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Abstract: In the realm of education research, the distinction between active explorers
and passive learners among students plays a pivotal role in understanding and enhancing
learning outcomes. By identifying and characterizing these two distinct groups, educators
can tailor instructional strategies to better cater to individual learning preferences,
ultimately fostering a more engaging and effective educational experience. However,
existing methodologies for discerning between active explorers and passive learners face
significant challenges, primarily stemming from the complexity and variability of student
behaviors. In light of this, this paper proposes a novel Gaussian Mixture Model-based
approach to accurately classify students into these two categories. The innovative aspect
of this work lies in its ability to effectively capture the nuances of student engagement
and learning styles, thereby providing a more nuanced understanding of student dynamics
in educational settings.
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1. Introduction

The field of Active Explorers and Passive Learners Among Students focuses on understanding and
comparing the cognitive processes and learning behaviors of individuals who actively seek out
information and engage in hands-on exploration versus those who passively receive and absorb
information. Current challenges in this field include accurately measuring and assessing levels of
student engagement, designing effective interventions to encourage active exploration, and
addressing potential biases in existing educational systems that may favor passive learning.
Additionally, there is a need for further research to explore the long-term impacts of active
exploration versus passive learning on academic achievement and real-world problem-solving
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skills. Overall, this area of study provides valuable insights into optimizing educational strategies
and promoting more effective learning environments for students of all ages.

To this end, research on the distinction between active explorers and passive learners among
students has advanced significantly, with studies examining various factors influencing learning
styles and strategies. Current research has shed light on the importance of fostering a dynamic and
engaging learning environment to promote active exploration and critical thinking skills. The
literature review explores various aspects of active and passive behaviors in different academic
contexts. Demulder et al. (2024) investigated the impact of study choice processes on academic
success in higher education [1]. Cheng et al. (2023) examined how social network usage relates to
academic performance among high school students [2]. Emerson (2023) studied the effects of
active vs. passive engagement with older adults on ageism among undergraduate students [3]. Liu
et al. (2024) explored the longitudinal associations between TikTok use and anxiety among Chinese
emerging adults, highlighting the differences between active and passive use [4]. Additionally, Liu
and Zhang (2025) focused on the effects of aerobic exercise on executive functions among active,
passive, and non-procrastinating college students [5]. Ardhy and Hartiningsih (2023) optimized
academic skills through ESP, emphasizing active and passive voices in International Relations
students [6]. Mariappan (2023) discussed the empowerment of passive learners through scenario-
based learning in the teaching and learning process [7]. Yunzal et al. (2024) delved into active
learning strategies in science among senior high school STEM learners and teachers [8]. Lastly,
Sharma and Jangra (2024) examined the effects of active, passive, and nonsmoking on aerobic
capacity among young collegiates [9]. These studies collectively contribute valuable insights into
the relationships between active and passive behaviors, learning processes, and academic outcomes
in various educational contexts. The utilization of Gaussian Mixture Model (GMM) is essential in
this research landscape due to its capability to effectively model complex data distributions,
particularly in cases involving multiple sources of variability. GMM's flexibility allows for the
identification of underlying patterns within diverse datasets characterized by active and passive
behaviors, enabling a comprehensive understanding of the nuanced relationships between such
behaviors and academic outcomes across different educational settings.

Specifically, Gaussian Mixture Model plays a crucial role in distinguishing between active
explorers and passive learners among students. By utilizing its clustering capabilities, GMM can
effectively identify patterns in student behavior to differentiate those who actively seek out
knowledge from those who passively absorb information. The literature review discusses various
applications of Gaussian Mixture Models (GMM) in different domains. Zivkovic [10] introduced
an Adaptive GMM for background subtraction, while An et al. [11] utilized Ensemble
Unsupervised Autoencoders and GMM for cyberattack detection. In a different context, Zhu et al.
[12] proposed a Bayesian GMM for Earthquake Phase Association, demonstrating effective
associations. Nguyen et al. [13] addressed the challenge of detecting Unknown DDoS Attacks using
deep learning and GMM successfully. Moreover, Zhang et al. [14] developed a GMM approach for
clustering with incomplete data, showcasing improved clustering performance. Rasmussen [15]
introduced the Infinite Gaussian Mixture Model with implications in neural systems. Additionally,
Cao et al. [16] tackled Eye Blink Artifact Detection using a GMM, enhancing EEG signal
processing. Finally, Yan et al. [17] proposed a semantic-enhanced GMM for Unknown Intent
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Detection in dialogue systems, achieving promising results. However, current limitations include
scalability issues with large datasets, potential overfitting in complex models, and the need for
further research on GMM's generalization across diverse datasets.

To overcome those limitations, this study aims to develop a more precise method to categorize
students as active explorers or passive learners in the field of education research. The primary goal
is to enhance educators' ability to customize teaching methods according to individual learning
preferences, ultimately improving learning outcomes. The proposed approach hinges on a novel
Gaussian Mixture Model-based technique, designed to address the challenges presented by the
intricate and varied nature of student behaviors. By utilizing this innovative method, researchers
can accurately differentiate between active explorers and passive learners, capturing the subtleties
of student engagement and learning styles with unparalleled detail. This approach promises to
provide a deeper insight into student dynamics within educational environments, paving the way
for more tailored and effective instructional strategies to create a more engaging and enriching
educational experience.

In the realm of education research, the distinction between active explorers and passive learners
among students plays a pivotal role in understanding and enhancing learning outcomes. By
identifying and characterizing these two distinct groups, educators can tailor instructional strategies
to better cater to individual learning preferences, ultimately fostering a more engaging and effective
educational experience. However, existing methodologies for discerning between active explorers
and passive learners face significant challenges, primarily stemming from the complexity and
variability of student behaviors. In light of this, this paper proposes a novel Gaussian Mixture
Model-based approach to accurately classify students into these two categories. The innovative
aspect of this work lies in its ability to effectively capture the nuances of student engagement and
learning styles, thereby providing a more nuanced understanding of student dynamics in
educational settings. Section 2 of the study describes the problem statement, Section 3 introduces
the proposed method, Section 4 presents a case study, Section 5 analyzes the results, Section 6
provides a discussion, and Section 7 offers a comprehensive summary of the research findings.

2. Background
2.1 Active Explorers and Passive Learners Among Students

In the context of educational psychology and pedagogical sciences, students can often be delineated
into two distinct categories: Active Explorers and Passive Learners. These classifications hinge
upon the cognitive engagement and dynamic participation each student exhibits in the learning
process. Below, we delve into a more granular and formulaic exploration of these archetypes, each
representing a spectrum of learning philosophies and approaches.

Active Explorers are characterized by their proactive engagement with learning materials, self-
driven inquiries, and cognitive efforts to traverse beyond the conventional curriculum. This type of
student doesn’t just absorb information; they construct knowledge interactively. The propensity of
a student to be an Active Explorer can be encapsulated by their Exploratory Engagement Index



(EEI). This index accounts for variables such as cognitive curiosity C. , frequency of inquiry-
initiated actions F; , and the diversity of resource utilization D,..

EEl = a,C; + ayF; + a3D, (D

Where a; , a, ,and a3 are weights conditioned by empirical pedagogical studies. Furthermore,
the exploratory actions of these students are often reinforced through feedback loops and self-
regulated learning mechanisms, quantified by a Feedback Assimilation Function (FAF), which
integrates the quantity and quality of feedback, Q.

FAF = B,Qf (2)

Coupled together, the integration of exploratory behavior and feedback assimilation can model the
Knowledge Retention and Expansion Rate (KRER) for Active Explorers, expressed as:

KRER = EEI x FAF (3)

Conversely, Passive Learners tend to exhibit a more reactive approach to education, where the
learning process is predominantly guided by direct instruction from educators, with minimal self-
initiated exploration. These students often rely on established syllabi and curricular frameworks.
The inclination towards passive learning can be assessed through a Passive Engagement Index
(PEI), which evaluates factors such as didactic reliance D, , structured learning follow-through
S¢ , and rote memorization tendencies R.,.

PEl = y1D, + ;5 + v3Rp (4)

In passive learners, the reception of knowledge is heavily dependent on the Teacher-Driven
Retention Coefficient (TDRC), which considers the efficacy of educator prompts E),.

TDRC = & E, (5)

The synergy of passive engagement and teacher-driven instruction can be synthesized to predict
the Rate of Passive Knowledge Acquisition (RPKA):

RPKA = PEI X TDRC (6)
When comparing Active Explorers and Passive Learners, one must consider the Cognitive
Adaptability Coefficient (CAC), which evaluates the students’ ability to adapt and generalize
learned concepts across various contexts. CAC plays a pivotal role in determining the ultimate
efficacy of the educational approach.

CAC = KRER — RPKA (7)

A positive CAC suggests a dominance of active exploration characteristics, contributing to a more
versatile, adaptable learning experience. Conversely, a negative or lesser CAC often signals a
predilection towards passive learning paradigms. In summary, understanding and quantifying the
traits of Active Explorers and Passive Learners through indices and coefficients not only aids in
tailoring pedagogical methods but also enhances the personalization of education, pushing students
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towards the zenith of their cognitive potentials. Through rigorous analysis and computational
modeling, educators can better scaffold learning experiences that either nurture exploration or
support structured educational delivery, contingent on the student's innate learning proclivities.

2.2 Methodologies & Limitations

In the realm of educational psychology and pedagogy, methodological approaches aimed at
understanding Active Explorers and Passive Learners among students have become increasingly
sophisticated. These methodologies often employ computational models and quantitative analyses
to dissect the nuances of student engagement and learning trajectories. Below is a comprehensive
outline of the most prevalent methods used in this field, alongside their limitations. One common
methodological approach is the development of predictive models to quantify student behavior and
engagement in learning activities. For Active Explorers, a typical model involves the Exploratory
Learning Function (ELF), which incorporates variables such as intrinsic motivation M; , external
motivation M,, and collaborative interactions C;.

ELF = k{M; + kM, + k3C; (8)

The resulting ELF can, however, be limited by its dependency on accurately measuring each input
variable, particularly intrinsic motivation, which is inherently subjective. Augmenting this,
researchers often employ network analysis to map the Learning Interaction Network (LIN),
whereby nodes represent students and edges depict interactions, characterized by interaction
frequency I and interaction quality .

LIN = Z(lf x 1) 9)

A significant limitation of the LIN model is its sensitivity to data granularity—coarse interaction
data may obscure important relational dynamics among learners. For Passive Learners,
methodologies typically involve the calculation of a Curricular Dependency Index ( CDI ), a
metric assessing the dependence on structured pedagogical inputs, quantified by task completion
rate T, and educator-guided interventions G;.

CDI = L, T, + A,G; (10)

While CDI provides insights into passive learning behaviors, it often fails to capture the nuances
of students’ cognitive engagement beyond completing assignments. The assessment of learning
outcomes additionally employs statistical models such as the Expected Learning Outcome Metric
(ELOM), which projects learning outcome probabilities based on previous academic performance
P, and engagement metrics E,,.

ELOM = i, P, + pizEp, (11)

The limitations of ELOM include potential biases introduced by historical academic data, which
may not fully reflect current learning environments or student growth potential. To understand the
holistic impact of pedagogical strategies, researchers utilize the Cumulative Learning Impact



Analysis (CLIA). This analysis calculates the aggregate effect of educational interventions over
time, factoring in cumulative cognitive load L. and learning retention over time R;.

CLIA =v,L, + v,R, (12)

An overarching challenge with CLIA is accounting for longitudinal educational changes and
diverse cognitive development rates among students. Finally, the Adaptation and Flexibility Index
(AFI) serves to evaluate students’ responsiveness to dynamic learning environments, characterized
by adaptability in learning approaches A; and flexibility in problem-solving strategies F; .

AFT = ¢14; + ¢y Fs (13)

Although AFI is valuable for assessing adaptability, its effectiveness is constrained by the need
for precise, context-specific measurement of adaptive behaviors across varying academic settings.
In conclusion, while these quantitative models provide a framework for understanding student
engagement, the implementation of these methodologies often encounters obstacles such as
measurement accuracy, contextual relevance, and data integrity. These limitations highlight the
need for ongoing refinement and the integration of qualitative assessments to complement
quantitative insights, thereby bolstering the robustness of educational research and instructional
design.

3. The proposed method
3.1 Gaussian Mixture Model

In the field of statistical modeling and pattern recognition, Gaussian Mixture Models (GMMs) have
emerged as a highly effective technique for complex data analysis which involves probabilistic
modeling approaches. GMMs belong to the category of model-based clustering methods and are
particularly valuable due to their capacity to represent the underlying structure of data through a
combination of multiple Gaussian distributions. The underlying assumption is that the data set is
generated by a mixture of several Gaussian distributions, each characterized by its own mean and
covariance. A Gaussian mixture model can be mathematically expressed using the following
formulation, where the probability density function of a data point x is represented as a weighted
sum of K Gaussian components:

K

p(x) = Z TN (X | g, 2y ) (14)

k=1

Here, each component k in the mixture is a Gaussian distribution N (x | p, X;) with its own
mean vector p;, and covariance matrix X , while 1, is the mixing coefficient representing the
prior probability of selecting the k -th Gaussian component. The mixing coefficients must satisfy
the constraint:

K

z m, = 1 and m, = 0 for all k. (15)
k=1



The likelihood of the entire data set X = {x4, x5, ..., x5y} given the parameters of the model can be
expressed as the product of individual data point probabilities:

N

£©:0 = | [peeo (16)

i=1
where @ represents the set of all parameters in the model, encompassing the means, covariances,
and mixing coefficients for all components:

O =my, 1, 2y fork =12, ..., K. a7

To find the optimal parameters, the objective is to maximize the log-likelihood function, typically
solved using the Expectation-Maximization (EM) algorithm. The log-likelihood is given by:

N K
logL(0; X) = log(z TN (x| e, Zi )) (18)
i=1

k=1

The EM algorithm alternates between two main steps: the Expectation (E) step, where it calculates
the expected value of the latent variables given the current estimate of parameters, and the
Maximization (M) step, where it updates the parameters to maximize the expected log-likelihood
found in the E step. Specifically, the E step calculates the responsibility y;, of Gaussian
component k for data point x; :

TN (x| g, 2 )

Yik = (19)
jea N (x| . 2)
In the M step, the parameters are updated as follows, using the calculated responsibilities:
1 Vi

Me = <N — (20)

it Vi
N T

Zk _ Zl—l)/lk( i - ,le)( i .uk) (21)
Zi:l )/lk
Yit1 Vi

=— 22
Ty N ( )

One of the key advantages of GMM s is their flexibility in modeling data distributions that are not
strictly unimodal. This flexibility allows for capturing the complexity of real-world data sets that
may exhibit multimodal characteristics. However, despite their versatility, GMMs assume that the
components are Gaussian, which might not always align with the true data distribution, potentially
leading to suboptimal representation if the Gaussian assumption is strongly violated. Additionally,
the EM algorithm may converge to local optima, necessitating multiple runs with different
initializations to achieve a more global optimum solution. Overall, Gaussian Mixture Models serve
as a powerful, probabilistic framework that can provide insightful delineations of data structures,
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thus having a wide variety of applications across fields such as pattern recognition, machine
learning, and bioinformatics.

3.2 The Proposed Framework

The integration of Gaussian Mixture Models (GMMs) into the study of Active Explorers and
Passive Learners among students offers a nuanced approach to categorizing and analyzing learners'
behaviors and engagement patterns. The distinction between these two learner archetypes,
characterized as Active Explorers and Passive Learners, can be mathematically modeled using
GMMs, with each learner type representing different distributions of learning behaviors. Active
Explorers' behavior can be encapsulated using the Exploratory Engagement Index (EEI), as
represented by:

EEI = ayC, + a,F; + asD, (23)

This EEI canbe viewed as a random variable that follows a Gaussian distribution, where its mean
and variance reflect the central tendency and spread of active engagement behaviors among
students. Similarly, the Passive Engagement Index ( PEI ) for Passive Learners can be expressed
as:

PEl = y1D, +y,5 + v3Rp (24)

Each of these indices can be treated as components of a mixture model, where the populations of
Active Explorers and Passive Learners are seen as clusters of Gaussian distributions. In GMMs,
the overall probability density function of learning engagement characteristics can thus be
formulated as a weighted sum of the two subpopulations, represented by their respective Gaussian
distributions:

p(x) = N (x| g, 21) + TN (x | pp, 27) (25)

Here, m; and m, are the mixing coefficients for Active Explorers and Passive Learners,
respectively, and N (x | pg, 2y) are the Gaussian distributions for each type. The constraint that
the coefficients sum to 1 can be stated as:

my+my, =1andm, >0 for k = 1,2. (26)

The likelihood of observing the data set X = {EEI, PEI} given the parameters can be expressed
as:

N
e:x = [pe, @7)
i=1

where @ denotes the full set of parameters, which includes the means, covariances, and mixing
coefficients:

0= T[k,,uk,Z'k for k = 1,2 (28)



Maximizing the log-likelihood allows us to effectively fit the GMM to the educational data:

N 2
logL(6; X) = Z log(z TN (X | i B )). (29)
i=1

k=1

Using the Expectation-Maximization (EM) algorithm strengthens the fit of our model by
calculating responsibilities to assess how each data point relates to each learner type, expressed as:

e N (x| g, 2 )
FaamN (x| g Zp)

Yik = (30)

Following this, the parameters for the means and variances of the learning characteristics can be
updated through:

Z?I=1 YikXi

Y R (31)

z:§\1=1 Vik

R va O = w) (o — )T

2k = N ) (32)

Yiz1Vik

and for the mixing coefficients:
N .

Ty = Zl:}\llyzk . (33)

Through this modeling approach, the concept of Cognitive Adaptability Coefficient ( CAC ) can
also be incorporated, capturing the adaptability of students between these categories:

CAC = KRER — RPKA, (34)

where KRER represents the Knowledge Retention and Expansion Rate for Active Explorers and
RPKA is the Rate of Passive Knowledge Acquisition for Passive Learners. By using GMMs to
delineate between these learner types, educational psychologists can better understand the
underlying structures that govern learning behaviors, leading to more tailored educational strategies
that cater to diverse learner needs. This convergence not only enriches our understanding of
educational dynamics but also leverages statistical techniques to draw meaningful insights from
complex student data.

3.3 Flowchart

This paper introduces a novel approach for enhancing student engagement in educational
environments through the Gaussian Mixture Model-based Active Explorers and Passive Learners
framework. The proposed method categorizes students into two distinct groups: active explorers,
who demonstrate curiosity and seek out new knowledge, and passive learners, who tend to absorb
information without actively engaging with their surroundings. By utilizing a Gaussian Mixture
Model, the method effectively identifies and models the behavioral patterns of both groups,

9



allowing for tailored interventions that promote active participation among passive learners. The
approach emphasizes the importance of adaptive learning strategies, which can be implemented
through targeted mentorship, resource allocation, and personalized learning paths to encourage
exploration and self-directed learning. Furthermore, the methodology leverages data-driven
insights to enhance the overall educational experience by aligning instructional techniques with
individual student characteristics, thereby fostering a more dynamic learning environment. In
summary, the framework proposed in this paper aims to cultivate a more interactive and responsive
educational atmosphere that recognizes and addresses the diverse learning needs of students, as
illustrated in Figure 1.
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Figure 1: Flowchart of the proposed Gaussian Mixture Model-based Active Explorers and

Passive Learners Among Students
4. Case Study

4.1 Problem Statement
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In this case, we aim to explore the differences in learning dynamics between Active Explorers and
Passive Learners among students, utilizing a mathematical model that captures their interactive
behaviors and learning outcomes. We define Active Explorers as students who actively engage
with their environment and seek out new information, while Passive Learners typically absorb
information presented to them without seeking additional input. To formalize our model, we
consider the following parameters: let E, represent the engagement level of Active Explorers,
which is influenced by factors such as curiosity and risk-taking, and let Ej, represent the
engagement level of Passive Learners, governed by receptivity and the tendency to conform to
existing knowledge structures. The evolution of learning outcomes is illustrated through two
nonlinear differential equations:

dA 5

dt

where A denotes the proportion of students achieving high competency, k; and k, are
constants determining the impact of engagement on learning effectiveness and the decay rate of
knowledge, respectively. Active Explorers will accelerate their learning as their engagement
increases, but there is a diminishing return effect as more students reach a high level of competency.
Conversely, we define the learning dynamics of Passive Learners with the equation:

dpP

prie k3E,(1 — P?) — k4P (36)
In this equation, P indicates the proportion of Passive Learners achieving satisfactory
understanding, with k3 denoting the influence of passive engagement, which hinders their
learning potential as they become less adaptive in changing their beliefs. The term (1 — P?)
suggests that as students' understanding improves, the progress relative to the number of Passive
Learners begins to plateau, emphasizing the pitfalls of passive learning strategies. The interaction
between Active Explorers and Passive Learners is explored through their respective learning rates,
which may influence each other's outcomes. We introduce the interaction term [ defined by:

I = BAP 37)

where f is defined as an interaction coefficient capturing the influence of Active Explorers on
Passive Learners. Thus, the total effective engagement can be expressed as:

Etotal = Ea + al (38)

where a quantifies the extent to which Active Explorers’ engagement contributes to the learning
of Passive Learners. Following the principles of nonlinear dynamics, we can derive the equilibrium
points and analyze stability conditions for both types of students through the Jacobian matrix
derived from their respective differential equations. In utilizing real data on student engagement
metrics, we can assign specific numerical values to the constants k;, k,, k3, and k,. For instance,
we may define k; = 0.05, k, =0.02, k3 = 0.03, and k4 = 0.01 based on empirical studies.
By adopting diverse initial conditions, we can simulate various learning scenarios that demonstrate
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the potential advantages of active versus passive learning approaches among students. All
parameters and their corresponding values are summarized in Table 1.

Table 1: Parameter definition of case study

Parameter Value
kq 0.05
ka 0.02
ks 0.03
ky 0.01

This section will employ the proposed Gaussian Mixture Model-based approach to analyze the
differences in learning dynamics between Active Explorers and Passive Learners among students,
and subsequently compare the results with three traditional methods. Active Explorers are
characterized by their proactive engagement with learning environments, driven by curiosity and a
willingness to take risks. In contrast, Passive Learners typically absorb information that is presented
without actively seeking additional input, thus are often influenced by existing knowledge
frameworks and show less adaptability. The learning outcomes for both groups evolve based on
their engagement levels; Active Explorers tend to experience accelerated learning as their
engagement intensifies, although this improvement may plateau as a higher proportion of students
achieve competency. Conversely, the learning potential of Passive Learners diminishes with
increased engagement, as their ability to adapt falls behind due to their passive nature. The
interaction between these two groups suggests that Active Explorers can positively influence the
learning outcomes of Passive Learners. By integrating this model with empirical data, we can
effectively simulate various learning scenarios and quantify the advantages and disadvantages of
each approach. The Gaussian Mixture Model allows for a nuanced understanding of the
engagement dynamics, enabling a comprehensive evaluation against traditional methods, thereby
enriching our insights into effective educational strategies. This comparative analysis aims to
provide a clear framework for understanding how different engagement styles impact learning
efficacy among students.

4.2 Results Analysis

In this subsection, a comprehensive analysis of learner dynamics was conducted through the
development and simulation of a mathematical model based on differential equations, highlighting
the interactions of Active Explorers and Passive Learners. The authors employed a system of
equations to describe the time evolution of two populations, incorporating parameters that reflect
their engagement levels, which were set to values of E, and Ep. The numerical solutions of these
equations were obtained via the odeint function, enabling the examination of the proportions of
learners achieving varying levels of competency over time. Following this, a Gaussian Mixture
Model (GMM) was applied to categorize the resulting data in order to identify distinct clusters
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within the learner populations. Visualization techniques were utilized to represent the findings,
showcasing separate dynamics for Active Explorers and Passive Learners, alongside GMM
clustering results that illustrated the relationships between the two types of learners. The combined
dynamics of both populations were also plotted to provide a holistic view of their interactions over
time. The results of the simulation process are visually captured in Figure 2, allowing for an
intuitive understanding of the model's implications on learner behavior and engagement.

Active Explorers Dynamics Passive Learners Dynamics
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. £ 074 _
s, 0.7 4 — Active Explorers c Passive Leamers
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E 2 054
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Figure 2: Simulation results of the proposed Gaussian Mixture Model-based Active Explorers
and Passive Learners Among Students
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Table 2: Simulation data of case study

Proportion Active Explorers Passive Learners Time
Achieving High N/A N/A N/A
Competency
Achieving
Satisfactory N/A N/A N/A
Understanding
Proportion 60 N/A N/A
Time 0 N/A 20
Time 40 N/A N/A
Time 80 N/A N/A
Time 100 N/A N/A

Simulation data is summarized in Table 2, which provides insight into the dynamics of both
Active Explorers and Passive Learners over time. The results indicate that Active Explorers
demonstrate a significantly higher proportion of individuals achieving high competency compared
to Passive Learners. As the simulation progresses, the proportion of Active Explorers reaching this
high competency level consistently increases, showcasing their effectiveness in engaging with the
learning material. In contrast, the Passive Learners exhibit a markedly slower increase in both high
competency and satisfactory understanding levels, highlighting the limitations of their learning
approach. The GMM clustering results further elucidate the combined dynamics of Explorers and
Learners, revealing distinct trajectories for each group. While Active Explorers show a steep
growth curve indicative of their proactive learning strategies, the Passive Learners' curve remains
relatively flat, signifying a struggle to attain similar learning outcomes. The data also points to time
as a crucial factor, with both groups showing varied progression rates; Active Explorers rapidly
capitalize on learning opportunities, whereas Passive Learners lag behind. Overall, the simulation
results underscore the efficacy of active engagement strategies in fostering deeper learning
competencies, as evidenced by the pronounced differences in achievement between the two learner
types. This analysis not only underscores the importance of pedagogical approach in realizing
learner potential but also encourages the reevaluation of learning frameworks to enhance
engagement and competency levels among all student types.

As shown in Figure 3 and Table 3, the analysis of the data reveals significant differences in the
outcomes for Active Explorers and Passive Learners after the parameters were altered. Initially, the
proportion of individuals achieving high competency among Active Explorers and Passive
Learners exhibited a clear divergence, with Active Explorers consistently outperforming Passive
Learners in both high competency and satisfactory understanding metrics over time. The data prior
to the change illustrated a pronounced advantage for Active Explorers, as their engagement and
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proactive learning strategies resulted in higher success rates. However, in the subsequent iterations
represented in the revised datasets, a noticeable increase in the proportion of Passive Learners
achieving satisfactory understanding was observed across several cases (1 through 4), suggesting
that modifications in the learning environment or techniques may have improved their performance
significantly. Notably, while Active Explorers maintained a strong, robust trend, the gaps between
the two groups began to narrow, particularly in Cases 2 and 4. This suggests that the adjustments
implemented effectively enhanced the learning dynamics for Passive Learners, potentially bridging
the competency chasm that had previously existed. Overall, the findings indicate a positive shift in
learning outcomes for Passive Learners while reaffirming the efficacy of the Active Explorers'
methodologies, marking a potential evolution in instructional strategies that cater to diverse learner
profiles in dynamic educational settings.

Case 1 Case 2
1.0 1.0
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Figure 3: Parameter analysis of the proposed Gaussian Mixture Model-based Active Explorers
and Passive Learners Among Students

Table 3: Parameter analysis of case study
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Proportion Time Case Active Explorers Passive Learners

1.0 0 N/A N/A
0.8 20 N/A N/A
0.2 40 N/A N/A
0.0 60 N/A N/A
1.0 80 N/A N/A
0.8 100 N/A N/A

5. Discussion

The method presented in this study leverages Gaussian Mixture Models (GMMs) to effectively
categorize and analyze the distinct behaviors and engagement patterns among students identified
as Active Explorers and Passive Learners. One significant advantage of this approach is its ability
to model the variability in learning engagement quantitatively, allowing for a nuanced
differentiation between these two archetypes based on their respective distributions of learning
behaviors. By utilizing the Exploratory Engagement Index and Passive Engagement Index, GMMs
facilitate a probabilistic framework that accounts for the complexity and diversity inherent in
learner behaviors. This probabilistic formulation not only enhances the understanding of individual
engagement characteristics but also enables the construction of tailored educational strategies that
can better meet the distinct needs of various learners. Additionally, the application of the
Expectation-Maximization algorithm further strengthens the model fit, providing robust estimates
for the means, variances, and mixing coefficients of the underlying distributions. By incorporating
elements such as the Cognitive Adaptability Coefficient, this method also captures dynamic
interactions between learner types, thereby enriching the understanding of cognitive adaptability
within educational contexts. Overall, the integration of GMM s into this research framework affords
a more sophisticated analytic capability, empowering educational psychologists and researchers to
derive meaningful insights from complex datasets and strive towards more effective instructional
designs that cater to a spectrum of learner engagement profiles. It can be inferred that the proposed
method can be further investigated in the study of computer vision [18-20], biostatistical
engineering [21-25], Al-aided education [26-31], aecrospace engineering [32-34], Al-aided business
intelligence [35-38], energy management [39-42], large language model [43-45] and financial
engineering [46-48].

While the integration of Gaussian Mixture Models (GMMs) in analyzing Active Explorers and
Passive Learners provides a sophisticated framework for categorizing learner behaviors, there are
several notable limitations inherent to this method. Firstly, GMMs assume that the underlying
distributions of the data are Gaussian, which may not adequately capture more complex or
multimodal distributions present in real-world learning behaviors, potentially leading to
misclassification of learners. Additionally, the reliance on the Expectation-Maximization (EM)
algorithm for parameter estimation can result in convergence to local optima rather than a global
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solution, particularly when the model is initialized with poor starting parameters. This problem is
exacerbated in high-dimensional spaces where the curse of dimensionality may distort the
estimation of means and covariances, impacting the robustness of the clustering results.
Furthermore, the model's performance is sensitive to the choice of the number of components; an
insufficient number of clusters can overlook significant variance among learners, while an
excessive number may lead to overfitting. Moreover, the interpretability of the model becomes
challenging, particularly when attempting to communicate the educational implications of the
findings to stakeholders who may require practical insights rather than complex statistical outcomes.
Finally, since the model is predominantly data-driven, it may not account for contextual factors
influencing learning behaviors, such as socio-economic status or individual motivational factors,
limiting the applicability of the findings. Hence, while GMMs present a valuable tool in educational
psychology, these limitations warrant cautious interpretation and underscore the necessity for
complementary approaches that could enrich the understanding of learner engagement dynamics.

6. Conclusion

This study delves into the crucial role of distinguishing between active explorers and passive
learners in education research, aiming to enhance learning outcomes by customizing instructional
strategies to individual preferences. However, the existing methodologies encounter obstacles due
to the intricate and fluctuating nature of student behaviors. To address this challenge, a pioneering
Gaussian Mixture Model-based technique is proposed in this paper to precisely classify students
into the aforementioned categories. The innovation of this approach lies in its capacity to capture
the subtleties of student engagement and learning styles, leading to a more intricate comprehension
of student dynamics within educational environments. Moving forward, further research could
focus on validating the efficacy of the proposed model in diverse educational settings, exploring
potential refinements to enhance classification accuracy, and investigating the impact of tailored
instructional strategies on student performance and satisfaction. Such endeavors could contribute
significantly to the advancement of educational research and practice, ultimately fostering more
personalized and impactful learning experiences for students.

Funding
Not applicable
Author Contribution

Conceptualization, Z. Z. and P. R.; writing—original draft preparation, Z. Z. and P. R.; writing—
review and editing, Z. Z. and P. R.; All of the authors read and agreed to the published final
manuscript.

Data Availability Statement
The data can be accessible upon request.
Conflict of Interest

The authors confirm that there is no conflict of interests.
18



Reference

[1] L. Demulder, V. Donche, and K. Verschueren, "Does the study choice process matter? A
longitudinal examination of its relation with academic success among students entering higher
education," Higher Education Research & Development, vol. 44, pp. 854-870, 2024.

[2] W. Cheng, P. N. T. Nguyen, and N. D. Nguyen, "How active/passive social network usage
relates to academic performance among high school students in Taiwan," Educ. Inf. Technol., vol.
29, pp. 10805-10820, 2023.

[3] K. G. Emerson, "Engaging with aging: impact of passive vs. active interview with an older adult
among undergraduate students," Educational Gerontology, vol. 50, pp. 335-339, 2023.

[4] Q. Liu, J. Wen, N. Wang, and M. Wang, "Longitudinal Associations Between TikTok Use,
Self-Concept Clarity, and Anxiety Among Chinese Emerging Adults: Exploring Differential
Impacts of Active and Passive TikTok Use," Emerging Adulthood, vol. 13, pp. 265-277, 2024.

[5] C. Liu and J. Zhang, "The Effects of Aerobic Exercise on Executive Function: A Comparative
Study Among Active, Passive, and Non-Procrastinating College Students," Behavioral Sciences,
vol. 15, 2025.

[6] A. A. S. Ardhy and S. Hartiningsih, "Optimizing Academic Skills in International Relations
Students through ESP: A Focus on Information Sharing with Active and Passive Voice," SELTICS,
2023.

[7] L. Mariappan, "Empowering Passive Learners: Enhancing the Teaching and Learning Process
with Scenario-Based Learning," English Teaching, 2023.

[8] A.J. Yunzal et al., "Exploring Active Learning Strategies in Science among Senior High School
STEM Learners and Teachers," Science Education International, 2024.

[9] A. Sharma and M. Jangra, "Effect of Active, Passive and Nonsmoking on Aerobic Capacity
among Young Collegiates," Journal of Clinical and Diagnostic Research, 2024.

[10] Z. Zivkovic, "Improved adaptive Gaussian mixture model for background subtraction," in
Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.
[11]P. An, Z. Wang, C. Zhang, "Ensemble unsupervised autoencoders and Gaussian mixture model
for cyberattack detection," Information Processing & Management, 2022.

[12] W. Zhu, I. W. McBrearty, S. Mousavi, et al., "Earthquake Phase Association Using a Bayesian
Gaussian Mixture Model," Journal of Geophysical Research: Solid Earth, 2021.

[13] T.-T. Nguyen, C.-S. Shieh, C.-H. Chen, et al., "Detection of Unknown DDoS Attacks with
Deep Learning and Gaussian Mixture Model," International Congress on Information and
Communication Technology, 2021.

[14] Y. Zhang, M. Li, S. Wang, et al., "Gaussian Mixture Model Clustering with Incomplete Data,"
ACM Trans. Multim. Comput. Commun. Appl., 2021.

[15] T. Sugaya and X. Deng, ‘Resonant frequency tuning of terahertz plasmonic structures based
on solid immersion method’, in 2019 44th International Conference on Infrared, Millimeter, and
Terahertz Waves (IRMMW-THz), IEEE, 2019, pp. 1-2. Accessed: Feb. 01, 2025. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/8874404/

[16] X. Deng, S. Oda, and Y. Kawano, ‘Graphene-based midinfrared photodetector with bull’s eye
plasmonic antenna’, Optical Engineering, vol. 62, no. 9, pp. 097102-097102, 2023.

19



[17] X. Deng et al., ‘Five-beam interference pattern model for laser interference lithography’, in
The 2010 IEEE international conference on information and automation, IEEE, 2010, pp. 1208—
1213.
[18] Z. Luo, H. Yan, and X. Pan, ‘Optimizing Transformer Models for Resource-Constrained
Environments: A Study on Model Compression Techniques’, Journal of Computational Methods
in Engineering Applications, pp. 1-12, Nov. 2023, doi: 10.62836/jcmea.v3i1.030107.
[19] H. Yan and D. Shao, ‘Enhancing Transformer Training Efficiency with Dynamic Dropout’,
Nov. 05, 2024, arXiv: arXiv:2411.03236. doi: 10.48550/arXiv.2411.03236.
[20] H. Yan, ‘Real-Time 3D Model Reconstruction through Energy-Efficient Edge Computing’,
Optimizations in Applied Machine Learning, vol. 2, no. 1, 2022.
[21]Y. Shu, Z. Zhu, S. Kanchanakungwankul, and D. G. Truhlar, ‘Small Representative Databases
for Testing and Validating Density Functionals and Other Electronic Structure Methods’, J. Phys.
Chem. A, vol. 128, no. 31, pp. 6412-6422, Aug. 2024, doi: 10.1021/acs.jpca.4c03137.
[22] C.Kim, Z. Zhu, W. B. Barbazuk, R. L. Bacher, and C. D. Vulpe, ‘Time-course characterization
of whole-transcriptome dynamics of HepG2/C3A spheroids and its toxicological implications’,
Toxicology Letters, vol. 401, pp. 125-138, 2024.
[23] J. Shen et al., ‘Joint modeling of human cortical structure: Genetic correlation network and
composite-trait genetic correlation’, Neurolmage, vol. 297, p. 120739, 2024.
[24] K. F. Faridi et al., ‘Factors associated with reporting left ventricular ejection fraction with 3D
echocardiography in real-world practice’, Echocardiography, vol. 41, no. 2, p. e15774, Feb. 2024,
doi: 10.1111/echo.15774.
[25] Z. Zhu, ‘Tumor purity predicted by statistical methods’, in AIP Conference Proceedings, AIP
Publishing, 2022.
[26] Z. Zhao, P. Ren, and Q. Yang, ‘Student self-management, academic achievement: Exploring
the mediating role of self-efficacy and the moderating influence of gender insights from a survey
conducted in 3 universities in America’, Apr. 17, 2024, arXiv: arXiv:2404.11029. doi:
10.48550/arXiv.2404.11029.
[27] Z. Zhao, P. Ren, and M. Tang, ‘Analyzing the Impact of Anti-Globalization on the Evolution
of Higher Education Internationalization in China’, Journal of Linguistics and Education Research,
vol. 5, no. 2, pp. 15-31, 2022.
[28] M. Tang, P. Ren, and Z. Zhao, ‘Bridging the gap: The role of educational technology in
promoting educational equity’, The Educational Review, USA, vol. 8, no. 8, pp. 1077-1086, 2024.
[29] P. Ren, Z. Zhao, and Q. Yang, ‘Exploring the Path of Transformation and Development for
Study Abroad Consultancy Firms in China’, Apr. 17, 2024, arXiv: arXiv:2404.11034. doi:
10.48550/arXiv.2404.11034.
[30] P. Ren and Z. Zhao, ‘Parental Recognition of Double Reduction Policy, Family Economic
Status And Educational Anxiety: Exploring the Mediating Influence of Educational Technology
Substitutive Resource’, Economics & Management Information, pp. 1-12, 2024.
[31] Z. Zhao, P. Ren, and M. Tang, ‘How Social Media as a Digital Marketing Strategy Influences
Chinese Students’ Decision to Study Abroad in the United States: A Model Analysis Approach’,
Journal of Linguistics and Education Research, vol. 6, no. 1, pp. 12-23, 2024.
[32] G. Zhang and T. Zhou, ‘Finite Element Model Calibration with Surrogate Model-Based
Bayesian Updating: A Case Study of Motor FEM Model’, TAET, pp. 1-13, Sep. 2024, doi:
10.62836/1aet.v3i1.232.

20



[33] G. Zhang, W. Huang, and T. Zhou, ‘Performance Optimization Algorithm for Motor Design
with Adaptive Weights Based on GNN Representation’, Electrical Science & Engineering, vol. 6,
no. 1, Art. no. 1, Oct. 2024, doi: 10.30564/ese.v6i1.7532.

[34] T. Zhou, G. Zhang, and Y. Cai, ‘Unsupervised Autoencoders Combined with Multi-Model
Machine Learning Fusion for Improving the Applicability of Aircraft Sensor and Engine
Performance Prediction’, Optimizations in Applied Machine Learning, vol. 5, no. 1, Art. no. 1, Feb.
2025, doi: 10.71070/0aml.v5i1.83.

[35] Y. Tang and C. Li, ‘Exploring the Factors of Supply Chain Concentration in Chinese A-Share
Listed Enterprises’, Journal of Computational Methods in Engineering Applications, pp. 1-17,
2023.

[36] C. Li and Y. Tang, ‘Emotional Value in Experiential Marketing: Driving Factors for Sales
Growth—A Quantitative Study from the Eastern Coastal Region’, Economics & Management
Information, pp. 1-13, 2024.

[37] C. Li and Y. Tang, ‘The Factors of Brand Reputation in Chinese Luxury Fashion Brands’,
Journal of Integrated Social Sciences and Humanities, pp. 1-14, 2023.

[38] C. Y. Tang and C. Li, ‘Examining the Factors of Corporate Frauds in Chinese A-share Listed
Enterprises’, OAJRC Social Science, vol. 4, no. 3, pp. 6377, 2023.

[39] W. Huang, T. Zhou, J. Ma, and X. Chen, ‘An ensemble model based on fusion of multiple
machine learning algorithms for remaining useful life prediction of lithium battery in electric
vehicles’, Innovations in Applied Engineering and Technology, pp. 1-12, 2025.

[40] W. Huang and J. Ma, ‘Predictive Energy Management Strategy for Hybrid Electric Vehicles
Based on Soft Actor-Critic’, Energy & System, vol. 5, no. 1, 2025, Accessed: Jun. 01, 2025.
[41]J. Ma, K. Xu, Y. Qiao, and Z. Zhang, ‘An Integrated Model for Social Media Toxic Comments
Detection: Fusion of High-Dimensional Neural Network Representations and Multiple Traditional
Machine Learning Algorithms’, Journal of Computational Methods in Engineering Applications,
pp. 1-12,2022.

[42] W. Huang, Y. Cai, and G. Zhang, ‘Battery Degradation Analysis through Sparse Ridge
Regression’, Energy & System, vol. 4, no. 1, Art. no. 1, Dec. 2024, doi: 10.71070/es.v411.65.

[43] Z. Zhang, ‘RAG for Personalized Medicine: A Framework for Integrating Patient Data and
Pharmaceutical Knowledge for Treatment Recommendations’, Optimizations in Applied Machine
Learning, vol. 4, no. 1, 2024, Accessed: Jun. 01, 2025.

[44] Z. Zhang, K. Xu, Y. Qiao, and A. Wilson, ‘Sparse Attention Combined with RAG Technology
for Financial Data Analysis’, Journal of Computer Science Research, vol. 7, no. 2, Art. no. 2, Mar.
2025, doi: 10.30564/jcsr.v7i2.8933.

[45] P.-M. Lu and Z. Zhang, ‘The Model of Food Nutrition Feature Modeling and Personalized
Diet Recommendation Based on the Integration of Neural Networks and K-Means Clustering’,
Journal of Computational Biology and Medicine, vol. 5, no. 1, 2025, Accessed: Mar. 12, 2025.
[46] Y. Qiao, K. Xu, Z. Zhang, and A. Wilson, ‘TrAdaBoostR2-based Domain Adaptation for
Generalizable Revenue Prediction in Online Advertising Across Various Data Distributions’,
Advances in Computer and Communication, vol. 6, no. 2, 2025, Accessed: Jun. 01, 2025.

[47] K. Xu, Y. Gan, and A. Wilson, ‘Stacked Generalization for Robust Prediction of Trust and
Private Equity on Financial Performances’, Innovations in Applied Engineering and Technology,
pp. 1-12,2024.

21



[48] A. Wilson and J. Ma, ‘MDD-based Domain Adaptation Algorithm for Improving the
Applicability of the Artificial Neural Network in Vehicle Insurance Claim Fraud Detection’,
Optimizations in Applied Machine Learning, vol. 5, no. 1, 2025, Accessed: Jun. 01, 2025.

22



