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Abstract: As the demand for high-efficiency deep ultraviolet (DUV) light-emitting 

diodes (LEDs) continues to rise in various applications such as water purification and 

sterilization, there is a pressing need for developing cost-effective and reliable sources of 

DUV light. However, the current state of DUV LED research presents challenges with 

achieving both high performance and stability due to material limitations and fabrication 

complexities. In this paper, we propose a novel approach using logistic regression 

analysis to optimize the design and fabrication process of DUV LEDs. Our innovative 

method provides a systematic framework for enhancing the efficiency and stability of 

DUV LEDs, paving the way for practical applications in next-generation lighting and 

sensing technologies. 
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1. Introduction 

The field of Deep Ultraviolet Light-emitting Diodes (DUV-LEDs) focuses on the development and 

optimization of semiconductor devices that emit light in the deep ultraviolet spectrum. These LEDs 

have applications in areas such as sterilization, medical treatment, water purification, and UV 

curing. However, the advancement of DUV-LED technology is currently faced with several 

challenges and bottlenecks. These include issues with material quality, efficiency, and reliability, 
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as well as the development of suitable substrates and packaging techniques. Additionally, the high 

cost of production and limited availability of high-quality materials further impede progress in this 

field. Overcoming these obstacles will require continued research and innovation in materials 

science, device design, and manufacturing processes to unlock the full potential of DUV-LEDs for 

various industrial and commercial applications. 

To this end, significant progress has been made in the research and development of Deep 

Ultraviolet Light-emitting Diodes (DUV-LEDs). Current studies have advanced to the point where 

efficient DUV-LEDs with high optical power output and stability are being successfully produced 

and tested for various applications. A recent literature review on AlGaN-based deep ultraviolet 

light-emitting diodes (DUV-LEDs) highlights several key advancements in the field [1]. Hu et al. 

introduced deep ultraviolet LEDs in 2006 [2], followed by a study in 2010 by Shur and Gaska on 

deep-ultraviolet LEDs using AlGaN [3]. Khan's work in 2006 also contributed to the understanding 

of these LEDs [4]. Liu et al. (2024) demonstrated a comprehensive approach utilizing bandgap 

engineering and device craft to improve the performance of AlGaN-based DUV LEDs [5]. 

Furthermore, Zhou et al. (2023) developed high-power AlGaN-based ultrathin tunneling junction 

DUV LEDs, showcasing efficient sterilization applications [6]. Huang et al. (2024) presented a 

review on recent research advances and challenges in developing efficient AlGaN-based DUV 

LEDs [7]. Zhang et al. (2024) proposed a novel polarized ultrathin tunneling junction design for 

improved DUV LED performance [8]. Significant enhancement of n-contact performance in 

AlGaN-based DUV LEDs was achieved using atomic layer etching as demonstrated by Liu et al. 

(2024) [9]. Wei and Inoue (2024) explored the use of Fresnel zone plates for highly collimated light 

emission in DUV LEDs [10]. Ji et al. (2024) implemented a composite p-contact structure with an 

ultra-thin p-AlGaN insert layer to reduce operating voltage and enhance wall-plug efficiency in 

AlGaN-based DUV LEDs [11]. A recent literature review on AlGaN-based deep ultraviolet light-

emitting diodes (DUV-LEDs) has shown significant advancements in the field, including bandgap 

engineering, device craft, and novel designs to improve performance. Logistic Regression is crucial 

in this context for its ability to model binary outcomes and predict the probability of success in 

optimizing AlGaN-based DUV LEDs, making it a valuable tool for research and development in 

this area. 

 

Specifically, logistic regression can be used to analyze the performance factors of Deep 

Ultraviolet Light-emitting Diodes (DUV LEDs) by modeling the probability of successful light 

emission as a function of various parameters, such as material composition and design variables, 

thus providing insights into optimizing these advanced semiconductor devices. This literature 

review discusses various aspects of logistic regression modeling across different disciplines. The 

application of logistic regression in health science and other fields is highlighted. Boosting, a vital 

development in classification methodology, is shown to achieve performance improvements based 

on statistical principles such as additive modeling and maximum likelihood. Additionally, rare 

events data analysis using logistic regression is explored, addressing challenges in estimation and 

data collection efficiency. Various authors have contributed to the literature, including Hosmer, 

Lemeshow, and Sturdivant, Friedman, Menard, Harrell Jr., King et al, Conklin, Rao, Peduzzi et al. 

However, limitations remain in the generalizability of findings across disciplines, the handling of 
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multicollinearity in predictors, and the effective incorporation of high-dimensional data within 

logistic regression frameworks. 

In the pursuit of advancing the efficacy of deep ultraviolet (DUV) light-emitting diodes (LEDs), 

this study drew significant inspiration from the pivotal research conducted by X. Chen and H. 

Zhang, which illuminated the potential of AlGaN-based DUV LEDs with the integration of 

AlxGa1-xN linear descending layers [21]. Their work meticulously demonstrated how variations 

in the Al composition along the AlxGa1-xN layers could facilitate enhanced optical output by 

ingeniously optimizing the internal quantum efficiency and mitigating dislocation propagation 

within the device structure. This insight laid the groundwork for exploring novel methodologies to 

further augment DUV LED performance while maintaining structural integrity. We were inspired 

to explore the benefits of tailoring these compositional gradients, not only to maintain, but to 

enhance the efficiency of electron-hole recombination processes. The descendancy in Al fraction 

across these layers creatively addressed both internal and external quantum efficiencies by 

synergistically improving carrier distribution and minimizing polarization-induced electric fields, 

which are known to affect electron mobility adversely. By leveraging these foundational concepts 

presented by Chen and Zhang, this inquiry delved into replicating their success through precise 

epitaxial growth techniques, which ensured the crystalline quality and robustness of the 

semiconductor layers. The study employed a refined molecular beam epitaxy process designed to 

conditionally modulate the deposition rates for achieving exact compositional tunings, effectively 

mirroring Chen and Zhang's methodologies for linear descending layer integration. Furthermore, 

the adaptability of this approach served as a springboard to innovatively experiment with alternative 

substrate orientations and doping strategies to further capitalize on the refractive index modulation 

properties intrinsic to AlxGa1-xN material systems [21]. The alignment of these theoretical and 

practical insights demonstrates not merely an incremental advancement but signifies a 

transformative potential in the realm of DUV LED technology, forging pathways towards higher 

efficiencies and broader applicability in germicidal and sterilization domains as well as other 

emergent ultraviolet applications [21]. 

Section 2 of this paper articulates the problem statement by highlighting the increasing demand 

for high-efficiency deep ultraviolet (DUV) light-emitting diodes (LEDs), driven by their crucial 

applications in water purification and sterilization. The challenge lies in developing cost-effective 

and reliable DUV light sources, as current research grapples with balancing high performance and 

stability against material and fabrication constraints. In response to this challenge, Section 3 

introduces our novel approach using logistic regression analysis to optimize the design and 

fabrication processes of DUV LEDs. This innovative method establishes a systematic framework 

aimed at enhancing the efficiency and stability of DUV LEDs, potentially revolutionizing their 

application in next-generation lighting and sensing technologies. To illustrate the practical 

implementation of our approach, Section 4 presents a detailed case study that demonstrates its 

effectiveness. Following this, Section 5 provides an in-depth analysis of the results, highlighting 

significant improvements in key performance metrics. Section 6 discusses the broader implications 

of our findings, considering potential impacts and future research directions. Finally, Section 7 

offers a concise summary, reaffirming the potential of our approach to transform the landscape of 

DUV LED technology. 
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2. Background 

2.1 Deep Ultraviolet Light-emitting Diodes 

Deep Ultraviolet Light-emitting Diodes (Deep UV LEDs) are a cutting-edge technology that 

operate in the ultraviolet spectrum, specifically within the range of 200-280 nanometers. This range 

is referred to as the "deep UV" region, which is known for its germicidal properties, making Deep 

UV LEDs particularly valuable for applications such as water purification, sterilization, and surface 

disinfection. The operation of Deep UV LEDs is fundamentally similar to other types of LEDs. 

They are semiconductor devices that emit light when an electric current passes through them. This 

process is called electroluminescence. For Deep UV LEDs, materials used are typically wide 

bandgap semiconductors like aluminum gallium nitride (AlGaN). The bandgap of these materials 

is what determines the wavelength of light that is emitted. The energy of the photon emitted by the 

LED can be defined by the equation: 

𝐸 = ℎ · 𝑓 (1) 

where 𝐸 is the energy of the photon, ℎ is Planck's constant ( 6.626 × 10−34 Js), and 𝑓 is the 

frequency of the emitted light. The frequency 𝑓  is related to the speed of light 𝑐  and the 

wavelength 𝜆 by the equation: 

𝑓 =
𝑐

𝜆
(2) 

Therefore, we can also express the photon energy in terms of wavelength as: 

𝐸 =
ℎ · 𝑐

𝜆
(3) 

For Deep UV LEDs, the semiconductor material's bandgap 𝐸𝑔 is engineered to be large enough 

to correspond to deep UV wavelengths. In the AlGaN system, the bandgap energy can be tuned by 

adjusting the aluminum content in the alloy. The relationship between the bandgap energy and the 

aluminum mole fraction 𝑥 in AlGaN is often given approximately by: 

𝐸𝑔(𝑥) = 6.2𝑥 + 3.4(1 − 𝑥) − 𝑏 · 𝑥 · (1 − 𝑥) (4) 

where 𝑏 is the bowing parameter, which accounts for deviations from linearity in the energy 

bandgaps. Another key aspect of Deep UV LEDs is the internal quantum efficiency ( 𝜂𝑖𝑛𝑡 ), which 

describes the efficiency with which electrons and holes recombine to produce photons within the 

device. This can be influenced by factors such as crystal quality and defect density in the 

semiconductor. The internal quantum efficiency is given by: 

𝜂𝑖𝑛𝑡 =
𝑅𝑟𝑎𝑑

𝑅𝑟𝑎𝑑 + 𝑅𝑛𝑜𝑛−𝑟𝑎𝑑
(5) 

where 𝑅𝑟𝑎𝑑 is the radiative recombination rate and 𝑅𝑛𝑜𝑛−𝑟𝑎𝑑 is the non-radiative recombination 

rate. The overall external quantum efficiency ( 𝜂𝑒𝑥𝑡 ) of a Deep UV LED, which is the fraction of 
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electrons that result in emitted photons reaching the outside, is also an essential performance metric. 

This can be expressed as: 

𝜂𝑒𝑥𝑡 = 𝜂𝑖𝑛𝑡 · 𝜂𝑜𝑢𝑡 (6) 

where 𝜂𝑜𝑢𝑡 is the light extraction efficiency, accounting for losses due to internal absorption and 

reflection, as well as total internal reflection within the substrate. In summary, Deep UV LEDs are 

complex devices that require precise engineering of materials and structures to achieve high 

efficiency, particularly given the challenges associated with generating and extracting light at such 

short wavelengths. Their development involves a deep understanding of semiconductor physics, 

materials science, and optical engineering. 

2.2 Methodologies & Limitations 

In the realm of Deep Ultraviolet Light-emitting Diodes (Deep UV LEDs), several methods are 

currently employed in an attempt to optimize performance and enhance efficiency. These devices 

predominantly utilize wide bandgap semiconductors such as aluminum gallium nitride (AlGaN) 

due to their capability to emit wavelengths falling within the deep UV spectrum. However, these 

methods face notable challenges and limitations. Firstly, the design and fabrication of Deep UV 

LEDs require an understanding of the quantum mechanics underlying electron-hole recombination 

processes. A key challenge in these devices is minimizing the defect density within the 

semiconductor material. High defect densities often lead to increased non-radiative recombination, 

which severely reduces the internal quantum efficiency ( 𝜂𝑖𝑛𝑡 ) of the LED. Mathematically, to 

optimize 𝜂𝑖𝑛𝑡 , the radiative recombination rate 𝑅𝑟𝑎𝑑 should be maximized while minimizing the 

non-radiative recombination rate 𝑅𝑛𝑜𝑛−𝑟𝑎𝑑 . The relationship can be denoted by the equation: 

𝜂𝑖𝑛𝑡 =
𝑅𝑟𝑎𝑑

𝑅𝑟𝑎𝑑 + 𝑅𝑛𝑜𝑛−𝑟𝑎𝑑
(7) 

A common strategy to address this issue involves the use of techniques such as epitaxial lateral 

overgrowth and the introduction of strain layers to enhance crystal quality. However, these 

processes can be complex and costly, presenting significant barriers to scalability and commercial 

viability. The external quantum efficiency ( 𝜂𝑒𝑥𝑡 ), another crucial metric, is often limited by poor 

light extraction efficiency ( 𝜂𝑜𝑢𝑡 ). Total internal reflection and absorption within the substrate 

contribute heavily to this limitation. The total 𝜂𝑒𝑥𝑡 is given by: 

𝜂𝑒𝑥𝑡 = 𝜂𝑖𝑛𝑡 · 𝜂𝑜𝑢𝑡 (8) 

One approach to improve 𝜂𝑜𝑢𝑡  involves the use of photonic crystal structures or surface 

roughening techniques that help in breaking the path of total internal reflection, thus enhancing 

light extraction. These methods, while promising, often introduce additional complexity in 

fabricating the LEDs. Moreover, a significant challenge arises from the thermal management and 

efficiency droop in Deep UV LEDs. The efficiency droop, which is the reduction of efficiency at 

high current densities, can be expressed using carrier dynamics principles: 

𝜂𝑑𝑟𝑜𝑜𝑝 = 1 −
𝑅𝑑𝑟𝑜𝑜𝑝

𝐼
(9) 
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where 𝑅𝑑𝑟𝑜𝑜𝑝 represents the recombination losses at high injection levels, and 𝐼 is the current. 

Managing this droop requires the optimization of current distribution and thermal handling, as 

excessive heat can degrade the semiconductor material, impacting both reliability and performance. 

Thermal management involves novel techniques such as employing substrates with high thermal 

conductivity or designing heat sinks that efficiently dissipate heat away from the active region. The 

thermal conductivity ( 𝑘 ) influences the heat flow 𝑄 expressed as: 

𝑄 = 𝑘 · 𝐴 · ∇𝑇 (10) 

where 𝐴  is the cross-sectional area and ∇𝑇  is the temperature gradient. Ensuring efficient 

thermal dissipation is crucial to maintaining stable performance. In conclusion, while the current 

methodologies in the development of Deep UV LEDs involve a meticulous blend of materials 

science, semiconductor physics, and optical engineering, various challenges such as defect density, 

light extraction, and thermal management persist. Addressing these challenges requires continued 

innovation and interdisciplinary collaboration to realize the full potential of Deep UV LEDs in 

various applications. 

3. The proposed method 

3.1 Logistic Regression 

In the field of statistical modeling, logistic regression is a widely used method for binary 

classification problems. Unlike linear regression that predicts continuous outcomes, logistic 

regression is employed when the dependent variable is categorical, particularly binary in nature, 

essentially capturing the probability of a particular event's occurrence. The central concept 

underlying logistic regression is the logistic function, also known as the sigmoid function, which 

is defined as: 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
(11) 

This function maps any real-valued number into the interval (0, 1), making it suitable for modeling 

probabilities. In logistic regression, the relationship between the predictors and the probability of 

the particular outcome is not linear; instead, it is transformed by the logistic function. The model 

assumes the following form: 

𝑃( 𝑦 = 1 ∣∣ 𝒙 ) = 𝜎(𝒘𝑇𝒙 + 𝑏) (12) 

Here, 𝑃(𝑦 = 1 ∣ 𝒙) denotes the probability that the dependent variable 𝑦 equals 1 given the 

vector of input features 𝒙 . The term 𝒘 represents the weights associated with the features, and 

𝑏 is the bias or intercept term. To find the optimal parameters ( 𝒘 and 𝑏 ), logistic regression 

employs a process known as maximum likelihood estimation (MLE). The likelihood function for 

the observed data can be expressed as: 

𝐿(𝒘, 𝑏) =∏𝑃(𝑦𝑖 ∣ 𝒙𝑖)
𝑦𝑖(1 − 𝑃(𝑦𝑖 ∣ 𝒙𝑖))

1−𝑦𝑖

𝑛

𝑖=1

(13) 
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Taking the natural logarithm of the likelihood function to simplify differentiation, the log-

likelihood function becomes: 

ℓ(𝒘, 𝑏) =∑[𝑦𝑖log(𝑃( 𝑦𝑖 ∣∣ 𝒙𝑖 )) + (1 − 𝑦𝑖)log(1 − 𝑃( 𝑦𝑖 ∣∣ 𝒙𝑖 ))]

𝑛

𝑖=1

(14) 

The goal is to maximize this log-likelihood function, which is typically done using numerical 

optimization techniques such as gradient descent. The gradient for each weight 𝑤𝑗  can be 

calculated as: 

∂ℓ

∂𝑤𝑗
=∑(𝑦𝑖 − 𝑃(𝑦𝑖 ∣∣ 𝒙𝑖 ))𝑥𝑖𝑗

𝑛

𝑖=1

(15) 

Likewise, the gradient with respect to the bias term 𝑏 can be expressed as: 

∂ℓ

∂𝑏
=∑(𝑦𝑖 − 𝑃(𝑦𝑖 ∣∣ 𝒙𝑖 ))

𝑛

𝑖=1

(16) 

The updates for the weights and the bias in each iteration of gradient descent can be summarized 

as follows: 

𝑤𝑗 = 𝑤𝑗 + 𝛼(
∂ℓ

∂𝑤𝑗
) (17) 

𝑏 = 𝑏 + 𝛼(
∂ℓ

∂𝑏
) (18) 

where 𝛼 is the learning rate, a hyperparameter that determines the step size in each iteration. To 

evaluate the performance of a logistic regression model, several metrics are used. The primary 

metric is the binary cross-entropy loss, which is essentially the negative log-likelihood for a binary 

classification problem: 

Loss = −
1

𝑛
∑[𝑦𝑖log(𝑦𝑖) + (1 − 𝑦𝑖)log(1 − 𝑦𝑖)]

𝑛

𝑖=1

(19) 

where 𝑦
^

𝑖 = 𝑃(𝑦𝑖 = 1 ∣ 𝒙𝑖) . This loss function penalizes incorrect predictions by a larger margin, 

thereby guiding the model to improve the accuracy and calibration of probability estimates. 

Logistic regression, despite its simplicity, is a powerful tool for binary classification. It serves as a 

foundational approach in predictive analytics, offering insights not only into the likelihood of class 

membership but also into feature relevance through the learned weights. It stands out for its 

interpretability and efficiency, particularly valuable in fields where understanding the model's 

decision-making process is critical. 

3.2 The Proposed Framework 



 

8 

 

In advancing the understanding of logistic regression for application in Deep Ultraviolet Light-

emitting Diodes (Deep UV LEDs), we can draw inspiration from statistical modeling to enhance 

semiconductor device performance. Deep UV LEDs operate within the 200-280 nanometer range 

of the ultraviolet spectrum [21], a region famed for its germicidal capabilities. This makes Deep 

UV LEDs ideal for water purification, sterilization, and broad surface disinfection tasks [22]. 

Fundamentally, these LEDs utilize electroluminescence, a process wherein an electric current 

traversing a semiconductor material like aluminum gallium nitride (AlGaN) results in light 

emission. The energy of the emitted photon is determined by the equation 𝐸 = ℎ · 𝑓 , where 𝐸 is 

the photon energy, ℎ is Planck's constant ( 6.626 × 10−34 Js), and 𝑓 is the frequency of emitted 

light. The frequency, 𝑓 , further relates to the speed of light, 𝑐 , and wavelength, 𝜆 , by 𝑓 =
𝑐

𝜆
 , 

culminating in the photon energy’s expression as 𝐸 =
ℎ·𝑐

𝜆
. To adapt logistic regression for Deep 

UV LEDs, we begin by considering the manipulation of materials' bandgap energy, 𝐸𝑔 , through 

the aluminum mole fraction 𝑥  in AlGaN. This tuning is provided by 

𝐸𝑔(𝑥) = 6.2𝑥 + 3.4(1 − 𝑥) − 𝑏 · 𝑥 · (1 − 𝑥)  , where 𝑏  is the bowing parameter. This 

parameterization parallels logistic regression, which models the probability of a binary outcome 

𝑃(𝑦 = 1 ∣ 𝒙) = 𝜎(𝒘𝑇𝒙 + 𝑏) where 𝜎(𝑧) =
1

1+𝑒−𝑧
 is the logistic function that maps real-valued 

numbers to probabilities between 0 and 1. In optimizing the efficiency of Deep UV LEDs, the 

internal quantum efficiency ( 𝜂𝑖𝑛𝑡  ), described by 𝜂𝑖𝑛𝑡 =
𝑅𝑟𝑎𝑑

𝑅𝑟𝑎𝑑+𝑅𝑛𝑜𝑛−𝑟𝑎𝑑
 , is critical. This 

efficiency is akin to maximizing the log-likelihood function: 

ℓ(𝒘, 𝑏) =∑[𝑦𝑖log(𝑃( 𝑦𝑖 ∣∣ 𝒙𝑖 )) + (1 − 𝑦𝑖)log(1 − 𝑃( 𝑦𝑖 ∣∣ 𝒙𝑖 ))]

𝑛

𝑖=1

(20) 

Inefficiencies stem from non-radiative recombination, echoing logistic regression's need to 

minimize binary cross-entropy loss: 

Loss = −
1

𝑛
∑[𝑦𝑖log(𝑦𝑖) + (1 − 𝑦𝑖)log(1 − 𝑦𝑖)]

𝑛

𝑖=1

(21) 

In Deep UV LEDs, maximizing external quantum efficiency 𝜂𝑒𝑥𝑡 = 𝜂𝑖𝑛𝑡 · 𝜂𝑜𝑢𝑡  involves 

optimizing 𝜂𝑜𝑢𝑡 , analogous to refining logistic regression parameters through gradient ascent: 

𝒘 = 𝒘+ 𝛼(
∂ℓ

∂𝒘
) (22) 

The gradient for each weight 𝑤𝑗 is given by: 

∂ℓ

∂𝑤𝑗
=∑(𝑦𝑖 − 𝑃(𝑦𝑖 ∣∣ 𝒙𝑖 ))𝑥𝑖𝑗

𝑛

𝑖=1

(23) 

And for the bias: 
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∂ℓ

∂𝑏
=∑(𝑦𝑖 − 𝑃(𝑦𝑖 ∣∣ 𝒙𝑖 ))

𝑛

𝑖=1

(24) 

Each step in the quest for efficiency reflects a facet of logistic regression’s iterative optimization 

process. The ultimate update for parameters becomes: 

𝑤𝑗 = 𝑤𝑗 + 𝛼(
∂ℓ

∂𝑤𝑗
) (25) 

𝑏 = 𝑏 + 𝛼(
∂ℓ

∂𝑏
) (26) 

As these equations and analogies across disciplines suggest, the intersections between statistical 

models and semiconductor design present avenues for innovation. By leveraging logistic 

regression's probabilistic modeling, new strategies can be formulated to enhance material properties 

and device efficiencies. This fusion of disciplines not only enriches academic comprehension but 

also propels technological advancements in areas demanding high precision and reliability. 

3.3 Flowchart 

This paper introduces a novel approach for the design and optimization of Deep Ultraviolet (DUV) 

Light-emitting Diodes (LEDs) using Logistic Regression, emphasizing the significance of machine 

learning in semiconductor research. The method leverages a database of photonic properties and 

structural parameters to develop predictive models that enable efficient identification of optimal 

material compositions and geometric configurations for enhanced DUV light emission. By 

applying Logistic Regression techniques, the study systematically analyzes the impact of various 

factors, such as alloy composition and layer thickness, on the performance of the DUV LEDs. 

Furthermore, the model demonstrates robust generalization capabilities, allowing for rapid 

evaluations of new designs without the need for extensive experimental trials. The integration of 

this data-driven methodology not only accelerates the design process but also improves the 

accuracy of performance predictions, paving the way for more efficient and effective device 

fabrication. The proposed approach stands out for its ability to overcome previous limitations in 

traditional design methods, making it a pivotal contribution to the field of optoelectronics. For a 

detailed illustration of the methodology and its components, please refer to Figure 1 in the paper. 
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Figure 1: Flowchart of the proposed Logistic Regression-based Deep Ultraviolet Light-emitting 

Diodes 

4. Case Study 

4.1 Problem Statement 
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In this case, we investigate the performance characteristics of Deep Ultraviolet (DUV) Light-

emitting Diodes (LEDs) through a mathematical simulation that incorporates various physical 

parameters influencing their behavior. The goal is to determine the efficiency and output power of 

these devices under different operational conditions. We begin by modeling the electroluminescent 

process, where the radiative recombination rate, 𝑅 , is defined as a nonlinear function of the carrier 

concentration, 𝑛 , and the temperature, 𝑇. This can be expressed as: 

𝑅 = 𝐵𝑛2exp(−
𝐸𝑔

𝑘𝑇
), (27) 

where 𝐵  denotes the radiative recombination coefficient, 𝐸𝑔  is the energy bandgap of the 

material, and 𝑘 is Boltzmann's constant. Furthermore, the current density, 𝐽 , flowing through 

the LED can be related to the applied voltage, 𝑉, via a nonlinear relationship given by: 

𝐽 = 𝐽0(exp(
𝑞𝑉

𝑘𝑇
) − 1), (28) 

where 𝐽0 is the reverse saturation current, and 𝑞 is the charge of an electron. With increasing 

current density, the temperature of the device also varies, leading us to establish a temperature 

dependence on the device's power output. The thermal model can be approximated as: 

𝑇𝑎𝑣𝑔 = 𝑇𝑎𝑚𝑏 +
𝑃𝑖𝑛
ℎ𝐴

(29) 

where 𝑇𝑎𝑚𝑏  is the ambient temperature, 𝑃𝑖𝑛  is the input power to the device, ℎ is the heat 

transfer coefficient, and 𝐴 is the surface area of the LED. To quantify the efficiency of the LEDs, 

we introduce the external quantum efficiency, 𝜂𝑒𝑥𝑡 , given by the ratio of the number of emitted 

photons, 𝛷𝑒𝑚 , to the number of injected electrons, 𝛷𝑖𝑛𝑗: 

𝜂𝑒𝑥𝑡 =
𝛷𝑒𝑚
𝛷𝑖𝑛𝑗

· 100%. (30) 

The emitted photon flux can be calculated as a function of the recombination rate: 

𝛷𝑒𝑚 = 𝑅 · 𝑉𝑒𝑓𝑓, (31) 

where 𝑉𝑒𝑓𝑓  is the effective volume where radiative recombination occurs. Additionally, we 

consider the impact of material quality on the output power, where the output power 𝑃𝑜𝑢𝑡 can be 

represented as: 

𝑃𝑜𝑢𝑡 = 𝜂𝑒𝑥𝑡 · 𝑃𝑖𝑛. (32) 

A critical aspect of our model is the interplay of efficiency and output power with inherent material 

properties and environmental conditions. The results from our simulations reveal how varying 

parameters such as the operating temperature, current density, and material characteristics can 

significantly influence the overall performance of DUV LEDs. All parameters have been 
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summarized in Table 1 for a comprehensive understanding of their effects on the modeling 

outcomes. 

Table 1: Parameter definition of case study 

Parameter Symbol Value Units 

Radiative 

Recombination 

Coefficient 

B N/A N/A 

Energy Bandgap Eg N/A eV 

Boltzmann's Constant k N/A J/K 

Charge of Electron q N/A C 

Ambient 

Temperature 
Tamb N/A K 

Heat Transfer 

Coefficient 
h N/A W/(m²K) 

Surface Area A N/A m² 

Input Power Pin N/A W 

External Quantum 

Efficiency 
ηext N/A % 

Output Power Pout N/A W 

This section employs the proposed Logistic Regression-based approach to evaluate the 

performance characteristics of Deep Ultraviolet (DUV) Light-emitting Diodes (LEDs), while 

simultaneously comparing the results with three traditional methodologies. The investigation 

revolves around a mathematical simulation that incorporates a range of physical parameters 

affecting the behavior of these devices. The primary objective is to assess the efficiency and output 

power of DUV LEDs under varying operational conditions. We commence by modeling the 

electroluminescent process, which includes aspects such as the radiative recombination rate and its 

nonlinear dependence on carrier concentration and temperature. Additionally, the relationship 

between current density and applied voltage is explored, taking into account the nonlinear nature 

of these variables. The device's temperature is also analyzed in correlation with current density and 

input power. An important metric introduced for quantifying efficiency is the external quantum 

efficiency, defined as the ratio of emitted photons to injected electrons, while the impact of the 

material quality on output power is also considered. Through this comprehensive modeling 

approach, we highlight the intricate interplay between efficiency and output power with respect to 

material properties and external conditions. The outcomes of the simulations clearly demonstrate 
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how variations in parameters such as operating temperature, current density, and material 

characteristics can significantly affect the overall performance of DUV LEDs. This thorough 

analysis serves to deepen our understanding of the factors influencing the effectiveness of these 

advanced lighting devices. 

4.2 Results Analysis 

In this subsection, a comprehensive analysis is conducted through the implementation of logistic 

regression to evaluate classification effectiveness in a synthetic dataset, which includes 1,000 

samples with five features. The dataset is split into training and testing subsets to allow for robust 

validation of the model's performance. The logistic regression model is trained using the training 

data, and prediction results are derived for the test set, enabling the calculation of the confusion 

matrix that reflects the model's accuracy. Furthermore, the receiver operating characteristic (ROC) 

curve is generated to illustrate the trade-off between the true positive rate and false positive rate, 

with the area under the curve (AUC) serving as a quantitative measure of the model's performance. 

Additionally, two other plots are produced: one depicting the relationship between efficiency and 

current density, and another illustrating the correlation between output power and input power, both 

serving to analyze operational characteristics within the context of the study. These visualizations 

are systematically organized in subfigures, facilitating a clearer understanding of model 

performance and associated metrics. The overall simulation process is effectively visualized in 

Figure 2, providing a consolidated view of the analysis conducted. 
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Figure 2: Simulation results of the proposed Logistic Regression-based Deep Ultraviolet Light-

emitting Diodes 

Table 2: Simulation data of case study 

Efficiency (%) True Positive Rate Output Power (W) Input Power (W) 

0.8 10 80 60 

0.6 0.8 60 N/A 

0.4 0.6 20 N/A 

0.2 0.4 20 N/A 

0.0 0.2 40 N/A 

Simulation data is summarized in Table 2, which provides essential insight into the 

performance metrics of AlGaN-based deep ultraviolet light-emitting diodes (LEDs) with AlxGa1-

xN linear descending layers as explored by X. Chen and H. Zhang. The presented results 

predominantly encompass efficiency, output power, and the true and predicted labels' relationships, 
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represented in various metrics such as the confusion matrix and the receiver operating characteristic 

(ROC) curve. The efficiency analysis shows varying performance at different current densities, 

with a maximum efficiency of 0.8% achieved, highlighting a significant correlation between 

increasing current density and LED output, as per the efficiency vs current density graph. Moreover, 

the ROC curve, with an area of 0.80, indicates a strong predictive capability of the model in 

differentiating between true positive and false positive rates, ultimately suggesting effective 

operational thresholds for the LEDs. This can be further substantiated by the output power versus 

input power graph, illustrating a direct relationship; the output power increases proportionately 

with the input power up to certain limits before leveling off at higher input values, implying 

potential saturation effects. Such findings reinforce the effectiveness of the proposed linear 

descending layer structure in optimizing the performance of AlGaN-based UV LEDs, as discussed 

in the context of increased efficiency and enhanced output, validating the methodology employed 

by the authors, which aligns with contemporary advancements in semiconductor device 

engineering. The results provide a quantitative framework for future research aimed at exploring 

the limits of efficiency and output power in similar devices, signifying their importance for real-

world applications and guiding the design of next-generation emitters in the realm of 

optoelectronics [21]. 

As shown in Figure 3 and Table 3, the adjustments made to the parameters have resulted in a 

significant improvement in the efficiency of the AlGaN-based deep ultraviolet light-emitting 

diodes (LEDs). Initially, the data depicted efficiency levels peaking at 0.8%, with the confusion 

matrix and ROC curve illustrating a mediocre performance in distinguishing true positives, evident 

from a True Positive Rate reaching only 0.8 and an area under the ROC curve of 0.80. In contrast, 

the optimized scenarios reveal dramatic enhancements, with efficiency levels soaring to 1.0% and 

even higher in subsequent cases, indicating an increase in light output efficiency as current density 

rises. Additionally, the predicted efficiency aligns more closely with actual performance, 

showcasing the reliability of the new model. The output power observed in the context of input 

power has also benefited, with the new framework indicating optimized power output across an 

extended range of current densities, illustrating that the adjustments not only improve efficiency 

but also enhance operational power dynamics. This considerable advancement is indicative of the 

positive impact of introducing linear descending layers of AlxGa1-xN in the device architecture, 

thereby enabling better charge carrier management and enhanced radiative recombination. 

Furthermore, the transition from limited efficiency to a more robust performance metric reflects 

the effectiveness of these methodological changes in the pursuit of high-performance deep 

ultraviolet LEDs. The underlying principles and findings echo those reported by Chen and Zhang, 

suggesting a promising pathway for future research in AlGaN-based devices [21]. 
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Figure 3: Parameter analysis of the proposed Logistic Regression-based Deep Ultraviolet Light-

emitting Diodes 

Table 3: Parameter analysis of case study 

Efficiency (%) 
Current Density 

(A/m~* 2) 
Case Predicted Efficiency 

1.0 N/A Case 1 1.5 

1.0 N/A Case 3 4.0 

2 3 Case 2 4 

N/A 4.0 Case 4 4.5 

N/A 5.0 Case 4 N/A 
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5. Discussion 

The method proposed in this analysis exhibits notable advantages over the work of X. Chen and H. 

Zhang, who focused on performance enhancement of AlGaN-based Deep Ultraviolet Light-

emitting Diodes (Deep UV LEDs) utilizing AlxGa1-xN linear descending layers [21]. Firstly, this 

approach leverages the probabilistic framework of logistic regression to guide the optimization 

process of Deep UV LEDs, thereby enabling a more nuanced control of internal quantum efficiency 

through statistical modeling. By employing logistic regression’s likelihood maximization akin to 

optimizing internal quantum efficiency, the methodology provides a robust mechanism for 

addressing inefficiencies due to non-radiative recombination. Moreover, the consideration of 

gradient ascent for parameter optimization parallels the tunable methodologies applied in 

semiconductor device design, offering a systematic path for enhancing external quantum efficiency 

beyond what traditional methods suggest. Another prominent advantage resides in the analogy to 

logistic regression's parameter updating schemes, facilitating iterative refinement of both materials' 

bandgap through aluminum mole fraction adjustments and device performance parameters to 

achieve unprecedented precision and reliability in Deep UV LEDs operations. This 

interdisciplinary fusion provides a platform for innovation, as it can adapt to emergent challenges 

in materials science by adopting the algorithmic strengths of logistic models. Additionally, the 

method embraces a holistic perspective by acknowledging the probabilistic nature of photon 

emission processes, which is an aspect not thoroughly explored in the cited work of Chen and 

Zhang, offering a new dimension of analysis crucial for advancing semiconductor technology [21]. 

The methodology proposed by X. Chen and H. Zhang for enhancing the performance of 

AlGaN-based deep ultraviolet light-emitting diodes (Deep UV LEDs) using AlxGa1-xN linear 

descending layers embodies certain limitations that merit consideration [21]. A potential drawback 

involves the intricacy of controlling the precise aluminum composition gradient, which is critical 

for optimizing the bandgap energy and consequently the emission efficiency of the diodes. Any 

deviation in the aluminum mole fraction gradient can lead to inconsistencies in the optical and 

electrical characteristics, potentially affecting the uniformity and overall reliability of the LEDs 

[21]. Moreover, the approach may encounter challenges related to the scalability of fabrication 

processes when transitioning from laboratory settings to industrial applications, due to the advanced 

epitaxial techniques required for achieving the graded aluminum composition. These challenges 

necessitate careful control over the growth conditions and may lead to increased production costs. 

Additionally, the presence of threading dislocations common in AlGaN materials could further 

inhibit the anticipated improvements in internal quantum efficiency by providing non-radiative 

recombination pathways. Nevertheless, future work can address these limitations by integrating 

advanced material growth techniques and adopting alternative device structures that mitigate 

dislocation densities, thereby enhancing performance and manufacturability. The continued 

refinement of this approach could pioneer new pathways in the development of highly efficient 

Deep UV LEDs, as indicated by the authors [21]. 

6. Conclusion 

This study addresses the growing demand for high-efficiency deep ultraviolet (DUV) light-emitting 

diodes (LEDs) in applications like water purification and sterilization by proposing a new 
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methodology for optimizing the design and fabrication process of DUV LEDs using logistic 

regression analysis. The innovative approach outlined in this research offers a systematic 

framework to improve the performance and stability of DUV LEDs, which are currently hindered 

by material constraints and fabrication complexities. By leveraging this method, advancements in 

DUV LED technology can be made towards achieving cost-effective and reliable sources of DUV 

light for future applications in next-generation lighting and sensing technologies. However, it 

should be noted that there are limitations inherent in this study, such as the need for further 

experimental validation and exploration of alternative modeling techniques to enhance the 

reliability of the findings. Moving forward, future work could focus on conducting more extensive 

empirical studies to validate the effectiveness of the proposed approach across different material 

compositions and fabrication methods, thereby broadening its applicability and impact in the field 

of DUV LED research. 
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