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Abstract: As the demand for high-efficiency deep ultraviolet (DUV) light-emitting
diodes (LEDs) continues to rise in various applications such as water purification and
sterilization, there is a pressing need for developing cost-effective and reliable sources of
DUV light. However, the current state of DUV LED research presents challenges with
achieving both high performance and stability due to material limitations and fabrication
complexities. In this paper, we propose a novel approach using logistic regression
analysis to optimize the design and fabrication process of DUV LEDs. Our innovative
method provides a systematic framework for enhancing the efficiency and stability of
DUV LEDs, paving the way for practical applications in next-generation lighting and
sensing technologies.
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1. Introduction

The field of Deep Ultraviolet Light-emitting Diodes (DUV-LEDSs) focuses on the development and
optimization of semiconductor devices that emit light in the deep ultraviolet spectrum. These LEDs
have applications in areas such as sterilization, medical treatment, water purification, and UV
curing. However, the advancement of DUV-LED technology is currently faced with several

challenges and bottlenecks. These include issues with material quality, efficiency, and reliability,
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as well as the development of suitable substrates and packaging techniques. Additionally, the high
cost of production and limited availability of high-quality materials further impede progress in this
field. Overcoming these obstacles will require continued research and innovation in materials
science, device design, and manufacturing processes to unlock the full potential of DUV-LEDs for
various industrial and commercial applications.

To this end, significant progress has been made in the research and development of Deep
Ultraviolet Light-emitting Diodes (DUV-LEDs). Current studies have advanced to the point where
efficient DUV-LEDs with high optical power output and stability are being successfully produced
and tested for various applications. A recent literature review on AlGaN-based deep ultraviolet
light-emitting diodes (DUV-LEDs) highlights several key advancements in the field [1]. Hu et al.
introduced deep ultraviolet LEDs in 2006 [2], followed by a study in 2010 by Shur and Gaska on
deep-ultraviolet LEDs using AlGaN [3]. Khan's work in 2006 also contributed to the understanding
of these LEDs [4]. Liu et al. (2024) demonstrated a comprehensive approach utilizing bandgap
engineering and device craft to improve the performance of AlGaN-based DUV LEDs [5].
Furthermore, Zhou et al. (2023) developed high-power AlGaN-based ultrathin tunneling junction
DUV LEDs, showcasing efficient sterilization applications [6]. Huang et al. (2024) presented a
review on recent research advances and challenges in developing efficient AlGaN-based DUV
LEDs [7]. Zhang et al. (2024) proposed a novel polarized ultrathin tunneling junction design for
improved DUV LED performance [8]. Significant enhancement of n-contact performance in
AlGaN-based DUV LEDs was achieved using atomic layer etching as demonstrated by Liu et al.
(2024) [9]. Wei and Inoue (2024) explored the use of Fresnel zone plates for highly collimated light
emission in DUV LEDs [10]. Ji et al. (2024) implemented a composite p-contact structure with an
ultra-thin p-AlGaN insert layer to reduce operating voltage and enhance wall-plug efficiency in
AlGaN-based DUV LEDs [11]. A recent literature review on AlGaN-based deep ultraviolet light-
emitting diodes (DUV-LEDs) has shown significant advancements in the field, including bandgap
engineering, device craft, and novel designs to improve performance. Logistic Regression is crucial
in this context for its ability to model binary outcomes and predict the probability of success in
optimizing AlGaN-based DUV LEDs, making it a valuable tool for research and development in
this area.

Specifically, logistic regression can be used to analyze the performance factors of Deep
Ultraviolet Light-emitting Diodes (DUV LEDs) by modeling the probability of successful light
emission as a function of various parameters, such as material composition and design variables,
thus providing insights into optimizing these advanced semiconductor devices. This literature
review discusses various aspects of logistic regression modeling across different disciplines. The
application of logistic regression in health science and other fields is highlighted. Boosting, a vital
development in classification methodology, is shown to achieve performance improvements based
on statistical principles such as additive modeling and maximum likelihood. Additionally, rare
events data analysis using logistic regression is explored, addressing challenges in estimation and
data collection efficiency. Various authors have contributed to the literature, including Hosmer,
Lemeshow, and Sturdivant, Friedman, Menard, Harrell Jr., King et al, Conklin, Rao, Peduzzi et al.
However, limitations remain in the generalizability of findings across disciplines, the handling of
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multicollinearity in predictors, and the effective incorporation of high-dimensional data within
logistic regression frameworks.

In the pursuit of advancing the efficacy of deep ultraviolet (DUV) light-emitting diodes (LEDs),
this study drew significant inspiration from the pivotal research conducted by X. Chen and H.
Zhang, which illuminated the potential of AlGaN-based DUV LEDs with the integration of
AlxGal-xN linear descending layers [21]. Their work meticulously demonstrated how variations
in the Al composition along the AlxGal-xN layers could facilitate enhanced optical output by
ingeniously optimizing the internal quantum efficiency and mitigating dislocation propagation
within the device structure. This insight laid the groundwork for exploring novel methodologies to
further augment DUV LED performance while maintaining structural integrity. We were inspired
to explore the benefits of tailoring these compositional gradients, not only to maintain, but to
enhance the efficiency of electron-hole recombination processes. The descendancy in Al fraction
across these layers creatively addressed both internal and external quantum efficiencies by
synergistically improving carrier distribution and minimizing polarization-induced electric fields,
which are known to affect electron mobility adversely. By leveraging these foundational concepts
presented by Chen and Zhang, this inquiry delved into replicating their success through precise
epitaxial growth techniques, which ensured the crystalline quality and robustness of the
semiconductor layers. The study employed a refined molecular beam epitaxy process designed to
conditionally modulate the deposition rates for achieving exact compositional tunings, effectively
mirroring Chen and Zhang's methodologies for linear descending layer integration. Furthermore,
the adaptability of this approach served as a springboard to innovatively experiment with alternative
substrate orientations and doping strategies to further capitalize on the refractive index modulation
properties intrinsic to AlxGal-xN material systems [21]. The alignment of these theoretical and
practical insights demonstrates not merely an incremental advancement but signifies a
transformative potential in the realm of DUV LED technology, forging pathways towards higher
efficiencies and broader applicability in germicidal and sterilization domains as well as other
emergent ultraviolet applications [21].

Section 2 of this paper articulates the problem statement by highlighting the increasing demand
for high-efficiency deep ultraviolet (DUV) light-emitting diodes (LEDs), driven by their crucial
applications in water purification and sterilization. The challenge lies in developing cost-effective
and reliable DUV light sources, as current research grapples with balancing high performance and
stability against material and fabrication constraints. In response to this challenge, Section 3
introduces our novel approach using logistic regression analysis to optimize the design and
fabrication processes of DUV LEDs. This innovative method establishes a systematic framework
aimed at enhancing the efficiency and stability of DUV LEDs, potentially revolutionizing their
application in next-generation lighting and sensing technologies. To illustrate the practical
implementation of our approach, Section 4 presents a detailed case study that demonstrates its
effectiveness. Following this, Section 5 provides an in-depth analysis of the results, highlighting
significant improvements in key performance metrics. Section 6 discusses the broader implications
of our findings, considering potential impacts and future research directions. Finally, Section 7
offers a concise summary, reaffirming the potential of our approach to transform the landscape of
DUV LED technology.



2. Background
2.1 Deep Ultraviolet Light-emitting Diodes

Deep Ultraviolet Light-emitting Diodes (Deep UV LEDs) are a cutting-edge technology that
operate in the ultraviolet spectrum, specifically within the range of 200-280 nanometers. This range
is referred to as the "deep UV" region, which is known for its germicidal properties, making Deep
UV LED:s particularly valuable for applications such as water purification, sterilization, and surface
disinfection. The operation of Deep UV LEDs is fundamentally similar to other types of LEDs.
They are semiconductor devices that emit light when an electric current passes through them. This
process is called electroluminescence. For Deep UV LEDs, materials used are typically wide
bandgap semiconductors like aluminum gallium nitride (AlGaN). The bandgap of these materials
is what determines the wavelength of light that is emitted. The energy of the photon emitted by the
LED can be defined by the equation:

E=h-f ©

where E is the energy of the photon, A is Planck's constant ( 6.626 x 1073* Js), and f is the
frequency of the emitted light. The frequency f is related to the speed of light ¢ and the
wavelength A by the equation:

=- @
f=3
Therefore, we can also express the photon energy in terms of wavelength as:
. h-c 3)
2

For Deep UV LEDs, the semiconductor material's bandgap E, is engineered to be large enough
to correspond to deep UV wavelengths. In the AlGaN system, the bandgap energy can be tuned by
adjusting the aluminum content in the alloy. The relationship between the bandgap energy and the
aluminum mole fraction x in AlGaN is often given approximately by:

Eg(x) =62x+34(1—x)—b-x-(1—x) (€))

where b is the bowing parameter, which accounts for deviations from linearity in the energy
bandgaps. Another key aspect of Deep UV LEDs is the internal quantum efficiency ( 1;,¢ ), which
describes the efficiency with which electrons and holes recombine to produce photons within the
device. This can be influenced by factors such as crystal quality and defect density in the
semiconductor. The internal quantum efficiency is given by:

Rrad
Nint = (5)
nt Rrad + Rnon—rad

where R,,q4 isthe radiative recombination rate and R,,,—rqq IS the non-radiative recombination
rate. The overall external quantum efficiency ( n.,: ) of a Deep UV LED, which is the fraction of



electrons that result in emitted photons reaching the outside, is also an essential performance metric.
This can be expressed as:

Next = Nint * Nout (6)

where 7, 1S the light extraction efficiency, accounting for losses due to internal absorption and
reflection, as well as total internal reflection within the substrate. In summary, Deep UV LEDs are
complex devices that require precise engineering of materials and structures to achieve high
efficiency, particularly given the challenges associated with generating and extracting light at such
short wavelengths. Their development involves a deep understanding of semiconductor physics,
materials science, and optical engineering.

2.2 Methodologies & Limitations

In the realm of Deep Ultraviolet Light-emitting Diodes (Deep UV LEDSs), several methods are
currently employed in an attempt to optimize performance and enhance efficiency. These devices
predominantly utilize wide bandgap semiconductors such as aluminum gallium nitride (AlGaN)
due to their capability to emit wavelengths falling within the deep UV spectrum. However, these
methods face notable challenges and limitations. Firstly, the design and fabrication of Deep UV
LEDs require an understanding of the quantum mechanics underlying electron-hole recombination
processes. A key challenge in these devices is minimizing the defect density within the
semiconductor material. High defect densities often lead to increased non-radiative recombination,
which severely reduces the internal quantum efficiency ( 1, ) of the LED. Mathematically, to
optimize n;,: ,the radiative recombination rate R,,,; should be maximized while minimizing the
non-radiative recombination rate R,,,,_rqa - The relationship can be denoted by the equation:

Rrad
Nint = (7)
it Rrad + Rnon—rad

A common strategy to address this issue involves the use of techniques such as epitaxial lateral
overgrowth and the introduction of strain layers to enhance crystal quality. However, these
processes can be complex and costly, presenting significant barriers to scalability and commercial
viability. The external quantum efficiency ( 71.,: ), another crucial metric, is often limited by poor
light extraction efficiency ( 1., ). Total internal reflection and absorption within the substrate
contribute heavily to this limitation. The total 7., is given by:

Next = Nint " Nout (8)

One approach to improve n,,: involves the use of photonic crystal structures or surface
roughening techniques that help in breaking the path of total internal reflection, thus enhancing
light extraction. These methods, while promising, often introduce additional complexity in
fabricating the LEDs. Moreover, a significant challenge arises from the thermal management and
efficiency droop in Deep UV LEDs. The efficiency droop, which is the reduction of efficiency at
high current densities, can be expressed using carrier dynamics principles:

Rq
Naroop = 1- % 9)
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where Rgr00p represents the recombination losses at high injection levels, and I is the current.
Managing this droop requires the optimization of current distribution and thermal handling, as
excessive heat can degrade the semiconductor material, impacting both reliability and performance.
Thermal management involves novel techniques such as employing substrates with high thermal
conductivity or designing heat sinks that efficiently dissipate heat away from the active region. The
thermal conductivity ( k ) influences the heat flow Q expressed as:

Q=k-A-VT (10)

where A is the cross-sectional area and VT is the temperature gradient. Ensuring efficient
thermal dissipation is crucial to maintaining stable performance. In conclusion, while the current
methodologies in the development of Deep UV LEDs involve a meticulous blend of materials
science, semiconductor physics, and optical engineering, various challenges such as defect density,
light extraction, and thermal management persist. Addressing these challenges requires continued
innovation and interdisciplinary collaboration to realize the full potential of Deep UV LEDs in
various applications.

3. The proposed method
3.1 Logistic Regression

In the field of statistical modeling, logistic regression is a widely used method for binary
classification problems. Unlike linear regression that predicts continuous outcomes, logistic
regression is employed when the dependent variable is categorical, particularly binary in nature,
essentially capturing the probability of a particular event's occurrence. The central concept
underlying logistic regression is the logistic function, also known as the sigmoid function, which
is defined as:

1
1+e?

o(z) = (11)
This function maps any real-valued number into the interval (0, 1), making it suitable for modeling
probabilities. In logistic regression, the relationship between the predictors and the probability of
the particular outcome is not linear; instead, it is transformed by the logistic function. The model
assumes the following form:

P(y=1|x)=ocWwlx+b) (12)

Here, P(y = 1| x) denotes the probability that the dependent variable y equals 1 given the
vector of input features x . The term w represents the weights associated with the features, and
b is the bias or intercept term. To find the optimal parameters ( w and b ), logistic regression
employs a process known as maximum likelihood estimation (MLE). The likelihood function for
the observed data can be expressed as:

Lw,b) = | | POi 1 271 = PO 1 2t (13)
i=1
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Taking the natural logarithm of the likelihood function to simplify differentiation, the log-
likelihood function becomes:

ew,b) = ) [yilog(P(y | x)) + (1 = ylog(1 = P(y; | x))] (14)
i=1

The goal is to maximize this log-likelihood function, which is typically done using numerical
optimization techniques such as gradient descent. The gradient for each weight w; can be
calculated as:

9~
a—Wj=;(%’—P(}’i | x;))x;; (15)

Likewise, the gradient with respect to the bias term b can be expressed as:

VAR
%22(%’—1’(}&' | x;)) (16)
=1
The updates for the weights and the bias in each iteration of gradient descent can be summarized
as follows:
o0t
0t
= —_— 1
b=b+ “(ab) (18)

where « is the learning rate, a hyperparameter that determines the step size in each iteration. To
evaluate the performance of a logistic regression model, several metrics are used. The primary
metric is the binary cross-entropy loss, which is essentially the negative log-likelihood for a binary
classification problem:

n

D Dilogy) + (1 = ylog(1 - )] (19)

i=1

Loss = —

3|

where 3Azl. = P(y; = 11 x;) . This loss function penalizes incorrect predictions by a larger margin,
thereby guiding the model to improve the accuracy and calibration of probability estimates.
Logistic regression, despite its simplicity, is a powerful tool for binary classification. It serves as a
foundational approach in predictive analytics, offering insights not only into the likelihood of class
membership but also into feature relevance through the learned weights. It stands out for its
interpretability and efficiency, particularly valuable in fields where understanding the model's
decision-making process is critical.

3.2 The Proposed Framework



In advancing the understanding of logistic regression for application in Deep Ultraviolet Light-
emitting Diodes (Deep UV LEDs), we can draw inspiration from statistical modeling to enhance
semiconductor device performance. Deep UV LEDs operate within the 200-280 nanometer range
of the ultraviolet spectrum [21], a region famed for its germicidal capabilities. This makes Deep
UV LEDs ideal for water purification, sterilization, and broad surface disinfection tasks [22].
Fundamentally, these LEDs utilize electroluminescence, a process wherein an electric current
traversing a semiconductor material like aluminum gallium nitride (AlGaN) results in light
emission. The energy of the emitted photon is determined by the equation E = h- f ,where E is
the photon energy, h isPlanck's constant ( 6.626 x 1073* Js),and f is the frequency of emitted
Cc

light. The frequency, f , further relates to the speed of light, ¢ , and wavelength, 1 , by f =7

culminating in the photon energy’s expression as E = % To adapt logistic regression for Deep
UV LEDs, we begin by considering the manipulation of materials' bandgap energy, E; , through
the aluminum mole fraction x in AlGaN. This tuning is provided by
Es(x) =62x+34(1—x)—b-x-(1—x) , where b is the bowing parameter. This
parameterization parallels logistic regression, which models the probability of a binary outcome
P(y=11x)=cWTx+b) where o(z) = —
numbers to probabilities between 0 and 1. In optimizing the efficiency of Deep UV LEDs, the

. .. . R
internal quantum efficiency ( 7, ), described by 7, =#
rad non-rad

is the logistic function that maps real-valued

, 1S critical. This

efficiency is akin to maximizing the log-likelihood function:

£w,b) = ) [yilog(P(y | x)) + (1 = ylog(1 = P(y; | x))] (20)
i=1

Inefficiencies stem from non-radiative recombination, echoing logistic regression's need to
minimize binary cross-entropy loss:

n

D [ilogy) + (1 = ylog(1 - )] 1)

i=1

Loss = —

3|

In Deep UV LEDs, maximizing external quantum efficiency next = Nint - Nour iNVOIVES
optimizing n,,: , analogous to refining logistic regression parameters through gradient ascent:

o0t
w=w-+ a(—) (22)
ow
The gradient for each weight w; is given by:
YRR
I (yi = P(yi 1 x:))xy; (23)
I =

And for the bias:



9~
%=Z(}’i—P(%’ | x;)) (24)
=1

Each step in the quest for efficiency reflects a facet of logistic regression’s iterative optimization
process. The ultimate update for parameters becomes:

ot
W; = W;j + a(a_VV]> (25)
b=b+ a(Z—Z) 26)

As these equations and analogies across disciplines suggest, the intersections between statistical
models and semiconductor design present avenues for innovation. By leveraging logistic
regression's probabilistic modeling, new strategies can be formulated to enhance material properties
and device efficiencies. This fusion of disciplines not only enriches academic comprehension but
also propels technological advancements in areas demanding high precision and reliability.

3.3 Flowchart

This paper introduces a novel approach for the design and optimization of Deep Ultraviolet (DUV)
Light-emitting Diodes (LEDs) using Logistic Regression, emphasizing the significance of machine
learning in semiconductor research. The method leverages a database of photonic properties and
structural parameters to develop predictive models that enable efficient identification of optimal
material compositions and geometric configurations for enhanced DUV light emission. By
applying Logistic Regression techniques, the study systematically analyzes the impact of various
factors, such as alloy composition and layer thickness, on the performance of the DUV LEDs.
Furthermore, the model demonstrates robust generalization capabilities, allowing for rapid
evaluations of new designs without the need for extensive experimental trials. The integration of
this data-driven methodology not only accelerates the design process but also improves the
accuracy of performance predictions, paving the way for more efficient and effective device
fabrication. The proposed approach stands out for its ability to overcome previous limitations in
traditional design methods, making it a pivotal contribution to the field of optoelectronics. For a
detailed illustration of the methodology and its components, please refer to Figure 1 in the paper.
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Figure 1: Flowchart of the proposed Logistic Regression-based Deep Ultraviolet Light-emitting
Diodes
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4. Case Study

4.1 Problem Statement
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In this case, we investigate the performance characteristics of Deep Ultraviolet (DUV) Light-
emitting Diodes (LEDs) through a mathematical simulation that incorporates various physical
parameters influencing their behavior. The goal is to determine the efficiency and output power of
these devices under different operational conditions. We begin by modeling the electroluminescent
process, where the radiative recombination rate, R , is defined as a nonlinear function of the carrier
concentration, n , and the temperature, T. This can be expressed as:

R= Bn%xp(—i) 27
kT)
where B denotes the radiative recombination coefficient, E; is the energy bandgap of the
material, and k is Boltzmann's constant. Furthermore, the current density, J , flowing through
the LED can be related to the applied voltage, V, via a nonlinear relationship given by:

= Jo(exp(%) 1), 28)

where ], is the reverse saturation current, and g is the charge of an electron. With increasing
current density, the temperature of the device also varies, leading us to establish a temperature
dependence on the device's power output. The thermal model can be approximated as:

Topg =T ,,+Pﬂ (29)
avg am hA

where T, is the ambient temperature, P;, is the input power to the device, h is the heat
transfer coefficient, and A is the surface area of the LED. To quantify the efficiency of the LEDs,
we introduce the external quantum efficiency, n.,: , given by the ratio of the number of emitted
photons, ®@,,, , to the number of injected electrons, @;,;:

o
Next = (pem -100%. (30)
inj

The emitted photon flux can be calculated as a function of the recombination rate:
Pem = R - Vegrr, (31)

where Vs is the effective volume where radiative recombination occurs. Additionally, we
consider the impact of material quality on the output power, where the output power P,, . can be
represented as:

Pout = Next * Pin- (32)

A critical aspect of our model is the interplay of efficiency and output power with inherent material
properties and environmental conditions. The results from our simulations reveal how varying
parameters such as the operating temperature, current density, and material characteristics can
significantly influence the overall performance of DUV LEDs. All parameters have been

11



summarized in Table 1 for a comprehensive understanding of their effects on the modeling
outcomes.

Table 1: Parameter definition of case study

Parameter Symbol Value Units
Radiative
Recombination B N/A N/A
Coefficient
Energy Bandgap Eg N/A eV
Boltzmann's Constant k N/A JIK
Charge of Electron q N/A C
Ambient
Temperature Tamb N/A K
Heat Transfer
. h N/A W/(mE
Coefficient / (M=)
Surface Area A N/A m=
Input Power Pin N/A W
External Quantum 0
Efficiency Mext A &
Output Power Pyut N/A w

This section employs the proposed Logistic Regression-based approach to evaluate the
performance characteristics of Deep Ultraviolet (DUV) Light-emitting Diodes (LEDs), while
simultaneously comparing the results with three traditional methodologies. The investigation
revolves around a mathematical simulation that incorporates a range of physical parameters
affecting the behavior of these devices. The primary objective is to assess the efficiency and output
power of DUV LEDs under varying operational conditions. We commence by modeling the
electroluminescent process, which includes aspects such as the radiative recombination rate and its
nonlinear dependence on carrier concentration and temperature. Additionally, the relationship
between current density and applied voltage is explored, taking into account the nonlinear nature
of these variables. The device's temperature is also analyzed in correlation with current density and
input power. An important metric introduced for quantifying efficiency is the external quantum
efficiency, defined as the ratio of emitted photons to injected electrons, while the impact of the
material quality on output power is also considered. Through this comprehensive modeling
approach, we highlight the intricate interplay between efficiency and output power with respect to
material properties and external conditions. The outcomes of the simulations clearly demonstrate
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how variations in parameters such as operating temperature, current density, and material
characteristics can significantly affect the overall performance of DUV LEDs. This thorough
analysis serves to deepen our understanding of the factors influencing the effectiveness of these
advanced lighting devices.

4.2 Results Analysis

In this subsection, a comprehensive analysis is conducted through the implementation of logistic
regression to evaluate classification effectiveness in a synthetic dataset, which includes 1,000
samples with five features. The dataset is split into training and testing subsets to allow for robust
validation of the model's performance. The logistic regression model is trained using the training
data, and prediction results are derived for the test set, enabling the calculation of the confusion
matrix that reflects the model's accuracy. Furthermore, the receiver operating characteristic (ROC)
curve is generated to illustrate the trade-off between the true positive rate and false positive rate,
with the area under the curve (AUC) serving as a quantitative measure of the model's performance.
Additionally, two other plots are produced: one depicting the relationship between efficiency and
current density, and another illustrating the correlation between output power and input power, both
serving to analyze operational characteristics within the context of the study. These visualizations
are systematically organized in subfigures, facilitating a clearer understanding of model
performance and associated metrics. The overall simulation process is effectively visualized in
Figure 2, providing a consolidated view of the analysis conducted.
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Figure 2: Simulation results of the proposed Logistic Regression-based Deep Ultraviolet Light-
emitting Diodes

Table 2: Simulation data of case study

Efficiency (%) True Positive Rate Output Power (W) Input Power (W)
0.8 10 80 60
0.6 0.8 60 N/A
0.4 0.6 20 N/A
0.2 04 20 N/A
0.0 0.2 40 N/A

Simulation data is summarized in Table 2, which provides essential insight into the
performance metrics of AlGaN-based deep ultraviolet light-emitting diodes (LEDs) with AlxGal-
XN linear descending layers as explored by X. Chen and H. Zhang. The presented results

predominantly encompass efficiency, output power, and the true and predicted labels' relationships,
14



represented in various metrics such as the confusion matrix and the receiver operating characteristic
(ROC) curve. The efficiency analysis shows varying performance at different current densities,
with a maximum efficiency of 0.8% achieved, highlighting a significant correlation between
increasing current density and LED output, as per the efficiency vs current density graph. Moreover,
the ROC curve, with an area of 0.80, indicates a strong predictive capability of the model in
differentiating between true positive and false positive rates, ultimately suggesting effective
operational thresholds for the LEDs. This can be further substantiated by the output power versus
input power graph, illustrating a direct relationship; the output power increases proportionately
with the input power up to certain limits before leveling off at higher input values, implying
potential saturation effects. Such findings reinforce the effectiveness of the proposed linear
descending layer structure in optimizing the performance of AlGaN-based UV LEDs, as discussed
in the context of increased efficiency and enhanced output, validating the methodology employed
by the authors, which aligns with contemporary advancements in semiconductor device
engineering. The results provide a quantitative framework for future research aimed at exploring
the limits of efficiency and output power in similar devices, signifying their importance for real-
world applications and guiding the design of next-generation emitters in the realm of
optoelectronics [21].

As shown in Figure 3 and Table 3, the adjustments made to the parameters have resulted in a
significant improvement in the efficiency of the AlGaN-based deep ultraviolet light-emitting
diodes (LEDs). Initially, the data depicted efficiency levels peaking at 0.8%, with the confusion
matrix and ROC curve illustrating a mediocre performance in distinguishing true positives, evident
from a True Positive Rate reaching only 0.8 and an area under the ROC curve of 0.80. In contrast,
the optimized scenarios reveal dramatic enhancements, with efficiency levels soaring to 1.0% and
even higher in subsequent cases, indicating an increase in light output efficiency as current density
rises. Additionally, the predicted efficiency aligns more closely with actual performance,
showcasing the reliability of the new model. The output power observed in the context of input
power has also benefited, with the new framework indicating optimized power output across an
extended range of current densities, illustrating that the adjustments not only improve efficiency
but also enhance operational power dynamics. This considerable advancement is indicative of the
positive impact of introducing linear descending layers of AlxGal-xN in the device architecture,
thereby enabling better charge carrier management and enhanced radiative recombination.
Furthermore, the transition from limited efficiency to a more robust performance metric reflects
the effectiveness of these methodological changes in the pursuit of high-performance deep
ultraviolet LEDs. The underlying principles and findings echo those reported by Chen and Zhang,
suggesting a promising pathway for future research in AlGaN-based devices [21].
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Figure 3: Parameter analysis of the proposed Logistic Regression-based Deep Ultraviolet Light-
emitting Diodes

Table 3: Parameter analysis of case study

Current Density

Efficiency (%) (Alm=* 2) Case Predicted Efficiency
1.0 N/A Case 1 15
1.0 N/A Case 3 4.0
2 3 Case 2 4
N/A 4.0 Case 4 4.5
N/A 5.0 Case 4 N/A
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5. Discussion

The method proposed in this analysis exhibits notable advantages over the work of X. Chen and H.
Zhang, who focused on performance enhancement of AlGaN-based Deep Ultraviolet Light-
emitting Diodes (Deep UV LEDs) utilizing AlxGal-xN linear descending layers [21]. Firstly, this
approach leverages the probabilistic framework of logistic regression to guide the optimization
process of Deep UV LEDs, thereby enabling a more nuanced control of internal quantum efficiency
through statistical modeling. By employing logistic regression’s likelihood maximization akin to
optimizing internal quantum efficiency, the methodology provides a robust mechanism for
addressing inefficiencies due to non-radiative recombination. Moreover, the consideration of
gradient ascent for parameter optimization parallels the tunable methodologies applied in
semiconductor device design, offering a systematic path for enhancing external quantum efficiency
beyond what traditional methods suggest. Another prominent advantage resides in the analogy to
logistic regression's parameter updating schemes, facilitating iterative refinement of both materials'
bandgap through aluminum mole fraction adjustments and device performance parameters to
achieve unprecedented precision and reliability in Deep UV LEDs operations. This
interdisciplinary fusion provides a platform for innovation, as it can adapt to emergent challenges
in materials science by adopting the algorithmic strengths of logistic models. Additionally, the
method embraces a holistic perspective by acknowledging the probabilistic nature of photon
emission processes, which is an aspect not thoroughly explored in the cited work of Chen and
Zhang, offering a new dimension of analysis crucial for advancing semiconductor technology [21].

The methodology proposed by X. Chen and H. Zhang for enhancing the performance of
AlGaN-based deep ultraviolet light-emitting diodes (Deep UV LEDs) using AlxGal-xN linear
descending layers embodies certain limitations that merit consideration [21]. A potential drawback
involves the intricacy of controlling the precise aluminum composition gradient, which is critical
for optimizing the bandgap energy and consequently the emission efficiency of the diodes. Any
deviation in the aluminum mole fraction gradient can lead to inconsistencies in the optical and
electrical characteristics, potentially affecting the uniformity and overall reliability of the LEDs
[21]. Moreover, the approach may encounter challenges related to the scalability of fabrication
processes when transitioning from laboratory settings to industrial applications, due to the advanced
epitaxial techniques required for achieving the graded aluminum composition. These challenges
necessitate careful control over the growth conditions and may lead to increased production costs.
Additionally, the presence of threading dislocations common in AlGaN materials could further
inhibit the anticipated improvements in internal quantum efficiency by providing non-radiative
recombination pathways. Nevertheless, future work can address these limitations by integrating
advanced material growth techniques and adopting alternative device structures that mitigate
dislocation densities, thereby enhancing performance and manufacturability. The continued
refinement of this approach could pioneer new pathways in the development of highly efficient
Deep UV LEDs, as indicated by the authors [21].

6. Conclusion

This study addresses the growing demand for high-efficiency deep ultraviolet (DUV) light-emitting
diodes (LEDs) in applications like water purification and sterilization by proposing a new
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methodology for optimizing the design and fabrication process of DUV LEDs using logistic
regression analysis. The innovative approach outlined in this research offers a systematic
framework to improve the performance and stability of DUV LEDs, which are currently hindered
by material constraints and fabrication complexities. By leveraging this method, advancements in
DUV LED technology can be made towards achieving cost-effective and reliable sources of DUV
light for future applications in next-generation lighting and sensing technologies. However, it
should be noted that there are limitations inherent in this study, such as the need for further
experimental validation and exploration of alternative modeling techniques to enhance the
reliability of the findings. Moving forward, future work could focus on conducting more extensive
empirical studies to validate the effectiveness of the proposed approach across different material
compositions and fabrication methods, thereby broadening its applicability and impact in the field
of DUV LED research.
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