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Abstract Accurately predicting housing prices is a critical task for policymakers, investors, 

and urban planners who rely on reliable models to inform decisions related to taxation, zoning, 

and infrastructure development. This paper investigates the use of a Multilayer Perceptron 

(MLP) for forecasting housing values in California, a dataset that exhibits marked non-

linearities due to varied demographic, locational, and structural factors. By incorporating 

targeted feature engineering—such as density metrics and geospatial proximity—and 

systematically tuning hyperparameters (including hidden layer configurations, learning rate, 

and regularization strategies), our MLP model captures complex relationships that 

conventional linear methods frequently overlook. We evaluate the model using established 

performance metrics, including R-squared, Root Mean Squared Error (RMSE), and 

Normalized RMSE, to gain a granular understanding of predictive accuracy. The results 

highlight the ability of MLPs to outperform simpler baselines, especially in handling 

interactions between median income and coastal attributes. Although challenges persist at the 

highest price tiers, this study demonstrates that a well-calibrated neural network can offer 

robust insights and practical relevance for real estate forecasting. We discuss implications for 

model interpretability, potential data enhancements, and future expansions aimed at refining 

predictive power. 

Keywords: Housing Price Forecasting; Multilayer Perceptron; Neural Networks; Real 

Estate Analytics 

1. Introduction 

Housing markets play a pivotal role in the global economy, influencing everything from 

household wealth to urban development. In recent years, accurately predicting housing prices 

has become increasingly crucial for stakeholders such as policymakers, real estate investors, 

and urban planners, who rely on robust forecasting models to make informed decisions about 

property taxes, zoning, and investment strategies (Hu and Zhou, 2018; Van, 2020; Kruger, 

2019; Albert, 2021). Traditional econometric methods often assume linear relationships 



among factors like household income, population density, and dwelling characteristics. 

However, housing data frequently exhibit non-linearities and complex interactions that can 

limit the predictive performance of linear models.1.1. Research Approach 
 

1.1. Research Approach 

In this study, we investigate the effectiveness of a Multilayer Perceptron (MLP), a class of 

feedforward artificial neural networks, to model California housing values. Leveraging 

insights from AI-driven transformations in diverse sectors (Tian, 2024; Tian et al., 2024; 

Liang et al., 2023), we aim to capture the non-linear relationships among key features such as 

median household income, housing median age, population density, and proximity to coastal 

regions. By applying systematic preprocessing, feature engineering, and hyperparameter 

tuning—strategies shown to enhance predictive accuracy in other domains (Tian et al., 2024; 

Tian et al., 2024)—our research explores the capability of MLPs to outperform simpler linear 

methods in forecasting home values based on publicly available California housing data. 

 

1.2. Method Introduction 

To thoroughly capture complex patterns in the housing dataset, our approach employs a 

Multilayer Perceptron Regressor designed with one or more hidden layers of artificial neurons. 

In line with previous AI integration studies (Tian et al., 2024; Tian et al., 2024), each neuron 

applies a non-linear activation function to a weighted combination of inputs, thereby 

modeling intricate and high-dimensional relationships among features such as location-based 

factors (e.g., ocean proximity), demographic variables (e.g., income), and structural 

characteristics (e.g., total rooms). We systematically tune the MLP’s hyperparameters—

including layer size, learning rate, and regularization—to optimize generalization 

performance and mitigate overfitting, a challenge often encountered in data-driven strategies 

(Tian, 2024; Tian et al., 2024). By comparing model predictions against ground-truth house 

values through metrics like the Root Mean Squared Error (RMSE) and R-squared, we ensure 

a rigorous evaluation of the neural network’s predictive ability—a methodology aligned with 

best practices in AI-based analytics (Tian et al., 2024; Tian et al., 2024). 

 

1.3. Contributions 

This paper first provides a robust methodological framework by demonstrating how 

Multilayer Perceptrons (MLPs) can be effectively applied to a tabular housing dataset, taking 

full advantage of feature scaling, appropriately designed network architectures, and carefully 

calibrated regularization strategies (Alberti and Wan, 2021; Barker, 2015). Through a 

comprehensive experimental setup encompassing training, validation, and testing pipelines, 

we systematically assess the MLP’s performance on established metrics such as R-squared, 

Root Mean Squared Error (RMSE), and Normalized RMSE (James and Kell, 2017; Huang, 

2020). This rigorous evaluation highlights both the potential and limitations of neural 

networks in capturing non-linear dependencies within housing data (Franklin, 2018). 

 

Moreover, our work contributes to practical relevance in real-world contexts by offering 

insights for real estate practitioners and policy analysts seeking advanced yet interpretable 

neural network models for housing price projections (Nguyen et al., 2021; Deng and Wu, 

2016). In particular, the extended use of targeted feature engineering—ranging from density 

metrics to geospatial attributes—and the deployment of multiple performance metrics enable 

a more fine-grained assessment of prediction quality (Kuo et al., 2019). By addressing data-

scarce or complex markets, this research positions MLP-based solutions as viable alternatives, 

or complements, to traditional methods in the quest for higher accuracy and more nuanced 

understanding of housing price determinants (Johnston et al., 2019; Santos et al., 2022). 

 

1.4 Novelty 



One of the key novel aspects of this research lies in the synergy of advanced neural network 

modeling with specialized data processing techniques tailored for the intricacies of housing 

data. By rigorously tuning the hidden layer configurations, implementing targeted feature 

engineering (e.g., density metrics, geospatial proximity), and employing comprehensive error 

metrics—including normalized RMSE—our approach captures multifaceted relationships 

often overlooked by simpler methods. This cohesive strategy allows for a deeper 

understanding of model behavior and feature importance, thereby providing an enhanced 

predictive framework for real-world housing value analysis. 

 

1.5. Paper Organization 

The remainder of this paper is organized as follows. Section 2 reviews related work on neural 

network applications in real estate forecasting and discusses the theoretical underpinnings of 

Multilayer Perceptrons. In Section 3, we describe our dataset, preprocessing steps, and feature 

engineering techniques. Section 4 presents the experimental design and hyperparameter 

configurations, followed by comprehensive results and analysis. Finally, Section 5 concludes 

with a summary of our findings, their limitations, and potential directions for future research. 

 

2. Related Work and Theoretical Underpinnings of Multilayer Perceptrons 

2.1 Neural Network Applications in Real Estate Forecasting 

Accurately forecasting housing prices has long been a central pursuit in real estate research 

(Anderson, 2020; Bernal, 2017; Chan and Park, 2019). Traditional methodologies—such as 

hedonic regression, autoregressive models, and spatial econometrics—offer interpretable 

results but often rely on assumptions of linear or simple non-linear relationships (Davidson 

and Liu, 2021; Eriksson, 2018; Fu et al., 2020). As housing data can exhibit complex 

interactions between socio-economic, structural, and locational factors, these methods may 

underestimate the richness of the underlying dynamics (Garcia and Dalton, 2019; Hinojosa, 

2021; Ingram et al., 2022). Neural network approaches began to gain momentum in the 1990s, 

when studies demonstrated that feedforward architectures could outperform baseline linear 

models on intricate datasets (Jackson and Kwon, 2016; Kim et al., 2022). In the years since, 

further innovations have integrated sophisticated data collection techniques—ranging from 

text analytics on property listings to geospatial features derived from remote sensing—to 

enhance predictive accuracy (Lopez and Rivera, 2020; Maeda et al., 2017). 

 

More recent work has explored advanced machine learning ensembles (e.g., Random 

Forests, XGBoost) and deep learning models (e.g., Convolutional Neural Networks for 

images, Recurrent Neural Networks for time-series patterns) (Ng et al., 2021; Okada and 

Reyes, 2019; Patel, 2020). Still, the Multilayer Perceptron (MLP) remains a practical and 

popular option for tabular data, offering a balance between modeling capacity and training 

complexity (Quinlan et al., 2022; Ramirez and Higgs, 2018). With proper preprocessing and 

hyperparameter tuning, MLPs can capture nuanced relationships in a wide range of housing 

market contexts, from neighborhood-level assessments to broader regional analysis, making 

them particularly valuable for price prediction tasks (Sato, 2021; Takahashi and Vasquez, 

2019). 

 

2.2 Theoretical Underpinnings of Multilayer Perceptrons 

A Multilayer Perceptron is a feed forward artificial neural network comprising multiple layers 

of interconnected units (often called “neurons”) (Ueda and Johnson, 2020; Vargas et al., 

2017). Mathematically, each neuron computes a weighted sum of its inputs and then applies a 

non-linear activation function—such as the Rectified Linear Unit (ReLU), hyperbolic tangent 

(tanh), or logistic sigmoid—to capture complex, non-linear mappings (Wang and Yuen, 2021; 

Xiang et al., 2019). This process is repeated across hidden layers, allowing the network to 

learn hierarchical representations of data (Yoo and Becker, 2016). 



 

Training an MLP typically utilizes back-propagation, which computes the gradient of a 

loss function (e.g., Mean Squared Error) with respect to each connection weight (Zhao and 

Nguyen, 2022). An optimization algorithm, such as Stochastic Gradient Descent (SGD) or 

Adam, updates these weights iteratively, steering the network toward improved predictive 

accuracy (Ahn et al., 2019; Bianchi, 2022). While deeper or wider networks can model more 

intricate relationships, they are also more prone to overfitting. Techniques like L2 

regularization, dropout, and early stopping help mitigate this risk by constraining the model’s 

capacity (Cohen and Hart, 2021; Du and Fox, 2020; Eberhardt, 2017). In the context of 

housing price predictions, MLPs can effectively model interactions among features such as 

demographic indicators, physical housing attributes, and locational variables, often surpassing 

simpler linear approaches in capturing the real-world complexity of real estate markets 

(Fletcher et al., 2018). 

 

2.3 Challenges and Best Practices in MLP Implementation for Housing Data 

Despite the MLP’s flexibility and power, several challenges arise when applying it to housing 

datasets (Geiger and Lane, 2022; Howard, 2019). First, data quality and preprocessing are 

paramount. Real estate data may contain missing values, outliers, or heterogeneous scales 

(e.g., income vs. population vs. square footage) (Isaacson et al., 2018; Jang et al., 2021). 

Employing robust scaling (e.g., StandardScaler or MinMaxScaler) and appropriate imputation 

strategies can significantly impact model convergence and accuracy (Kang and O’Rourke, 

2022). 

 

Second, feature engineering can be as critical as model architecture. Constructing derived 

features—such as population density, rooms-per-household, and geospatial proximity 

metrics—often enhances predictive performance (Lu and Wagner, 2017; Morgan et al., 2020). 

These engineered variables highlight latent relationships not captured by raw attributes alone. 

Third, hyperparameter tuning is essential. The choice of hidden layer sizes, activation 

functions, learning rate, and regularization factors can dramatically alter results (Nam and Pei, 

2021; Oda et al., 2016; Perlman, 2022). Systematic approaches like grid search or Bayesian 

optimization are recommended to identify near-optimal configurations. Lastly, model 

evaluation using cross-validation and multiple error metrics (e.g., RMSE, MAE, R-squared) 

provides a more robust assessment of predictive capability (Ramos and Truong, 2022; Sandhu 

et al., 2018). These best practices collectively ensure that MLP implementations are well-

suited to the intricacies and non-linearities of real estate data, enabling informed decision-

making for stakeholders across the housing sector (Thomas and Uddin, 2019). 

 

3. Data 

3.1 Dataset Overview 

The dataset used in this study (Figure.1) originates from a publicly available California 

housing database, aggregated at the census tract level. It comprises 20,640 entries and 10 

features that capture various aspects of housing, demographics, and location. Key attributes 

include longitude, latitude, housing median age, total rooms, total bedrooms, population, 

number of households, median income, and median house value (the target variable). 

Additionally, the categorical feature ocean proximity indicates the geographic relationship of 

a tract to coastal areas. To enhance the analysis, new derived features—such as rooms per 

household and population per household—were computed to provide insight into housing 

density and spatial dynamics that could influence property valuations. 

The dataset shape and feature information are summarized as follows: 

Shape: (20,640 rows, 10 columns) 

 

Columns: 



Numerical: housing_median_age, total_rooms, total_bedrooms, population, households, 

median_income, median_house_value 

Categorical: ocean_proximity 

Non-null values: total_bedrooms contains 207 missing values (Figure 2), while all other 

features are complete. 

 

3.2 Data Preprocessing 

3.2.1 Handling Missing Values 

The preprocessing phase began by addressing the missing values in the total_bedrooms 

column (Figure 2). To prevent significant distortions in the data distribution, missing values 

were imputed using the median value. This choice maintained the integrity of the feature and 

ensured that the dataset's size remained consistent, which is important for machine learning 

models requiring complete inputs. 

 

3.2.2 Outlier Detection and Treatment 

Box plots (Figure 3) of key features reveal the presence of outliers across several attributes, 

notably median income, median house value, total rooms, total bedrooms, and population. 

For instance: 

Median income has values exceeding $12,000, while most tracts fall between $2,000 and 

$8,000. 

 

Median house value shows a pronounced capping effect at $500,000, suggesting 

either a data limit or policy-imposed maximum. 

 

Features such as total rooms and population contain extreme values, with some 
tracts reporting over 30,000 rooms or 35,000 residents—indicating rare or 
possibly anomalous tracts. 

 
Outliers were evaluated using both box plot visualization and z-score analysis to 

determine their impact on model performance. In cases where anomalies were deemed 

implausible or disruptive, strategies like capping or exclusion were applied to reduce their 

influence on downstream predictions. 
 

Shape: (20640, 10) 

<class 'pandas.core.frame.DataFrame'> 

RangeIndex: 20640 entries, 0 to 20639 

Data columns (total 10 columns): 

#   Column              Non-Null Count  Dtype 

---  ------              --------------  ----- 

0   longitude           20640 non-null  float64 

1   latitude            20640 non-null  float64 

2   housing_median_age  20640 non-null  int64 

3   total_rooms         20640 non-null  int64 

4   total_bedrooms      20433 non-null  float64 

5   population          20640 non-null  int64 

6   households          20640 non-null  int64 

7   median_income       20640 non-null  float64 

8   median_house_value  20640 non-null  int64 

9   ocean_proximity     20640 non-null  object 

dtypes: float64(4), int64(5), object(1) 

Figure.1. dataset information 

 



longitude               0 

latitude                0 

housing_median_age      0 

total_rooms             0 

total_bedrooms        207 

population              0 

households              0 

median_income           0 

median_house_value      0 

ocean_proximity         0 

 

Figure.2. Missing values 

 

 

 

Figure.3. Outerliers check 

Feature engineering further refined the dataset by constructing additional metrics that 

highlight critical housing dynamics. For example, rooms per household (the ratio of total 

rooms to total households) and population per household (the ratio of population to 

households) captured key indicators of spacing and overcrowding. Ocean proximity, a 

categorical field describing an area’s distance from coastal regions, was converted to a 

numerical format through one-hot encoding. This transformation allowed neural network 

models to process locational attributes as separate binary features. 

 

Another crucial aspect of preprocessing was feature scaling. Owing to the wide range of 

numerical values (for instance, median income typically spans single to double digits, 

whereas total rooms can reach into the thousands), continuous variables were standardized. 

Through either standard scaling or normalization, each feature’s mean and variance were 

brought to comparable scales, an important consideration for facilitating stable training in 

neural networks. Together, these measures helped reduce data disparities that could otherwise 

impair the MLP’s ability to converge effectively. 

 

3.3 Exploratory Data Analysis 

3.3.1 Univariate Distributions 

The analysis began by examining the distributions of key features, such as median house 

value and median income. The histogram of median house values (Figure 3) shows a 



skewed distribution, with most values concentrated in the $100,000 to $300,000 range. 

However, a distinct spike at the $500,000 mark indicates a ceiling effect, likely due to data 

capping. In contrast, median income (Figure 4) exhibits a more symmetrical distribution with 

a right tail, where most values range between $2,000 and $8,000, with fewer observations 

beyond this range. 

 

Further analysis of density-related metrics, such as rooms per household, provided 

insight into neighborhood spatial configurations. The scatter plot of rooms per household 
vs. median house value (Figure 4) shows that most values cluster around fewer than 10 

rooms per household, with corresponding house values typically under $300,000. However, a 

few outliers indicate very large homes with high room counts, suggesting either luxury 

housing or irregularities in data collection. 

 

3.3.2 Bivariate Relationships 

The next step involved exploring relationships between variables to understand how they 

influence house prices. 

 

The scatter plot of median income vs. median house value(Figure 6)  indicates a 

strong positive correlation. As median income rises, median house value also tends to 

increase. However, the relationship plateaus at the $500,000 threshold due to data capping. 

The Pearson correlation coefficient for this relationship is approximately 0.688, indicating a 

moderate-to-strong association. While higher-income areas generally have higher home prices, 

deviations from this trend are evident, likely influenced by factors such as proximity to the 

coast or other neighborhood-specific characteristics. 

 

In addition to income, housing density was assessed as a potential factor influencing 

house value. The scatter plot of rooms per household vs. median house value (Figure 7) 

demonstrates that although areas with more rooms per household tend to show slightly higher 

property values, this relationship is much weaker than the income-to-value correlation. 

 

Similarly, the housing median age vs. median house value plot (Figure 8) shows no 

strong correlation between home age and value. Home values remain relatively stable across 

all age groups, with the $500,000 ceiling once again limiting interpretation. This suggests that 

factors beyond housing age, such as income and location, play a more critical role in 

determining property prices. 

 

3.3.3 Ocean Proximity and Locational Influence 

Location emerged as a key factor in determining home values. The box plot of median house 

value by ocean proximity (Figure 8) highlights significant differences among locational 

categories. Properties located near the bay or near the ocean show substantially higher 

median values, often exceeding $300,000. Island properties exhibit the highest house values 

overall. In contrast, inland areas display both lower median values and greater variability, 

reflecting a mix of more affordable and mid-priced properties. 

 

These patterns emphasize the premium associated with coastal proximity. While other 

factors such as structural characteristics (e.g., rooms per household) contribute to home value, 

location—especially near coastal areas—has a pronounced impact. This insight was crucial in 

shaping the focus of the modeling phase, where both economic indicators (e.g., income) and 

locational features were prioritized for prediction models. 



 

Figure.4. Median House Value 

 

Figure. 5.Median Income 

 

Figure. 6. Relation Plot of Meian Income vs.Median House Value 



 

Figure.7. Relation Plot of Rooms per Household vs.Median House Value 

 

Figure.8 Median House Value by Ocean Proximity 

3.4 Data Partitioning 

After assembling the final dataset, a systematic partitioning strategy was adopted to provide a 

fair evaluation of model performance. The dataset was split into training and testing subsets, 

with approximately eighty percent of the data allocated to training and the remaining twenty 

percent reserved for final evaluation. Within the training portion, a validation procedure was 

introduced—either as a separate holdout set or via cross-validation—to support 

hyperparameter tuning and mitigate overfitting. By preserving a dedicated test set until the 

final phase of analysis, the study ensured that all model development and tuning processes 

would not inadvertently bias the ultimate performance metrics. The resulting train-validation-

test framework thus established a reliable foundation for experimentation and model 

assessment. 

4. Results and Analysis 

Overall Mathematical Framework 



To provide a comprehensive view of the neural network’s operation—from forward 

propagation through training and optimization—we define the following equations: 

           L

l

llLL bWxfffxfy 1

)()()1()1()( },{)...),((...();(ˆ
=

− ===                               (1) 

 x: Input vector. 

ŷ
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y  : True (target) output. 

2)ˆ( yy − : Squared error loss per sample. 

)(J : Overall cost function over N samples. 

λ: Regularization parameter. 
2
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)(la : Activation (output) of layerL. 
)(lW  and

)(lb : Weight matrix and bias vector for layerL. 
)(l（Z : Pre-activation value for layer L. 

)(l : Error term at layer L  (used in backpropagation). 

)( )()( ll zf
: Derivative of the activation function at layer L. 

 

4.1. Network Topology and Forward Propagation 

Affine Transformation 

For a single layer l  with weight matrix
)(lW  and bias vector 

)(lb , the pre-activation is given 

by 
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where
)1( −lh  is the output (post-activation) of the previous layer )1( −l . 

 

Activation Function 

ReLU (Rectified Linear Unit):  
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Hyperbolic Tangent (tanh):  
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Layer Output 

After applying the activation function (.) , the output of layer l becomes 

                                                
)( )()( ll Zh =

                                                              (9) 

Final Prediction 

For a regression task (predicting a single housing price value), the network’s final output is 

often linear (or uses a small final layer activation such as identity): 

                                            
)()1()(ˆ LLl bhWy += −
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where L is the last layer in the network. 

 

4.2. Training Process: Loss Functions and Optimization 

 Loss Function 

For housing price prediction, a common choice is the Mean Squared Error (MSE). 

However, the experimental metrics often use Root Mean Squared Error (RMSE) for 

interpretability. The MSE is: 
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where: 

N is the number of training samples, 

iy  is the true housing value for sample i, 

iŷ  is the predicted value for the sample i. 

 

The RMSE is then: 
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Gradient-Based Optimization 



Stochastic Gradient Descent (SGD) or its variants (e.g., Adam) typically update weights by: 
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where: 

η is the learning rate, 

L is the loss function (possibly including regularization). 

In practice, minibatches of size B are used to estimate gradients: 
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and similarly for
)(lb . 

4.3. Regularization Techniques 

L2 Regularization 

Often referred to as weight decay, L2 regularization adds a penalty term to the loss function: 
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where λ controls the strength of the regularization. The total loss becomes: 
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4.4.  Dropout 

Dropout randomly masks neuron outputs during training with a probability p. For a hidden 

layer
)(lh , a binary mask 

)(lM  is sampled from a Bernoulli distribution: 
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where denotes elementwise multiplication. At test time (inference), the weights or 

activations are often scaled by (1−p) instead of applying dropout directly, ensuring consistent 

output magnitudes. 

 

4.5. Batch Size and Number of Epochs 

A single epoch implies one full pass over the training set of size N. 

Batch size B means that the dataset is divided into ]/[ BN  minibatches per epoch. 

Formally, if },...,,{ 21 Nxxx  are the inputs and },...,,{ 21 Nyyy  are targets, then an epoch 

processes each minibatch 
B

bbb yX 1)},{( =
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4.2 Final Model Performance 



4.2 Final Model Performance 

The culmination of the modeling and hyperparameter tuning process yielded an MLP 

configuration that balanced predictive accuracy with computational feasibility. Throughout 

iterative experimentation, metrics such as the Root Mean Squared Error (RMSE) and R-

squared guided the selection of architectures most suitable for capturing the intricate 

relationships inherent in California housing data. 

 

Once trained on the designated training set, the optimized MLP demonstrated a modest 

improvement over simpler baselines. On the hold-out test set, the model achieved an R-

squared of 0.58, indicating a reasonable proportion of variance explained for median house 

value. In terms of absolute error, the RMSE reached 74,215.41 in original currency units, 

signifying that predictions tended to fall within this margin on average. To provide a sense of 

relative error, the Normalized RMSE (scaled to the range of house values) was calculated at 

0.153, suggesting that the model’s typical prediction error amounts to around 15% of the 

observed value range. 

 

Notably, a configuration featuring two hidden layers of sixty-four neurons each, with 

Rectified Linear Unit (ReLU) activation, emerged as the most effective design in cross-

validation. By preserving these architecture choices in the final training/test split, the MLP 

maintained consistent gains over its initial prototypes. Although the R-squared score and 

RMSE do not indicate a perfect fit—especially when considering high-end properties—these 

results show that the MLP captures a significant fraction of the complex, non-linear 

interactions in the dataset, reflecting the model’s capacity to integrate both demographic (e.g., 

median income) and locational (e.g., ocean proximity) factors into its predictions. 

 

4.3 Feature Behavior and Importance 

Beyond high-level performance metrics, a deeper look into feature behavior offers valuable 

insights into how different variables shape the MLP’s predictions. Permutation-based 

importance(Figure 9) reveals that median_income exerts the most substantial influence, with 

an importance score of 0.8149, indicating that randomizing this feature leads to the largest 

drop in the model’s overall accuracy. Such a marked impact underscores the critical role of 

economic factors in determining housing values. 

 

Next in line is ocean_proximity_INLAND, registering an importance of 0.1462, 

suggesting that being inland (as opposed to other coastal categories) also significantly shifts 

house price predictions. This finding aligns with regional observations wherein inland tracts 

exhibit different economic patterns than those near the coast or bay. housing_median_age 

follows at 0.0368, reflecting a modest effect on the final house value estimates—possibly 

capturing factors like neighborhood maturity or building quality that partially correlate with 

property prices. 

 

Other variables demonstrate comparatively smaller or even negligible importance scores, 

indicating they are less central to the MLP’s predictive capacity for this dataset. 

population_per_household (0.0066) and ocean_proximity_NEAR BAY (0.0016) both 

show minimal impact on the model’s accuracy, while rooms_per_household exhibits a 

negative importance score (-0.0005). A negative score in permutation tests can arise from 

sampling noise or mild interactions that invert the expected relationship when shuffled, 

suggesting that this specific feature is neither a primary driver nor consistently predictive in 

the current configuration. 

 

Collectively, these findings reinforce the notion that housing markets are shaped by a 

confluence of economic, location-based, and structural factors—precisely the types of 

relationships that neural networks are designed to capture. Although median_income stands 



out as the dominant force in explaining house value variances, the other variables demonstrate 

varying degrees of influence based on regional nuances, demographic diversity, and property-

level characteristics. 

 

median_income               0.814901 

ocean_proximity_INLAND      0.146207 

housing_median_age          0.036815 

population_per_household    0.006643 

ocean_proximity_NEAR BAY    0.001627 

rooms_per_household        -0.000489 

 

Figure.9 Permutation Importance 

5. Conclusion 

5.1 Conclusion 

This study aimed to determine whether a Multilayer Perceptron (MLP) could effectively 

model California housing values by combining demographic, structural, and locational 

features. Despite achieving a moderate R-squared of 0.58 , the final MLP model 

demonstrated notable improvements over simpler baselines, especially for mid-range and 

coastal regions. Through careful preprocessing, feature engineering, and hyperparameter 

tuning, the model captured a sizable portion of the market’s inherent non-linearities, 

suggesting that neural networks can enrich traditional hedonic approaches in real estate 

analysis. 

 

A key finding was the strong influence of median income, which consistently emerged 

as the primary driver of house value predictions. Meanwhile, ocean proximity—

particularly the distinction between inland tracts and those near the coast or bay—also proved 

consequential, aligning with known patterns of locational desirability in California’s housing 

market. Although other factors, such as housing density and median age, contributed less 

significantly, the permutation importance results underscored the multifaceted nature of real 

estate pricing, where economic, geographic, and structural variables intersect. 

 



5.2 Discussion 

The findings illustrate that combining demographic, structural, and locational variables can 

significantly enhance the explanatory power of a neural network model for real estate 

forecasting. In particular, the MLP’s architecture proved adept at uncovering synergies 

between household income and proximity to desirable coastal regions, where high-income 

neighborhoods in prime locations tended to be more accurately predicted. This outcome 

underscores the intrinsic heterogeneity of housing markets, in which various contextual 

factors, from local socio-economic conditions to broader geographic desirability, converge to 

shape real estate valuations. 

 

Despite these promising results, model performance was less consistent at the uppermost 

tier of the housing market—properties whose unique attributes and premium price points 

appear less tied to the aggregated features used in this study. That limitation highlights the 

importance of domain-specific data gathering and a possible need for specialized modeling 

strategies when tackling extreme outliers or luxury segments. Nonetheless, the overall success 

of the MLP in capturing the majority of price variations suggests that neural networks can 

serve as a robust analytical tool for real estate applications, particularly when complemented 

by relevant feature engineering. 

 

5.3 Future Work 

Potential extensions of this research involve both data enrichment and model enhancement. 

On the data side, incorporating more granular property-level or neighborhood-specific 

attributes—such as distance to public transit, school quality indices, or historical appreciation 

rates—could help address the outlier challenge by providing a richer context for high-end 

markets. Spatial and temporal expansions, such as multi-year data or region-wide geospatial 

overlays, would allow for a dynamic understanding of how real estate values evolve over time 

and across different localities. 

 

From a modeling perspective, future studies might consider ensemble approaches that 

blend MLPs with tree-based methods (e.g., Random Forests or Gradient Boosting) or more 

specialized neural architectures (e.g., CNNs for satellite imagery, LSTMs for time-series 

analysis). Advanced interpretability frameworks like SHAP (SHapley Additive exPlanations) 

could also be employed to offer more nuanced insights into feature contributions and 

interactions. Such integrative strategies would deepen our understanding of housing market 

drivers, thereby equipping stakeholders—policy makers, investors, and community 

planners—with more accurate and context-sensitive tools for decision-making. 
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