!2| is the absolute deviation of the battery SOC from its reference value, which penalizes 
excessive deviations from the target value, with 𝑆𝑂𝐶,!2  set to 0.6 in this study; 𝑤8, 𝑤1, 𝑤f are 
weight coefficients used to balance the optimization objectives of fuel consumption, battery health, 
and SOC management. 
 
By incorporating battery health into the reward function, the optimization process for the EMS 
simultaneously emphasizes the protection of the battery's health status, mitigating negative impacts 
on battery life from excessively high rates or depths of discharge. The weight coefficients 𝑤8, 𝑤1, 
and 𝑤f can be experimentally tuned based on the significance of different optimization objectives. 
 
The reward function transforms the optimization problem into a minimization problem using 
negative values, where fuel consumption and the battery’s health status directly affect the vehicle's 
environmental performance and operational efficiency, while the SOC deviation reflects the 
battery's health management level. 



The goal of the SAC algorithm is to maximize the cumulative reward, expressed as: 

𝜋∗ = arg	𝑚𝑎𝑥
W
 𝔼W °�  

?

(S+

𝛾(𝑟(± (48) 

where 𝜋 denotes the policy and 𝛾 is the discount factor. 

4. Simulations and Results Analysis 

This section presents simulated experiments based on real driving condition cycles from CLTC-P, 
designed to validate the effectiveness of the proposed vehicle speed prediction model and the SAC 
energy management strategy utilizing prioritized experience replay. 

4.1 Speed Prediction Parameter Optimization 

This section provides a detailed analysis of the impact of the prediction horizon (H) on the 
performance of the speed prediction model. Setting a larger prediction horizon may improve energy 
savings to some extent, but it could also affect prediction accuracy and computational complexity. 
To evaluate the specific influence of the prediction horizon on model performance, we designed 
five different prediction horizons: no prediction (H=0), H=5, H=10, H=15, and H=20, calculating 
the fuel consumption and algorithm run time for each case. 
 
The experimental results indicate that as the prediction horizon expands, the overall fuel 
consumption shows a downward trend. Notably, an optimum balance between fuel consumption 
and computational time is achieved at H=10, which is therefore regarded as the optimal setting for 
this study. It is noteworthy that at the H=10 setting, fuel consumption is significantly lower 
compared to the no prediction condition (H=0), while the computational time does not increase 
significantly, further validating the effectiveness of the speed prediction method in enhancing 
energy efficiency. 
 
In addition, Figure 3 illustrates that the Informer-based prediction method employed in this study 
demonstrates excellent computational efficiency, with run times in the millisecond range. This is 
primarily attributed to its departure from traditional prediction paradigms based on precise physical 
modeling. These results not only validate the feasibility and efficiency of the prediction model for 
real-world applications but also highlight its potential value in speed prediction and energy 
management. 

 
Figure 3 Comparison of Fuel Consumption and Computational Efficiency with Different 

Prediction Horizons 



4.2 Comparison of Speed Prediction Performance 

To verify the performance of the Informer model in the task of vehicle speed prediction, several 
control experiments were designed and comprehensive training and validation tests were conducted 
using the standard operation cycle dataset CLTC-P. The data from the CLTC-P operation cycle, as 
illustrated in Figure 4, contains speed profiles under continuous operating conditions, providing 
rich time series information for the model. The baseline models for comparison include LSTM, 
GRU, and the original Transformer, which serve to evaluate the performance of each model in 
predicting vehicle speed. The speed prediction performance metrics utilized are root mean square 
error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE), allowing 
for a comprehensive assessment of the different models' performance in the speed prediction task 
to facilitate a more thorough and accurate comparison of model effectiveness [32-38]. 

 
Figure 4 Speed Profile of the CLTC-P Driving Cycle 

 
The results of the control experiments for each baseline speed prediction model are shown in Table 
3 and Figure 5. It can be observed that the Informer model significantly outperforms traditional 
time series models in both prediction accuracy and computational efficiency. Specifically, the 
Informer improves the RMSE metric by 30% compared to LSTM, demonstrating a marked 
improvement in error control capability. The MAE is also reduced by 27% with the Informer, 
showcasing its advantage in minimizing average absolute errors. Furthermore, in terms of the 
MAPE metric, the Informer achieves a 22% improvement, indicating superb prediction precision. 

 

Table 3: Speed Prediction Performance Metrics for Different Models 
Model RMSE MAE MAPE 
LSTM 3.00 2.25 9.85 
GRU 3.35 2.60 10.32 

Transformer 2.50 1.85 8.56 
Informer 2.10 1.65 7.62 

 



 
Figure 5 Comparison of Speed Prediction Performance among Different Models 

 
The experimental results indicate that the Informer model can offer higher accuracy and efficiency 
in speed prediction tasks, surpassing traditional models such as LSTM, GRU, and Transformer, 
thereby demonstrating its excellent performance and application potential in complex time series 
prediction. The detailed experiments and significant results affirm the suitability and advantages of 
using the Informer as a tool for speed prediction in this study. 

4.3 Cost Optimization Evaluation for SHEV 

In this section, a detailed cost optimization evaluation is conducted regarding the energy 
management issues for SHEV. During the experiment, the proposed energy management approach 
based on the Informer vehicle speed prediction and prioritized experience replay, referred to as P-
PER-SAC, is compared with traditional SAC and DDPG algorithms. 
 
The comparative experiments are performed under identical simulation environments, establishing 
four energy management strategies: DDPG, SAC, PER-SAC, and P-PER-SAC. DDPG is a classical 
deep reinforcement learning algorithm widely applied in continuous control domains. SAC has 
attracted attention for its exceptional efficiency and robustness; PER-SAC accelerates SAC's 
convergence by incorporating prioritized experience replay, thus enhancing SAC performance; P-
PER-SAC aims to further optimize energy utilization efficiency by integrating the predictive 
module into PER-SAC. To ensure fair comparisons, all strategies are tested under the same 
operational conditions. The performance of each strategy is assessed by measuring the vehicle's 
fuel consumption during the standard testing cycle (CLTC-P), specifically expressed as fuel 
consumption per kilometer traveled (L/100KM). Each experimental setup is repeated three times 
to verify the reliability and consistency of results. 

 
Figure 6 Comparison of Fuel Consumption per 100 Kilometers among Different EMS 



 
The experimental results are presented in Figure 6, showing that DDPG has a fuel consumption of 
4.22 L/100KM. SAC improves energy management efficiency by addressing the overestimation 
problem of DDPG, further reducing fuel consumption to 4.10 L/100KM. Notably, the approach 
proposed in this study, incorporating prioritized experience replay and a vehicle speed prediction 
module, significantly enhances SAC's performance. Specifically, the integration of prioritized 
experience replay reduces fuel consumption to 3.92 L/100KM, and the addition of the speed 
prediction module in the P-PER-SAC strategy achieves optimal performance with a fuel 
consumption of 3.85 L/100KM. Compared to DDPG and SAC, P-PER-SAC clearly reduces energy 
consumption, highlighting the critical role of integrating prioritized experience replay and speed 
prediction in enhancing energy optimization efficiency. This also validates the rationale behind 
incorporating prioritized experience replay and speed prediction into the SAC-based energy 
management framework proposed in this study. 

 
Figure 7 SOC Variation Curve of P-PER-SAC 

 
Moreover, to validate the effectiveness of the proposed method in maintaining charge, Figure 7 
illustrates the SOC variation curve of the approach under the CLTC-P driving cycle. The initial 
SOC for the simulation experiment is set at 0.7; after a period of operation, the energy management 
strategy consistently maintains the SOC around 0.6. At this state, the efficiency of battery charging 
and discharging is relatively high, aligning with the design objectives of this study and helping to 
maximize battery utilization efficiency. Additionally, it is observed from the figure that the 
amplitude of SOC variation remains relatively small over time, indicating the effectiveness of the 
method in optimizing energy management. Maintaining a high SOC level can reduce energy losses 
and extend the battery's service life. Therefore, the proposed method demonstrates significant 
advantages in terms of battery SOC stability, validating its effectiveness and practicality in real-
world applications. 
 
Finally, Figure 8 shows the changes in rewards during the training process of the proposed method, 
where the red line represents the smoothed reward values and the yellow line represents the raw 
reward values. It is evident from the figure that as training progresses, especially when the episode 
exceeds 200, rewards tend to stabilize, indicating that the method has converged during the training 
process. The stability of reward values signifies that the model has reached a relatively optimal 



strategy after prolonged training, further illustrating the effectiveness and stability of the method 
in SHEV energy management. 

 
Figure 8 Changes in Rewards During the Training Process 

 
In summary, the proposed method exhibits significant advantages in energy management compared 
to traditional DDPG and SAC algorithms. By incorporating prioritized experience replay and the 
vehicle speed prediction module, the method not only improves fuel efficiency but also effectively 
maintains the battery SOC in an optimal state. This enables the battery to operate efficiently while 
reducing energy losses and extending its lifespan. These results indicate that the proposed method 
possesses substantial application potential and practical feasibility in optimizing energy 
management for hybrid electric vehicles, offering new insights and directions for future research 
and real-world applications. 

5. Conclusions 

This paper conducts an in-depth study on the energy management issues for SHEV and proposes a 
SAC energy management method based on Informer vehicle speed prediction and prioritized 
experience replay. By comparing this method with traditional algorithms such as DDPG, SAC, and 
PER-SAC within the same simulation environment, we evaluate various energy management 
strategies based on two key indicators: fuel consumption and battery SOC stability. The proposed 
method achieves a fuel consumption reduction to 3.85 L/100KM while maintaining the battery 
SOC stable around the preset value of 0.6, representing a 6.1% improvement over the traditional 
SAC-based energy management system. This demonstrates the crucial role of prioritized 
experience replay and the speed prediction module in optimizing the energy management efficiency 
of the SAC algorithm. Additionally, the analysis of the reward variations throughout the training 
process indicates that the rewards stabilize as training progresses, further confirming the 
convergence and robustness of the proposed method. In summary, the energy management strategy 
proposed in this study exhibits significant advantages over traditional algorithms, performing 
excellently in optimizing fuel consumption and maintaining battery SOC stability. It holds strong 
application potential and practical feasibility [39-44]. This research outcome offers new insights 
and directions for the future development of energy management strategies for hybrid electric 
vehicles, with the potential to yield significant energy-saving benefits in practical applications. 
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